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Abstract—Inverter-interfaced microgrids differ from the tra-
ditional power systems due to their lack of inertia. Vanishing
timescale separation between voltage and frequency dynamics
makes it critical that faster-timescale stabilizing control laws
also guarantee by-construction the satisfaction of voltage limits
during transients. In this article, we apply a barrier functions
method to compute distributed active and reactive power setpoint
control laws that certify satisfaction of voltage limits during
transients. Using sum-of-squares optimization tools, we propose
an algorithmic construction of these control laws. Numerical
simulations are provided to illustrate the proposed method.

I. INTRODUCTION

Safety critical system refers to a system for which the

violation of safety constraints will lead to serious economic

loss or personal casualty. Power system falls into such category

considering the loss resulting from large-scale blackout and

critical loads such as hospital and process plant. Modern

power system has been evolving towards distributed oper-

ation. With the increasing integration of distributed energy

resources (DERs), especially renewable resources, challenges

have arisen in safely operating power systems as well as

guaranteeing stability. Microgrid is a promising direction to

tackle the intermittency and uncertainty characteristics that

are intrinsic in renewable resources such as wind and solar.

An islanded microgrid is a standalone small scale power

system that groups a variety of DERs, especially renewables,

together with energy storages and loads to provide better

control and operation, higher efficiency and reliability [1]. It is

a viable solution for power supply to rural area. Microgrid also

provides a new perspective to increase the penetration level of

renewables in modern power system. Unlike traditional power

system that has large inertia from conventional synchronous

generators, DERs in a microgrid are connected to the network

through power electronic interface. Considering the stochastic-

ity in renewables and the negligible physical inertia, control of

voltage and frequency for microgrids is challenging [2]. While

stability analysis and control of inverter-based microgrids have

received a lot of attention in the literature [3]–[7], safety of

the microgrids has largely been ignored. For microgrids, the

safe region can be defined for voltage magnitudes at every

node in the network. The transient voltage in a microgrid can

fluctuate by a large amount, causing serious power quality

and safety issues, even causing damages to the electrical

equipment [8], [9]. Flexible power injections at the droop-

controlled inverter nodes can be utilized to stabilize the phase

angle, frequency and voltage magnitude, as well as ensuring

the voltage magnitudes at all nodes within the safe region.

Control Lyapunov function (CLFs) have long been used to

synthesize stabilizing controllers for nonlinear systems [10].

On the other hand, barrier functions are used to certify safety

by guranteeing the forward invariance of a set via Lyapunov-

like conditions. Although barrier function originated in the

field of optimization as a penalty function to replace con-

straints, it prospers in the field of control design too. For

example, [11] considers the safety verification problem in

both worst-case and stochastic settings by constructing barrier

certificates. The ideas of the barrier functions and the CLF

were combined to construct the control barrier functions

(CBFs) [12] which have since been used in designing safety

controllers. Reference [13] applied CBF method to automotive

systems to achieve lane keeping and adaptive cruise control

simultaneously with safety constraints. Application of CBF

method to establish set invariance with the existence of dis-

turbance and uncertainty is considered in [14]. Simultaneous

satisfaction of safety and performance objectives via design is

not a trivial task. The stabilization objective expressed by a

CLF and the safety constraints established by a CBF can be

potentially in conflict. In [15], the authors proposed a quadratic

program formulation that unifies CLF and CBF to synthesize

a controller that enforces the safety constraints but relaxes the

stability (performance) requirement when these two objectives

are in conflict. [16] proposed an iterative algorithm using sum-

of-squares (SOS) technique to search for the most permissive

barrier function that gives maximum volume for the certified

region, therefore maximize the estimate for safe stabilization

region. All trajectories that start within the safe stabilization

region can be made to converge to the (equilibrium of interest

at the) origin as well as constrained in the safe region.

The main contribution of this paper is in applying barrier

functions based method to certify safety of an inverter-based

microgrid considering transient voltage limits. We propose a

distributed safety certification method and present computa-

tional algorithms to compute safety-ensuring decentralized and

distributed control policies. To treat the control design problem

in a decentralized perspective, the microgrid is firstly decom-

posed into several subsystems. Barrier functions are generated
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for each subsystem by firstly ignoring the interactions from

neighboring subsystems. The interaction terms are considered

as disturbances with upper limits in the control design phase,

resulting in robust local state feedback control strategies. The

rest of the article is organized as follows: Section II presents

the necessary background; Section III explains the microgrid

model; the main computational and algorithmic developments

are described in Section IV, with numerical results presented in

Section V. We conclude the article in Section VI. Throughout

the text, we will use | · | to denote both the Euclidean norm

of a vector and the absolute value of a scalar; and use R [x]
to denote the ring of all polynomials in x ∈ R

n.

II. BACKGROUND

A. Stability Certificates: Lyapunov Functions

Consider a nonlinear dynamical system of the form

ẋ(t) = f(x(t)) ∀t ≥ 0 , x ∈ R
n , (1)

with an equilibrium at the origin (f(0) = 0), where f :
R

n → R
n is locally Lipschitz. For brevity, we would drop

the argument t from the state variables, whenever obvious.

The equilibrium point at the origin of (1) is Lyapunov stable

if, for every ε> 0 there is a δ > 0 such that |x(t)|<ε ∀t≥ 0
whenever |x(0)| < δ . Moreover, it is asymptotically stable

in a domain X ⊆ R
n, 0 ∈ X , if it is Lyapunov stable and

limt→∞ |x(t)|=0 for every x(0)∈X .

Theorem 1: [17], [18] If there is a continuously differen-

tiable radially unbounded positive definite function V : X →
R≥0 such that ∇xV

Tf(x) is negative definite in X , then the

origin of (1) is asymptotically stable and V (x) is a Lyapunov

function.

Here ∇x denotes the partial differentiation with respect to

x . Using an appropriately scaled Lyapunov function V (x) , the

region-of-attraction (ROA) of the origin of (1) can be estimated

by {x ∈ X |V (x) ≤ 1} [19], [20].

B. Safety Certificates: Barrier Functions

In contrast to asymptotic stability which concerns with the

convergence of the state variables to the stable equilibrium,

the notion of ‘safety’ comes from engineering design specifi-

cations. From the design perspective, the system trajectories

are not supposed to cross into the certain regions in the state-

space marked as ‘unsafe’. Let us assume that the ‘unsafe’

region of operation for the system (1) is given by the domain

Xu := {x ∈ R
n |wi(x) > 0 , i = 1, 2, . . . , l} (2)

where wi : R
n 7→ R are a set of l (≥ 1) polynomials.

These are usually engineering constraints that ensure that

the system is always operated (controlled) to avoid going

into ‘unsafe’ modes of operation. Safety of such systems

can be verified through the existence (or, construction) of

continuously differentiable barrier functions B : Rn 7→ R of

the form [11], [12], [15], [16]:

B(x) ≥ 0 ∀x ∈ R
n\Xu (3a)

B(x) < 0 ∀x ∈ Xu (3b)

(∇xB)Tf(x) + α (B(x)) ≥ 0 ∀x ∈ R
n (3c)

where α(·) is an extended class-K function1. The third condi-

tion ensures that at the level-set B = 0 the value of the barrier

function is increasing along the system trajectories. Safety

is guaranteed for all trajectories starting inside the domain

{x |B(x) ≥ 0} which is invariant under the dynamics (1).

C. Sum-of-Squares Optimization

Relatively recent studies have explored how SOS-based

methods can be utilized to find Lyapunov functions by re-

stricting the search space to SOS polynomials [20]–[23]. Let

us denote by R [x] the ring of all polynomials in x ∈ R
n.

A multivariate polynomial p ∈ R [x] , x ∈ R
n, is an SOS

if there exist some polynomial functions hi(x), i = 1 . . . s
such that p(x) =

∑s
i=1 h

2
i (x). We denote the ring of all SOS

polynomials in x by Σ[x]. Whether or not a given polynomial

is an SOS is a semi-definite problem which can be solved

with SOSTOOLS, a MATLAB R© toolbox [24], along with

a semi-definite programming solver such as SeDuMi [25].

An important result from algebraic geometry, called Putinar’s

Positivstellensatz theorem [26], [27], helps in translating con-

ditions such as in (3) into SOS feasibility problems.

Theorem 2: Let K= {x ∈ R
n | k1(x) ≥ 0 , . . . , km(x) ≥ 0}

be a compact set, where kj are polynomials. Define k0 = 1 .

Suppose there exists a µ ∈
{

∑m

j=0σjkj |σj ∈Σ[x] ∀j
}

such

that {x ∈ R
n| µ(x) ≥ 0} is compact. Then,

p(x)>0 ∀x∈K =⇒ p∈
{

∑m

j=0
σjkj |σj∈Σ[x] ∀j

}

.

Remark 1: Using Theorem 2, one can translate the problem

of checking that p> 0 on K into an SOS feasibility problem

where we seek the SOS polynomials σ0 , σj ∀j such that p−
∑

j σjkj is SOS. Note that any equality constraint ki(x)= 0
can be expressed as two inequalities ki(x)≥ 0 and ki(x)≤0.

In many cases, especially for the ki ∀i used throughout this

work, a µ satisfying the conditions in Theorem 2 is guaranteed

to exist (see [27]), and need not be searched for.

III. MICROGRID MODEL

We consider the following model of droop-controlled in-

verter dynamics [4], [28]:

θ̇i = ωi , (4a)

τiω̇i = −ωi + λ
p
i

(

P set
i − Pi

)

(4b)

τiv̇i = v0i − vi + λ
q
i

(

Qset
i −Qi

)

(4c)

where λ
p
i > 0 and λ

q
i > 0 are the droop-coefficients associated

with the active power vs. frequency and the reactive power

vs. voltage droop curves, respectively; τi is the time-constant

of a low-pass filter used for the active and reactive power

measurements; θi , ωi and vi are, respectively, the phase angle,

speed and voltage magnitude; v0i is the desired (nomial)

voltage magnitude; P set
i and Qset

i are the active power and

reactive power set-points, respectively. Finally, Pi and Qi are,

respectively, the active and reactive power injected into the

1A continuous function α : (−a, b) 7→ (−∞,∞) , for some a, b > 0 , is
extendend class-K if it is strictly increasing and α(0) = 0 [18].



network which relate to the neighboring bus voltage phase

angle and magnitudes as:

Pi = vi
∑

k∈Ni

vk (Gi,k cos θi,k +Bi,k sin θi,k) (5a)

Qi = vi
∑

k∈Ni

vk (Gi,k sin θi,k −Bi,k cos θi,k) (5b)

where θi,k = θi − θk , and Ni is the set of neighbor nodes.

Gi,k and Bi,k are respectively the transfer conductance and

susceptance values of the line connecting the nodes i and k .

At the equilibrium (steady-state) operation:

∀i : Pi = P set
i , Qi = Qset

i , ωi = 0, vi = v0i .

As the conditions on the network change (such as changes in

load or generation), inverters have the capability to change the

control set-points of the active and reactive power output to

adjust to the new operating conditions. This is modeled as:

P set
i = P 0

i + u
p
i , Qset

i = Q0
i + u

q
i , (6)

where P 0
i and Q0

i are the set-points for the unperturbed

(or nominal) operating condition; and u
p
i and u

q
i are some

feedback control inputs.

Due to the low-inertia of the microgrids, large voltage and

frequency fluctuations are quite common during transients [9].

While designing stabilizing control policies, it is therefore

important to keep track of the transient voltage and frequency

magnitudes to ensure that those are within the ‘safety’ limits

determined via engineering design. In this work, we will re-

strict ourselves to the consideration of transient voltage limits

which are usually higher than the steady-state operational

limits [8]. Fluctuations of transient voltage limits beyond the

tolerable (‘safe’) region cause power quality issues, including

the risk of damaging the electrical equipment. In this paper,

we will define the ‘safe’ operational region as:

vi ≤ vi(t) ≤ vi .

Typical values for the limits during transients operation could

be vi = 0.6 p.u. and vi = 1.2 p.u. Other forms of safety

constraints, such as frequency limits and power-flow limits

will be considered in the future work.

IV. DISTRIBUTED SAFETY CERTIFICATES

The dynamical model of the interconnected microgrid with

m droop-controlled inverters is expressed compactly as:

ẋi = fi(xi) + gi(xi)ui +
∑

j∈Ni

hij(xi, xj) , (7a)

Xu,i := {xi |wj(xi) ≥ 0 , j = 1, 2, . . . , li} (7b)

where each i ∈ {1, 2, . . . ,m} identifies an inverter. xi ∈ R
ni

is the ni-dimensional state vector associated with the i-th

inverter, while ui are some control inputs. We assume that

the origin is an equilibrium point of interest of the networked

system, and that the control input vanishes at the equilibrium

point (i.e. ui = 0 ∀i at the origin). We also assume that

hij(xi, 0) = 0 for all xi . Moreover fi, gi and hij are locally

Lipschitz functions. The problem we are interested in is:

Problem 1: Identify continuous functions Bi(xi) , feedback

control policies ui and non-negative scalars ci such that

∀i : Bi(0) > ci (8a)

Bi(xi) < 0 ∀xi ∈ Xu,i (8b)

Ḃi ≥ 0 ∀xi ∈ ∂Di[ci], ∀xj ∈ Dj [cj ] ∀j ∈ Ni (8c)

Ḃi = ∇xi
BT

i (fi(xi) + gi(xi)ui +
∑

j∈Ni

hij(xi, xj)) .

where we define Di[ci] := {xi |Bi(xi) ≥ ci} ∀i and

∂Di[ci] := {xi |Bi(xi) = ci} as the boundary set of the

domain Di[ci] .

Theorem 3: If there exist continuous functions Bi(xi) ,

feedback control policies ui and non-negative scalars ci satis-

fying (8), then the safety of the interconnected system (7) is

guaranteed for all t ≥ 0 whenever Bi(xi(0)) ≥ ci ∀i , i.e.

xi(0) ∈ Di[ci] ∀i =⇒ xi(t) ∈ R
ni\Xu,i ∀i ∀t ≥ 0 .

Moreover there is a neighborhood Xi around origin (i.e. 0 ∈
Xi ∀i) such that Xi ⊆ Di[ci] .

Proof Note that because of the condition (8c), Bi is non-

decreasing on the boundary of the domain Di[ci] whenever

xj ∈ Dj [cj ] for every neighbor j . Extending this argument to

all the subsystems, we conclude that

D1[c1]×D2[c2]× · · · × Dm[cm]

is an invariant domain. Since Bi(xi) < 0 for every xi ∈ Xu,i,

we conclude the safety of the system is guaranteed for all

t ≥ 0 whenever xi(0) ∈ Di[ci] ∀i . Finally, since Bi(0) > ci
and Bi is a continuous function there exists a neighborhood

Xi around origin such that for all xi ∈ Xi , Bi(xi) ≥ ci .

Computation of such barrier functions is not trivial. Recent

works have explored the use of sum-of-square optimization

methods to compute the barrier certificates for polynomials

networks [11], [16] . Note that the power-flows as described

in (5) are non-polynomial. Using the polynomial recasting

technique proposed in [20] , the power systems dynamics can

be expressed in a higher-dimensional space as a polynomial

differential-algebraic system. In this work, however, we resort

to Taylor series expansion (up to third order) to approximate

the dynamics into a polynomial form.

In the rest of this section, we describe a three-step procedure

to obtain the distributed barrier certificates. In the first two

steps, we consider the isolated and autonomous sub-system

model of the form (which we assume to be locally asymptot-

ically stable around the origin):

(isolated) ẋi = fi(xi) ,

and compute the Lyapunov function which is then used to

compute a barrier function for the isolated sub-system using

the method similar to [16].



A. Computation of Lyapunov Functions

SOS-based expanding interior algorithm [20], [21] has been

used to construct Lyapunov functions and region-of-attraction

in an iterative search process. In this work, we use a variant

of the process - which does not require the bisection search

process and hence speeds up the computation at each iteration

stage. The algorithmic steps used to implement the modified

expanding interior algorithm can be summarized as follows

(for notational convenience, we have dropped the sub-script i

from the subsystem variables to explain the algorithm):

1) Step 0: Compute a Lyapunov function V 0 such that V 0 ≤
1 is an estimate of the ROA. The following two steps are

then repeated until convergence, such that (hopefully) the

final estimate of the ROA is much larger than initial one.

Define a positive definite and radially unbounded function

p(x) (e.g. p = ε|x|2 for some small ε > 0).

2) Step k-1: Starting from a Lyapunov function V̂ with ROA

estimated by V̂ ≤ 1 , compute the largest level-set βk of

a positive definite function p(x) contained within V̂ ≤ 1 .

This is done by solving the following SOS problem:

max
sk
2
,sk

3
,sk

4

βk (9a)

ŝ1(p− βk)− sk2(V̂ − 1) ∈ Σ[x] (9b)

−sk3(1 − V̂ )− sk4
˙̂
V − ε2|x|

2 ∈ Σ[x] (9c)

where s are SOS polynomials. The ·̂ implies it is

borrowed from the previous step, while k denotes the

variables being currently computed. At the first instance

of the problem (9), we initialize ŝ1 = 1 .

3) Step k-2: In this sub-step at the k-th iteration, a new

Lyapunov function V k is found such that the level-set

V k = 1 is an estimate of the ROA, while trying to expand

the estimated ROA by maximizing δ such that p ≤ β̂ is

contained within the level-set V k ≤ 1− δk, i.e.

max
V k,sk

1

δk (10a)

V k − ε1|x|
2 ∈ Σ[x] (10b)

sk1(p− β̂)− ŝ2(V
k − 1 + δk) ∈ Σ[x] (10c)

−ŝ3(1− V k)− ŝ4V̇
k − ε2|x|

2 ∈ Σ[x] (10d)

The algorithm stops when δk is sufficiently small. Set V = V k

as the Lyapunov function with V ≤ 1 providing the largest

estimate of the ROA .

B. Computation of Barrier Functions

For the barrier functions computation we adopt a similar

approach as in the Algorithm 2 in [16], except that we use

the algorithm to compute only the barrier functions, while the

original algorithm was used to also search for a ‘safe’ and

stabilizing control policy. For completeness we present the

algorithm here (once more, for notational convenience, we

have dropped the sub-script i from the subsystem variables

to explain the algorithm):

1) Step 0: As the first step of the iterative process, we

compute the maximum level-set of V contained com-

pletely inside the safe region. This is done by solving

the following SOS problem:

max
sk
0

z , s.t. V − z −
l

∑

i=1

sk0,iwi ∈ Σ[x] .

Set B0 = zmax − V , where zmax is the solution of the

above problem, i.e. the maximal level-set of V wholly

contained inside the safe region. Note that B0 is a barrier

function by construction. Choose a small scalar γ>0 .

2) Step k-1: Using the barrier function B̂ computed in the

previous step, find the largest ε>0 such that
˙̂
B ≥ −γB̂+

ε whenever B̂ ≥ 0 , i.e. solve the SOS problem

max
sk
1

εk, s.t.
˙̂
B + γ B̂ − εk − sk1 B̂ ∈ Σ

3) Step k-2: In this sub-step we search for a new barrier

function of the form Bk(x) = z(x)TQkz(x) where z(x)
is a vector of monomials in x , and Qk is a symmetric

matrix, such that Bk(0) > 0 . The barrier function

satisfies Bk(x) < 0 on the unsafe set {x |wi(x) >

0 , i = 1, 2, . . . , l} , along with the constraint on its time-

derivative. The following problem is solved:

max
sk
2,i

trace (Qk)

Ḃk + γ Bk − η − ŝ1 B
k ∈ Σ[x]

−Bk −
∑l

i=1
sk2,iwi ∈ Σ[x]

where η is a small positive number chosen to avoid the

trivial zero solution. The objective function is a proxy for

maximizing the volume of the safety region [16].

The algorithm stops when trace(Qk) converges within some

tolerance. Set B = Bk as the barrier function with B ≥ 0
providing the largest estimate of the certified safety region for

the isolated subsystems.

C. Safety Certifying Control Policies

In this subsection, we describe an SOS problem to compute

control policies ui such that (8c) is satisfied for some ci ∈
[0, Bi(0)) . Without any loss of generality, we will assume

that the barrier functions satisfy Bi(0) = 1 (always achievable

through scaling), such that we are interested in ci ∈ [0, 1) .

Moreover, we will assume, for simplicity, uniform ci = c ∀i ,

while the more generic case can be easily extended. Then we

are seeking the existence of control laws ui such that for some

chosen c ∈ [0, 1)

∀i : ∀xi ∈ ∂Di[c] , ∀xj ∈ Dj [c], j ∈ Ni (11a)

∇xi
BT

i (fi + giui +
∑

j∈Ni

hij) ≥ 0 (11b)

In this paper, we will focus on state-feedback control policies.

Two alternatives will be considered: 1) a decentralized state-

feedback policy of the form ui(xi) , and 2) a distributed state-

feedback policy of the form ui = uii(xi) +
∑

j∈Ni
uij(xj) .



The following problem concerns the design of an optimal

decentralized state-feedback control policy ui(xi):

min
ui(xi)

Ui (12a)

s.t. (11) and ‖ui(xi)‖∞ ≤ Ui ∀xi ∈ Di[c] . (12b)

Note that the controller is only used on or near the boundary

of the domain Di[c] since it is only needed to guarantee that

the trajectories never cross the boundary. This can be solved

using an equivalent SOS problem, noting that the constraint

‖ui(xi)‖∞ ≤ Ui translates to polynomial constraints. Simi-

lar problem can be formulated for the distributed controller

design, with the constraint ‖ui(xi)‖∞ ≤ Ui needed to be

satisfied on xj ∈ Dj [c] ∀j ∈ Ni as well as xi ∈ Di[c] .

Remark 2: Note that the constraint (11) is satisfied whenever

(sufficient condition) we choose a ui such that

∇BT
i giui ≥ µ := max

xi∈∂Di[c],xj∈Dj [c]

∣

∣

∣

∑

j∈Ni

∇BT
i hij

∣

∣

∣

If for every xi ∈ ∂Di[c] there always exists a k such that
∣

∣

[

∇BT
i

]

k
[ui]k

∣

∣ > 0 then we can always find a ui satisfying

the above condition.

V. NUMERICAL RESULTS

For illustration purpose, we consider the 6-bus (bus 0 to

bus 5) microgrid network described in [29] . Disconnecting the

utility, we replace the substation (bus 0) by a droop-controlled

inverter, with three other inverters placed on buses 1, 4 and 5 .

The inverter dynamics were modeled in the form of (4). Bus 0

was considered as the reference bus for the phase angle. The

droop coefficients λ
p
i and λ

q
i were chosen to be 2.43 rad/s/p.u.

and 0.2 p.u./p.u., while the filter time-constant τi was set to

0.5 s [4]. Nominal values of voltage and frequency, as well

as the active and reactive power set-points were obtained by

solving the steady-state power-flow equations (5), which were

then used to shift the equilibrium point to the origin. The loads

were modeled as constant power loads, and Kron reduced

network with only the inverter nodes were used for analysis.

The unsafe set was defined in terms of the shifted (around the

1 p.u.) nodal voltage magnitudes as follows:

(unsafe) vi < −0.4 p.u. or vi > 0.2 p.u.

In Fig. 1, we illustrate how the iterative search algorithm

presented in Section IV obtains an expanded certified region

of safety (marked by the boundary of the outermost green

ellipse) starting from the initial estimate given by a level-

set of the Lyapunov function (marked by the smaller black

dashed ellipse boundary). The plot shows the projections of

the ROA and the barrier certified regions on the frequency-

voltage space obtained by setting the phase angle differences

to 0. The black dash marked boundary of larger ellipse is

the estimate of the ROA, while the red dashed lines denote

the unsafe region boundary (in voltage magnitudes). Note that

the certified invariant region of safe stability is much smaller

than the estimated ROA of the isolated inverter. Next we

investigate the control efforts needed to guarantee safety of

-1 -0.5 0 0.5 1
(shifted) frequency [Hz]
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Fig. 1: Illustration of the iterative search for a barrier certified

region of an isolated inverter subsystem. Red dashed line mark

the boundary of the unsafe region. The outer black dashed

lines mark the estimated ROA, while the inner black dashed

line marks the largest Lyapunov functions level-set contained

within the safe region. Green lines mark the iterative (growing)

estimates of the certified safe region using barrier function.

the network over some domain defined using the subsystem

barrier function level-sets. Fig. 2(a) shows the results of the

optimal decentralized control design problem (12), for a range

of different values of the barrier level-set c ∈ [0, 1) such that

Bi ≥ c ∀i gives a distributed certificate of safety. As expected,

the control effort increases (monotonically, in this case) as

the value of c decreases, or the certified region of safety

increases. Figs. 2(b)-2(c) show the results when local neigh-

boring subsystem state measurements are used in the control

design in addition to the subsystem’s states, in what we call

as the ‘distributed control’ design. Clearly, distributed control

policies require lower minimum control efforts as compared to

the decentralized control policy. This observation aligns with

the conclusion in [30] regarding the value of communication in

distribution network voltage regulation problem. In particular,

two different choices of distributed controllers are explored

- one in which all of the neighboring subsystems’ states

are used in the feedback (Fig. 2(b)) and another in which

the only neighboring subsystem states used as feedback are

the voltage magnitudes (Fig. 2(c)). In this example, additional

measurements from the neighboring subsystems help decrease

the minimum control effort needed.

VI. CONCLUSION

In this paper we consider the problem of safety in inverter-

based microgrids. Using the barrier functions based methods,

we propose a distributed safety certification of the mirogrid

network. Sum-of-squares based algorithm was used to present

a computational approach to obtain these safety certificates in a

distributed manner. Moreover, using a microgrid example, we

show how decentralized vs. distributed control policies could

pose different requirements on the control effort. Future work

will explore the extension of such methods to larger power

systems networks, under the presence of uncertainties.
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Fig. 2: Computation of the minimum control effort needed (Ui) to certify safety of the network via subsystem barrier functions,

for varying values of c ∈ [0, 1) , using - (a) a decentralized control policy, ui(xi) , that used only the subsystem’s states; (b)

a distributed control policy that uses all the neighbor states into the feedback, in addition to the subsystem’s states; and (c) a

distributed control policy that uses the neighbor voltage magnitudes into the feedback, in addition to the subsystem’s states.

Energy as part of their Grid Modernization Initiative.
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