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Abstract— In this paper, we consider a remote state esti-
mation problem in the presence of an eavesdropper. A smart
sensor takes measurement of a discrete linear time-invariant
(LTI) process and sends its local state estimate through a
wireless network to a remote estimator. An eavesdropper can
overhear the sensor transmissions with a certain probability. To
enhance the system privacy level, we propose a novel encryption
strategy to minimize a linear combination of the expected
error covariance at the remote estimator and the negative
of the expected error covariance at the eavesdropper, taking
into account the cost of the encryption process. We prove the
existence of an optimal deterministic and Markovian policy
for such an encryption strategy over a finite time horizon.
Two situations, namely, with or without knowledge of the
eavesdropper estimation error covariance are studied and the
optimal schedule is shown to satisfy the threshold-like structure
in both cases. Numerical examples are given to illustrate the
results.

I. INTRODUCTION

Cyber-physical systems (CPSs) integrate sensing, comput-
ing and communication capabilities with physical systems
[1]. The introduction of a wireless network enables CPSs to
be applied to a wide range of applications. However, it also
introduces more challenges to protect privacy. Since infor-
mation in CPSs is transmitted through unprotected wireless
networks in most cases, CPSs are often vulnerable to unau-
thorized users including malicious attackers. A leakage of
confidential information will result in severe consequences,
e.g., disclosure of customers’ privacy and economic losses
[2], [3].

The most common method to improve system confiden-
tiality is encrypting transmitted packets, e.g., symmetric-key
encryption and public-key encryption. Only the legitimate
user has the ability to decrypt messages, blocking the access
from other adversaries. Reason [4] proposed that encrypted
information should satisfy the avalanche effect property. This
property leads to the increase of the average mean squared
error at the legitimate receiver as it enlarges the one-bit-
error. In addition, cryptography requires more storage and
computation services, adding extra burden. Hence, there is a
trade-off between the privacy level and the estimation quality
as well as a privacy-preserving cost.
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A fairly large body of literature exists in studying the
independent and identically distributed (i.i.d.) packets losses.
In this case, the throughput in wireless network serves as an
evaluation indicator in legitimate estimation quality. Haleem
et al. [5] presented a mathematical model to capture the
security-throughput trade-off. Aysal and Barner [6] derived
an optimal estimator of a deterministic signal using stochas-
tic bit flipping and analyzed the effect.

On the other hand, it is more general and more difficult to
consider that collected packets are measurement vectors of a
dynamical system when there is an eavesdropper. Wiese et al.
[7] showed that by applying sufficiently large coding length,
one could make the estimation error of the eavesdropper
unbounded while the legal receiver still has a bounded error
covariance for unstable systems (perfect secrecy). Tsiamis et
al. [8] concluded that by exploiting packet erasures policy,
perfect secrecy is achieved when the arrival rate of the
legitimate receiver is larger than that of eavesdroppers. They
also showed in [9] that perfect secrecy is achieved with at
least one occurrence of the essential event, when the user
receives the packet while the eavesdropper fails to intercept
it. Furthermore, Leong et al. [10] proposed a policy to erase
packets based on the estimation error where the system can
achieve perfect secrecy even when the eavesdropper has
greater probability to obtain information.

Different from [10], we study a more general encryption
strategy. We formulate a novel mathematical model to illus-
trate the effect of encryption strategy (Fig. 1) considering
a remote estimator and an eavesdropper. Based on this
model, we derive structural results on the optimal encryp-
tion schedule with (Theorem 3), or without (Theorem 5)
knowledge of the eavesdropper’s estimation error covariance.
We also introduce the influence of the encryption cost into
this optimization problem. With more decision variables, we
prove that the threshold structure still holds in both situations
(Theorems 3,5).

This paper is organized as follows. Section II establishes
the system model. After analyzing the remote estimator’s and
the eavesdropper’s performance, we introduce the mathemat-
ical formulation of the main problem. Section III proves the
existence and the structure of an optimal deterministic and
Markovian policy in a finite time horizon with or without
knowledge of the eavesdropper’s estimation error covariance.
Numerical simulations are given in Section IV. Section V
draws conclusions.

Notation: N is the set of natural numbers. R and Rn

represent the set of real numbers and n−dimensional real
column vectors. For a matrix X , X ′ and tr(X) denote
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Fig. 1: System structure.

its transpose and trace, respectively. When X is a positive
semidefinite matrix, it is written as X ≥ 0. The notation
P(·) and E[·] are the probability and expectation of a random
matrix, respectively, and E[·|·] is its conditional expectation.
For functions f, f1 and f2, f1 ◦ f2 is defined as f1 ◦ f2 =
f1(f2(X)) and fk is defined as fk(X) = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸

k times

(X),

with f0(X) = X . A function F (·) is increasing if X ≤
Y ⇒ F (X) ≤ F (Y ). A function F (·) is decreasing if
X ≤ Y ⇒ F (X) ≥ F (Y ).

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider the linear time-invariant (LTI) system in Fig 1,
which is given as follows

xk+1 = Axk + wk,

yk = Cxk + vk,
(1)

where k ∈ N is the time index, xk ∈ Rn is the system
state, yk ∈ Rm is the measurement vector taken by the
sensor at time k, wk ∈ Rn and vk ∈ Rm are two i.i.d.
zero-mean Gaussian random noises with covariances Q ≥ 0
and R > 0, respectively. The initial state x0 is a zero-mean
Gaussian random vector that is uncorrelated with wk or vk,
and has covariance Π0 ≥ 0. We further assume that (A,

√
Q)

is controllable and (A,C) is observable.
A smart sensor equipped with computation and memory

capacity is capable of running a local Kalman filter. The
sensor transmits quantities x̂sk to a remote estimator (Bob).
According to Anderson and Moore [11], since (A,

√
Q) is

controllable and (A,C) is observable, posteriori estimation
error covariance P s

k converges exponentially fast to a steady
state P ∗. For simplicity, we assume P s

k = P ∗.
Let ak ∈ {0, 1} be a decision variable. When ak = 0,

the sensor transmits its local state estimate x̂sk to the remote
estimator. Otherwise, when ak = 1, the local estimate x̂sk is
first encrypted before transmitting. The decision variable ak
is determined at the remote estimator, which is assumed to
have more computational capabilities than the sensor. It uses
the information available at time k− 1, and then feeds back
to the sensor before transmission at time k.

We use γk to represent whether the remote estimator
receives x̂sk successfully at time k, i.e., γk = 1 indicates
that the local estimate is received successfully by the remote
estimator at time k and γk = 0 otherwise. We make the
following assumption about effects of the encryption process
on the packet arrival rate.

Assumption 1. The packet arrival rate is memoryless and
is only affected if the transmitted messages are encrypted,
i.e., {γk} is i.i.d.. It is assumed that encryption contributes
an impact factor ε1(0 ≤ ε1 ≤ 1) to the arrival rate. The
following equality holds for any k ≥ 1,

P(γk = 1) =

{
λ, if ak = 0,
ε1λ, if ak = 1.

(2)

Remark 1. The impact factor can be determined by the type
of the encryption. A large number of published studies focus
on specific impact factor of different encryption methods.
For example, in paper [10] , the impact factor of packet
erasure method is 0. Meanwhile, paper [4] showed that
the perceptual degradation in subjective quality caused by
confidentiality closely follows the quantitative degradation
in bit-error rate. Therefore, if the packet length is known
to the remote estimator in advance, the impact factor is
deterministic and we simplify it as a general constant ε1.

There exists an eavesdropper (Eve) who can overhear the
sensor transmission. Let γe,k be a random variable such that
γe,k = 1 if x̂sk is overheard and decrypted successfully
by the eavesdropper, and γe,k = 0 otherwise. We make
the following assumption about the influence of successful
eavesdropping rate (which means the message is obtained
and decrypted successfully) at the eavesdropper.

Assumption 2. The successful eavesdropping rate for the
eavesdropper is memoryless. If the message is encrypted,
the eavesdropper has fixed probability ε2(0 ≤ ε2 ≤ 1) to
decrypt it. Therefore, the following equality holds for k ≥ 1,

P(γe,k = 1) =

{
λe, if ak = 0,
ε2λe, if ak = 1.

(3)

The processes {γk} and {γe,k} are assumed to be mutually
independent.

Remark 2. To make the decryption probability memoryless,
if we use key to encrypt the messages, we need to change
the key from time to time from being deciphered by the
eavesdropper.

It is assumed that the remote estimator knows the decision
variable ak and whether the transmission was successful or
not, i.e., γk. According to [12], the remote estimator’s state
estimate x̂k and the corresponding error covariance Pk at
time k are given by

(x̂k, Pk) =

{
(Ax̂k−1, h(Pk−1)), if γk = 0,
(x̂sk, P

∗), if γk = 1,
(4)

where the Lyapunov operator h(X) , AXA+Q.
Similarly, the eavesdropper knows if it has eavesdropped

successfully, i.e., γe,k. The state estimate x̂e,k and error
covariance Pe,k at time k are

(x̂e,k, Pe,k) =

{
(Ax̂e,k−1, h(Pe,k−1)), if γk = 0,
(x̂sk, P

∗), if γk = 1.
(5)

Lemma 1. ( [13] ) For any k1 ≥ k2 ≥ 0, hk1(P ∗) ≥
hk2(P ∗). Therefore, tr(hk1(P ∗)) ≥ tr(hk2(P ∗)).



Define S
∆
= {P ∗, h(P ∗), h2(P ∗) . . .} which consists of all

possible values of Pk and Pe,k. From Lemma 1, there is a
total ordering P ∗ ≤ h(P ∗) ≤ · · · , thus S is a total order set.

B. Problem of interest

Considering the finite time horizon, our goal is to mini-
mize a linear combination of the expected error covariance at
the remote estimator and the negative of the expected error
covariance at the eavesdropper, while taking into account the
operation cost of the encryption process. The integrated cost
Jk considering the privacy level, the system performance and
the encryption cost is

min
ak∈{0,1}

Jk ,
N∑

k=1

E[βtr(Pk)− (1−β)tr(Pe,k) +akC]. (6)

The coefficient β ∈ (0, 1) weighs the importance of the
error covariance of the system compared with that of the
eavesdropper. With larger β, it means that maintaining the
system performance is of more importance than minimizing
the information leakage, and vice versa. The parameter C is
the normalized total cost of the encryption process.

Remark 3. Packet erasure presented in paper [10] can be
viewed as a special encryption strategy in our model with
ε1 = ε2 = 0 and C = 0. In our subsequent analysis, we will
show that optimal policies are still of threshold-type.

III. FINITE TIME HORIZON MDP FRAMEWORK

A. Eavesdropper State Known at Remote Estimator

We first consider the easier case where the eavesdropper
error covariance is known at the remote estimator. We derive
a discrete time Markov decision process (MDP) problem.

1) The state sk , (Pk−1, Pe,k−1) at time k belongs to
the state space S ⊂ S× S.

2) The action ak ∈ {0, 1} belongs to the action space A.
3) The state transition probability distribution P(s′|s, a)

is time homogeneous, where s′, s ∈ S , a ∈ A
by dropping the time index and s′ is next state
when taking action a at current state s. Denote
s00 , (h(P ), h(Pe)), s01 , (h(P ), P ∗), s10 ,
(P ∗, h(Pe)), s11 , (P ∗, P ∗) and s = (P, Pe), then
we obtain

P00(0) , P(s00|s, 0) = (1− λ)(1− λe),
P01(0) , P(s01|s, 0) = (1− λ)λe,

P10(0) , P(s10|s, 0) = λ(1− λe),
P11(0) , P(s11|s, 0) = λλe,

P00(1) , P(s00|s, 1) = (1− ε1λ)(1− ε2λe),
P01(1) , P(s01|s, 1) = (1− ε1λ)ε2λe,

P10(1) , P(s10|s, 1) = ε1λ(1− ε2λe),
P11(1) , P(s11|s, 1) = ε1λε2λe.

(7)

4) The one-stage cost function at time k is

ck(Pk−1, Pe,k−1, ak) , akC
+ E[βtr(Pk)− (1− β)tr(Pe,k)|Pk−1, Pe,k−1, ak]

= akC + β[(akε1λ+ (1− ak)λ)tr(P ∗)

+ (1− akε1λ− (1− ak)λ)tr(h(Pk−1))]

− (1− β)[(akε2λe + (1− ak)λe)tr(P
∗)

+ (1− akε2λe − (1− ak)λe)tr(h(Pe,k−1))].
(8)

Remark 4. From Lemma 1, the one-stage cost function
ck increases in Pk−1 and decreases in Pe,k−1.

By above definitions, problem (6) is equal to

min
ak∈{0,1}

N∑
k=1

ck(Pk−1, Pe,k−1, ak). (9)

Define the optimality equation (Bellman equation) as

Vk(P, Pe) = min
a∈{0,1}

{ck(P, Pe, a) + P00(a)Vk+1(s00)+

P01(a)Vk+1(s01) + P10(a)Vk+1(s10) + P11(a)Vk+1(s11)},
(10)

where Vk(· , · ) for k = 1, 2, . . . , N is a real valued function
and VN+1(P, Pe) = 0.

Theorem 1. There exists an optimal deterministic Markovian
policy to problem (9).

Proof. In a finite time horizon, the state set S is finite and
the corresponding action set A is finite. As the action set A
is finite, there always exists a deterministic and Markovian
optimal policy [14].

Let Hk = (s0, a1, . . . , sk−1, ak, sk) stand for the history
information up to time k. We will make the action ak+1

based on Hk to minimize the total integrated cost. The
Markovian property determined by Theorem 1 guarantees
that the future is independent of the past given the present
[14] [15]. Hence, choosing actions ak+1 based on sk would
be the same as choosing actions based on Hk and problem
(9) can be solved in a recursive way as

VN+1(P, Pe) = 0,

Vk(P, Pe) = min
a∈{0,1}

{ck(P, Pe, a) + P00(a)Vk+1(s00)+

P01(a)Vk+1(s01) + P10(a)Vk+1(s10) + P11(a)Vk+1(s11)}.
The following theorem will be used to establish that the

optimal solution has a threshold property (Theorem 3).

Theorem 2. The optimal value function Vk(P, Pe) is an
increasing function in P and a decreasing function in Pe.

Proof. See Appendix A.

Theorem 3. (1) For a fixed Pe,k−1, the optimal solution to
problem (9) is a threshold policy on Pk−1

a∗k(Pk−1, Pe,k−1) =

{
1, ifPk−1 ≤ hm(k)(P ∗),
0, otherwise .

(11)

where the threshold m(k) ∈ N depends on k and Pe,k−1.



(2) For a fixed Pk−1, the optimal solution to problem (9)
is a threshold policy on Pe,k−1

a∗k(Pk−1, Pe,k−1) =

{
1, ifPe,k−1 ≥ hme(k)(P ∗),
0, otherwise .

(12)

where the threshold me(k) ∈ N depends on k and Pk−1.

Proof. See Appendix B.

Remark 5. Theorem 3 can be viewed in an intuitive way, i.e.,
(1) shows that the optimal policy is to transmit the packet
without encryption to Bob when Pk−1 is large, as we want to
reduce Pk but the encryption makes the arrival rate smaller.
For (2), it can be understand as that it is more efficient to
encrypt the message when Pe,k−1 is large, since we want
Pe,k to increase even further.

B. Eavesdropper State Unknown at Remote Estimator

In real situations, the malicious eavesdropper would hide
itself from being detected by the remote estimator as far as
possible. Therefore, it is difficult to know the eavesdropper’s
error covariance. Here we assume that the remote estimator
knows the leakage probability λe from previous measure-
ments, but is not aware of the actual realization of γe,k.
This can be viewed as a partially observable MDP (POMDP)
problem. This POMDP can be converted to a completely
observable MDP using belief vector states.

Define the belief vector πe,k, which represents the prob-
ability distribution of Pe,k given the encryption schedule as

πe,k ,


π0
e,k

π1
e,k

:
πN
e,k

 =


P(Pe,k = P ∗|a1, . . . , ak)

P(Pe,k = h(P ∗)|a1, . . . , ak)
:

P(Pe,k = hN (P ∗)|a1, . . . , ak)

 . (13)

Denote the set of all possible πe,k’s as Πe ⊆ RN+1.
By our assumption, we have Pe,0 = P ∗ and πe,0 =[
1 0 . . . 0

]T
.

We can obtain a recursive relationship for πe,k as

πe,k = Φ(πe,k−1, ak), (14)

where

Φ(πe, a) ,{ [
λe (1− λe)π0

e . . . (1− λe)πN−1
e

]T
, if a = 0,[

ε2λe (1− ε2λe)π0
e . . . (1− ε2λe)πN−1

e

]T
, if a = 1.

Different from Section III-A, Bob will make the decision
ak based on its own Pk−1 and the belief vector πe,k−1 since
Pe,k is unknown to Bob. Therefore, in this subsection, the
discrete time MDP problem is the following

1) The state sk , (Pk−1, πe,k−1) at time k belongs to
the state space S ⊂ S×Πe.

2) The action ak ∈ {0, 1} is in the action space A.

3) Denote s , (P, πe), s′ , (P+, π+
e ). The state

transition probability distribution P(s′|s, a) is

P(P+, π+
e |s, a) =

λ, if a = 0, P+ = P ∗, if π+
e = Φ(πe, 0),

1− λ, if a = 0, P+ = h(P ), if π+
e = Φ(πe, 0),

ε1λ, if a = 1, P+ = P ∗, if π+
e = Φ(πe, 1),

1− ε1λ, if a = 1, P+ = h(P ), if π+
e = Φ(πe, 1).

(15)

4) The one-stage cost function at time k is

ck(Pk−1, πe,k−1, ak) , βE[tr(Pk)|Pk−1, πe,k−1, ak]

− (1− β)

N∑
i=0

tr(hi(P ∗))πi
e,k + akC,

(16)

where E[tr(Pk)|Pk−1, πe,k−1, ak] = (akε1λ + (1 −
ak)λ)tr(P ∗) + (1 − akε1λ + (1 − ak)λ)tr(h(Pk−1))
and πe,k = Φ(πe,k−1, ak).
Remark 6. From Lemma 1, we obtain that one-stage
cost function ck(Pk−1, πe,k−1, ak) increases in Pk−1.

Then, problem (6) is equal to

min
ak∈{0,1}

N∑
k=1

ck(Pk−1, Pe,k−1, ak). (17)

Similar to Section III-A, we will make the action ak+1

based on sk instead of Hk by the Markov property proved in
the same way as Theorem 1, to minimize the total integrated
cost. Define the optimality equation (Bellman equation) as

VN+1(P, πe) = 0,

Vk(P, πe) = min
a∈{0,1}

{ck(P, πe, a)

+ P(h(P ),Φ(πe, a)|s, a)Vk+1(h(P ),Φ(πe, a))

+ P(P ∗,Φ(πe, a)|s, a)Vk+1(P ∗,Φ(πe, a))},

where s = (P, πe) and Vk(· , · ) for k = 1, 2, . . . , N is a real
valued function.

Theorem 4. Vk(P, πe) is an increasing function in P .

Proof. For fixed πe, we can use the same induction argument
as in the proof of Theorem 2 to prove that the optimal
solution Vk(P, πe) is an increasing function in P .

Theorem 5. For a fixed πe,k−1, the optimal solution to
problem (17) is a threshold policy on Pk−1 of the form

a∗k(Pk−1, πe,k−1) =

{
1, ifPk−1 ≤ hm(k)(P ∗),
0, otherwise.

(18)

where the threshold m(k) ∈ N depends on k and πe,k−1

Proof. Using the similar method in the proof of Theorem 3
in Appendix B, it is sufficient to prove that

(1− ε1λ)Vk+1(hn(P ), πe)− (1−λ)Vk+1(hn(P ), π′e) (19)

is a increasing function of P for all k = 0, 1, . . . , N , n ∈ N
and πe, π

′
e ∈ Πe. Therefore, for fixed k and πe, m(k) =

min{t ∈ N : φk(ht(P ∗), πe) ≥ 0}.



(a) k = 5. (b) k = 10.

Fig. 2: Optimal policy at different time steps.

Theorem 5 guarantees the threshold structure without
knowledge of the eavesdropper’s estimation error covariance.

IV. SIMULATION

In this section, we use numerical examples to illustrate our

optimal policies. Consider a system with A =

[
1.5 0
0 0.9

]
,

C =
[
1 0

]
, Q =

[
0.5 0
0 0.5

]
, R = 0.6 , λ = λe = 0.7,

ε1 = 0.9 and ε2 = 0.18. The normalized encryption cost is
C = 6. Set the weighted parameter β = 0.5.

Consider a finite time horizon with N = 10. Fig. 2(a) plots
a∗k for different values of Pk−1 = hn(P ∗) and Pe,k−1 =
hne(P ∗) at time step k = 5. Fig. 2(b) plots a∗k at time k =
10. Red blocks represent a∗k = 1, while white ones represent
a∗k = 0. It is shown in these two figures that the threshold
structure of the optimal policy a∗k in both Pk−1 and Pe,k−1.
Meanwhile, the optimal policy is dependent on time k as
proved in Theorem 3.

Furthermore, TABLE. I makes a comparison between the
following four different encryption methods

1) θ1: always transmit the packet directly to the remote
estimator without encryption, i.e., ak = 0, for all k;

2) θ1: always encrypt the packet before each transmission,
i.e., ak = 1, for all k;

3) θ∗1: the optimal strategy derived from Section III-A
with knowledge of the eavesdropper’s estimation error
covariance;

4) θ∗2: the optimal strategy derived from Section III-B
without knowledge of the eavesdropper’s estimation
error covariance.

Consider the finite time horizon with N = 6. We run 1000
Monte Carlo tests. We can see from TABLE. I that the
optimal encryption strategy reduces the total integrated cost
significantly compared with using no encryption method and
is better than encrypting all the messages. Furthermore, if we
cannot obtain the exact error covariance of the eavesdropper,
the optimal cost is larger than that when the error covariance
is known to the remote estimator.

TABLE I: A comparison between encryption strategies

N∑
k=1

E[tr(Pk)]
N∑

k=1
E[tr(Pe,k)] Jk

θ1 22.2487 22.2657 -0.0085
θ2 24.1176 118.8861 -11.3843
θ∗1 23.6582 114.0609 -18.0513
θ∗2 23.8272 118.2655 -12.3692

V. CONCLUSION

In this paper, we consider an optimal encryption schedule
for a remote state estimation system in the presence of an
eavesdropper. Our objective is to determine when to encrypt
transmitted messages to minimize a linear combination of
error covariance at the remote estimator and the eavesdrop-
per, taking into account the cost of the encryption process.
This problem is shown to be formulated as a MDP, either
with or without knowledge of the estimation error covariance
at the eavesdropper. The optimal policy is proved to have a
threshold structure in each situation.

The current setup only focuses on the problem of a finite
time horizon where the state space is finite. It would be
interesting to consider situations with a infinite time horizon.

APPENDIX

A. Proof of Theorem 2

As VN+1(P, Pe) = 0, it is trivial to see that VN+1(P, Pe)
is an increasing function in P . Therefore, we prove the
monotonicity using a backward induction way.

Assume that Vt(P, Pe) is increasing for t = k+1, . . . , N+
1, then we only need to prove Vk(P, Pe) is an increasing
function in P . We choose P ′ ≥ P , one has h(P ′) ≥
h(P ). Denote s′ , (P ′, Pe), s

′
00 , (h(P ′), h(Pe)), s

′
01 ,

(h(P ′), P ∗). As function ck increases in P and P(s′|s, a) is
only dependent on action a, we have

Vk(P, Pe) = min
a∈{0,1}

{ck(P, Pe, a) + P00(a)Vk+1(s00)+

P01(a)Vk+1(s01) + P10(a)Vk+1(s10) + P11(a)Vk+1(s11)}
≤ ck(P, Pe, a

∗
s′) + P00(a∗s′)Vk+1(s00) + P01(a∗s′)Vk+1(s01)

+ P10(a∗s′)Vk+1(s10) + P11(a∗s′)Vk+1(s11)

≤ ck(P ′, Pe, a
∗
s′) + P00(a∗s′)Vk+1(s′00) + P01(a∗s′)Vk+1(s′01)

+ P10(a∗s′)Vk+1(s′10) + P11(a∗s′)Vk+1(s11) = Vk(P ′, Pe).

The proof is completed.
We can use the same method to prove that Vk(P, Pe) is a

decreasing function in Pe. The proof is omitted.

B. Proof of Theorem 3

Denote the difference of Vk(P, Pe) when a∗ = 1 and a∗ =
0 as φk(P, Pe). It can be calculated directly that

φk(P, Pe) = β(1− ε1)λ(tr(h(P ))− tr(h(P ′)))−
(1− β)(1− ε2)λe(tr(h(Pe))− tr(h(P ′))) + C+
p1Vk+1(s00) + p2Vk+1(s01) + p3Vk+1(s10) + p4Vk+1(s11),



where p1 , P00(1) − P00(0), p2 , P01(1) − P01(0), p3 ,
P10(1) − P10(0), p4 , P11(1) − P11(0). If φk(P, Pe) ≥ 0,
the optimal strategy at time k is a∗k = 0, otherwise a∗k = 1.

(1) It is equivalent to prove φk(P, Pe) increases in P
for fixed Pe. Considering elements which relate to P in
φk(P, Pe), for P ≥ P ′, we have

φk(P, Pe)− φk(P ′, Pe) = β(1− ε1)λ(tr(h(P ))− tr(h(P ′)))

+ p1[Vk+1(h(P ), h(Pe))− Vk+1(h(P ′), h(Pe))]

+ p2[Vk+1(h(P ), P ∗)− Vk+1(h(P ′), P ∗)].

From Lemma 1, the first element β(1− ε1)λ(tr(h(P ))−
tr(h(P ′))) ≥ 0, it suffices to prove that

p1Vk+1(h(P ), h(Pe)) + p2Vk+1(h(P ), P ∗), (20)

is an increasing function of P for all k. We will prove this
statement using a backward induction way. We prove the
slightly more general statement that p1Vk+1(hn(P ), Pe) +
p2Vk+1(hn(P ), P ′e) is an increasing function of P for all
k = 0, 1, . . . , N , n ∈ N and P, Pe, P

′
e ∈ S.

As VN+1(P, Pe) = 0, it is trivial to see that the statement
holds for k = N . Assume that ∀P ≥ P ′,
p1Vt+1(hn(P ), Pe) + p2Vt+1(hn(P ), P ′e)

− p1Vt+1(hn(P ′), Pe)− p2Vt+1(hn(P ′), P ′e) ≥ 0
(21)

holds for t = k + 1, . . . , N . Then

p1Vk(hn(P ), Pe) + p2Vk(hn(P ), P ′e)

− p1Vk(hn(P ′), Pe)− p2Vk(hn(P ′), P ′e)

≥ min
a∈{0,1}

{p1[ck(hn(P ), Pe, a) + P00(a)Vk+1(hn+1(P ), h(Pe))

+ P01(a)Vk+1(hn+1(P ), P ∗)− P01(a)Vk+1(hn+1(P ′), P ∗)

− ck(hn(P ′), Pe, a)− P00(a)Vk+1(hn+1(P ′), h(Pe))]

+ p2[ck(hn(P ), P ′e, a) + P00(a)Vk+1(hn+1(P ), h(P ′e))

+ P01(a)Vk+1(hn+1(P ), P ∗)− P01(a)Vk+1(hn+1(P ′), P ∗)

− P00(a)Vk+1(hn+1(P ′), h(P ′e))− ck(hn(P ′), P ′e, a)]}
≥ min

a∈{0,1}
{p1[P00(a)Vk+1(hn+1(P ), h(Pe))

+ P01(a)Vk+1(hn+1(P ), P ∗)− P01(a)Vk+1(hn+1(P ′), P ∗)

− P00(a)Vk+1(hn+1(P ′), h(Pe))] + p2[P00(a)

· Vk+1(hn+1(P ), h(P ′e)) + P01(a)Vk+1(hn+1(P ), P ∗)

− P00(a)Vk+1(hn+1(P ′), h(P ′e))

− P01(a)Vk+1(hn+1(P ′), P ∗)]}
= min

a∈{0,1}
{P00(a)[p1Vk+1(hn+1(P ), h(Pe)) + p2

· Vk+1(hn+1(P ), h(P ′e))− p1Vk+1(hn+1(P ′), h(Pe))− p2

· Vk+1(hn+1(P ′), h(P ′e))] + P01(a)[p1Vk+1(hn+1(P ), P ∗))

+ p2Vk+1(hn+1(P ), P ∗))− p1Vk+1(hn+1(P ′), P ∗))

− p2Vk+1(hn+1(P ′), P ∗))]} ≥ 0

where the first inequality holds since a which denotes ak+1

is determined by the function φk+1. Meanwhile, the second
inequality holds since ck(hn(P ), Pe, a) increases in P and
the last inequality holds by the induction hypothesis (21) and
P00(a),P01(a) ≥ 0 for ∀a ∈ A.

Therefore, for fixed k and Pe, m(k) = min{t ∈ N :
φk(ht(P ∗), Pe) ≥ 0}.

(2) As −tr(h(Pe)) decreases in Pe, it is equivalent to
prove that p1Vk+1(h(P ), h(Pe)) + p3Vk+1(P ∗, h(Pe)) is a
decreasing function of Pe. Similar to the first part, we
prove by induction the slightly more general statement
p1Vk+1(P, hn(Pe)) + p3Vk+1(P ′, hn(Pe)) is a decreasing
function of Pe for all k = 0, 1, . . . , N , n ∈ N and
P, P ′, Pe ∈ S. The details are omitted.
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