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Abstract— Although Spectral and Pseudospectral methods
have been used in a wide range of optimal control applications,
to date, most of the literature uses these methods in a non-
robust sense without considering possible dynamic deviation
(uncertainties) from the nominal model. This study applies
a recent robust approach for spectral and pseudospectral
methods to a wave energy converter, considering structured
uncertainty in the dynamical system. The results show that the
robust approach gives better worst-case performance than an
equivalent non-robust approach. Additionally, when structured
uncertainty is considered in the dynamical system, the results
show that the absorbed energy, obtained with the robust
approach, is always positive. Finally, the advantages of this
new approach are commented.

I. INTRODUCTION

Spectral and pseudospectral methods, have been widely
reported in the bibliography in diverse optimal control ap-
plications such as boundary value and eigenvalue problems,
and also objective function optimisation (maximisation or
minimisation) ([1]). One reason for the popularity of these
methods is the user-selectable trade-off between computa-
tional effort and solution precision. However, to date, robust
approaches, which allow for the description of the system
with dynamical uncertainty, are not available ([2]).

For a further discussion about spectral and pseudospectral
methods, the reader is referred to [1] and [3].

For the growing area of wave energy converter (WEC)
energy maximising control ([4]), spectral and pseudospec-
tral methods have been demonstrated to be appealing. The
features which make spectral and/or pseudospectral methods
useful in that application are worth highlighting. Firstly,
the oscillatory nature that governs the problem makes this
approach interesting, since waves can be approximately
described as a multi-periodic process. With the purpose
of approximating the periodic nature of the problem, the
use of spectral and pseudospectral methods, with Fourier
and Chebyshev-Fourier basis functions has been shown in
[1] and [5], respectively. On the other hand, the use of
these methods in WEC control has a significant impact on
the simplification of the convolution integral associated with
the radiation force. Moreover, as shown in [1], the bulk
of the computation involving the numerical computation of
the convolution integral can be carried out off-line, thus
significantly reducing the computational load when solving
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the nonlinear program. The final aspect that makes the WEC
control problem amenable, using spectral or pseudospectral
methods, is the transformation of the integral objective
function that should be maximised.

Although spectral and pseudospectral methods have been
widely used to address different applications with linear and
nonlinear descriptions, most of the recent literature uses
these methods in a non-robust sense, without considering
possible dynamic deviation (uncertainties) from the nominal
model ([2]). While adaptive control is one way to deal
with possible uncertainties, adaptive approaches do not give
guarantees of convergence as shown in [6]. Alternatively,
nonlinear approaches can deal with nonlinear deviations from
a linear model, though these approaches depend on a precise
nonlinear description of the model.

Considering the lack of robustness analysis for spectral
and pseudospectral methods in general optimisation control
problems, [7] redefines the traditional approach for such
methods, taking dynamical uncertainty into account1. In
this new framework, the objective is to ensure the ‘best
worst-case performance’ (best-WCP), which involves the
determination of a control signal which minimises the per-
formance degradation in the objective function, when the
system under study has uncertainty in its description. This
paper studies the application procedure of the robust control
strategy developed in [7] to a cylindrical WEC, considering
dynamical uncertainty in the model description. The results
obtained with the robust approach ([7]) are compared to
those obtained with an equivalent non-robust approach ([1]),
assessing the robustness of each controller when the system
dynamical model includes different uncertainty levels.

The remainder of this paper is organised as follows. Firstly,
Sec. II recalls: (1) the basics of spectral and pseudospectral
methods; (2) the physical equations for WEC; and (3) the
derivation of the objective function. The optimisation prob-
lem, which will guarantee the best-WCP condition, is shown
in Sec. III. In Sec. IV the robust approach is applied to a
cylindrical WEC system, comparing the results against those
obtained with the nominal approach. Finally, conclusions are
given in Sec. V.

II. PRELIMINARIES

The purpose of this section is to state the basics ideas
that will be used in the development of the robust method in

1The framework proposed in [7] is an intermediate step in a number of
implementable feedforward control strategies such as, for example, receding
horizon control-based strategies. The interested reader is referred to [5] for
a description of the implementation of these control structures.
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Sec. III. With this aim, general concepts around spectral and
pseudospectral methods, the general WEC equations, and the
objective function are introduced. Finally, the optimal results
for the nominal case are shown. This section can be studied
in greater depth, by following the development in [1].

A. Spectral and Pseudospectral Methods

Spectral and pseudospectral methods are based on a
projection of the states and control variables into an n-
dimensional vector space spanned by an orthogonal basis
of real functions Φ = {φi}Ni=1. Given a dynamical system
ẋ(t) = f(x(t), u(t)), its states xi(t), i ∈ {1, . . . , n}, and
input u(t) are typically approximated as:

xi(t) ≈ xNi (t) =

N∑
j=1

φj(t)xij = Φ(t)x̂i (1a)

u(t) ≈ uN (t) =

N∑
j=1

φj(t)uj = Φ(t)û (1b)

where Φ(t) =
[
φ1(t) . . . φN (t)

]
is an orthogonal set

of basis functions, x̂i =
[
xi1 . . . xiN

]ᵀ ∈ RN and
û =

[
u1 . . . uN

]ᵀ ∈ RN . The sets of coefficients {xij}
and {uj} are determined by forcing the projection of the
residual functions over the set of test functions Ψ to be
zero ([1]). When ψj = δ(t − tj), i.e. translated Dirac-
Delta functions, then the method is termed pseudospectral,
and guarantees the interpolation at tj . When the set of
test functions is defined by a truncated generalized Fourier
series, and {φj} = {ψj}, the method is known as spectral.
In general, a wide variety of test functions can be used
for spectral and pseudospectral methods, depending on the
suitability for particular applications.

B. WECs and Objective Function

Assuming that the fluid is inviscid and incompressible,
and the flow is considered irrotational, WEC systems are
commonly described by Cummins’ equation ([8]):

(mb +m∞)ẍp(t) +

∫ T

0

k(t− τ)ẋp(τ)dτ+

+ Sxp(t) = Fe(t) + u(t) (2)

where xp(t), ẋp(t) = v(t), and ẍp(t), represent the WEC
position, velocity, and acceleration, respectively, mb is the
mass of the oscillating body, m∞ the added mass at in-
finite frequency, and S a positive constant describing the
hydrostatic stiffness, which is related to the buoyancy force.
The radiation impulse response k(t), in Eq. (2), is related
to the radiation force, which is a damping force arising to
the fact that device motion is affected by the surrouding
fluid. Additionally, in Eq. (2), the excitation force Fe(t)
is produced by the action of the incoming waves (energy
source), and u(t) is the control force generated by the power
take-off (PTO) system, which is commonly used to maximise
the energy production. The interested reader is referred to [9]
for an exhaustive analysis of WEC dynamics. Then, the total

absorbed energy in the interval [0 T ], can be calculated as
the integral of the converted power

J = −
∫ T

0

vᵀ(t)u(t)dt, (3)

where u(t) and v(t) are defined in Eq. (2). Generally,
the optimal problem in WEC control is to maximise the
captured energy J , defined in Eq. (3) as the integral of
the instantaneous power, in a device which is subject to an
external excitation force Fe(t) while it is controlled via a
control force u(t).

Due to the orthogonality of the basis functions φj , the
application of spectral or pseudospectral approximations to
the objective function J as in Eq. (1), results in:

J ≈ JN =

∫ T

0

ûᵀΦᵀ(t)Φ(t)v̂ = −T
2

ûᵀv̂ (4)

where v̂ =
[
v1 v2 . . . vN

]ᵀ ∈ RN corresponds to
the approximation of v(t), which be can obtained by a
linear combination of the vectors x̂i in Eq. (1a), and û =[
u1 u2 . . . uN

]ᵀ
is stated in Eq. (1b).

Given the set Φ of basis functions, suppose that

Φ̇(t) = Φ(t)D, (5)

where D ∈ Rn×n, holds. Then

v̂ = Go (û + ê) , (6)

where Go represents the mapping between û + ê, which is
the approximation of the input ui(t) = u(t) + Fe(t), and v̂,
which is the approximation of the output v(t). Additionally,
in Eq. (6), ê =

[
e1 e2 . . . eN

]ᵀ ∈ RN , where the set
{ei}Ni=1 contains the coefficients of the excitation force Fe(t)
approximation on the basis Φ(t), i.e F (t) ≈ Φ(t)ê. When
the basis functions are chosen appropriately, Go satisfies

Go =

N/2⊕
k=1

[
Rok Iok
−Iok Rok

]
, (7)

with Rok, Iok ∈ R, Go ∈ RN×N and the symbol
⊕

denotes the direct sum of n matrices, i.e.
⊕n

i=1Ai =
diag {A1, A2, . . . , An} . Note that in Eq. (7), without loss
of generality, the number of basis functions is taken to be
even. It is important to note that, due to the 2 × 2 block
diagonal nature of the representation Go, defined in Eq. (7),
Go can be depicted in the plane R× I.

C. Nominal Optimal Solution

By substituting Eq. (6) into the approximate absorbed
energy expression in Eq. (4), the following equality is
obtained:

JN = −T
2

ûᵀGo (û + ê) (8)

which is a quadratic function of the variable û. In essence,
the state variables have been eliminated by substitution,
and the optimisation is carried out over the control vari-
able û only. More importantly, the constrained optimisation
problem, given by the objective function describing the
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total absorbed energy JN , and the linear equality con-
straints describing the system dynamics in Eq. (6), has
been transformed into an unconstrained quadratic program.
Additionally, since the radiation damping term in Eq. (2)
is a dissipative process ([9]), the radiation resistance is
positive, and all the diagonal elements of the matrix Go are
positive. The absorbed energy function, stated in Eq. (8), is
therefore concave, which guarantees the existence of a global
maximum for the objective function. The concavity of the
objective function will be used as a feasibility condition.

Therefore, the optimal formulation is stated as

û?o ← max
∀ûo∈RN

JN (9)

where uo
?, for the unconstrained quadratic problem, which

maximises Eq. (4), is then:

û?o = − (Go + Go
ᵀ)
−1

Goê. (10)

Thus, the control force coefficient vector û?o, for the nominal
case, is obtained in terms of excitation force approximation,
which is given by the vector ê, as shown in Eq. (6). Using
Eq. (10), the approximate optimal control force u?o(t) can
be obtained, as stated in Eq. (1b). The interested reader is
referred to [9] for more details about realistic implementation
of WEC energy maximising controllers.

III. GENERIC SOLUTION FOUNDATIONS

To proceed with the robust approach description, it is
necessary to have a precise characterisation of the system.
This section can be followed in-depth in [7].

In a more realistic situation, when the real system G
does not match the nominal one, a representation of the
real system can be obtained by the addition of a bounded
disturbance ∆ ∈ RN×N :

G = Go + ∆, (11)

where ∆ must be properly structured, depending on the
selected basis functions, and takes the following form:

∆ =

N/2⊕
k=1

[
δRk δIk
−δIk δRk

]
(12)

which allows for the redefinition of the objective function:

JN = −T
2

ûᵀG (û + ê) (13)

A. Robust Approach: Best Worst-Case Performance

Using the feasibility condition for the nominal case defined
in Sec. II-C, and defining the best-WCP solution as the input
that minimises the performance degradation when the system
under study is affected by a bounded uncertainty set ∆, then
the robust statement can be defined as

û?r ← max
û∈RN

min
∆∈U

JN (14)

where U represents the set of all possible uncertainties. The
definition in Eq. (14) is a robust quadratic formulation and,
more generally, can be rewritten into a minimax problem
([10]). Furthermore, the uncertainty set must be defined

Fig. 1: Two different boundaries for the uncertainty set. (a) Convex polytopic set. (b)
Convex and circular set.

properly in order to preserve the concavity and feasibility
of the problem, as will be shown in Sec. III-B. On the
other hand, since the problem is stated in the standard form
used by minimax solvers, the formulation is amenable to the
inclusion of constraints.

Sections III-B, III-C, and III-D show the derivation of a
solution for (14) in two different ways. Firstly, an analytical
methodology is shown, for the case when the uncertainty
is structured via circular and polytopic geometries. Then, a
suboptimal numerical procedure, which can be applied to
non-structured uncertainties, is shown.

B. Generic Solution Foundations

Here, a methodology to solve the problem stated in
Eq. (14), is shown. The problem is solved using two different
methodologies: one analytical and other numerical. For the
analytical case, circular and polytopic uncertainty structures
are addressed. In a discrete sense, by the use of a grid
over the uncertainty set, for general uncertainty structures,
a numerical, but suboptimal approach, is proposed.

General Comments: The general objective function, stated
as in Eq. (13), can be rewritten as follows:

JN = −T
2

ûᵀ
N/2⊕
k=1

[
ek + uk e2k + u2k

e2k + u2k −(ek + uk)

]
δ̄ + f(Υ)


(15)

with δ̄ =
[
δR1 δI1 . . . δRN/2 δIN/2

]ᵀ
and Υ =

[ê û Rok Iok ], which shows that JN is affine in δ̄. Then,
for a given û, ê, and Go, the best-WCP solution is reached
on the convex hull of the uncertainty set. Furthermore, when
the uncertainty is structured as a convex polytope, if the
optimal solution exists, it will be at one of the vertices of
the polytope ([11]).

Figures 1(a) and 1(b) show two different examples of
boundary schemes used for the development in [7], a convex
polytope (specifically a square) and a circle, respectively.
The set of all the possible locations of the real system is
given by Pk, where the points on and within the hull of
the geometry are included. In particular, (Rk, Ik) represents
the location of the real system within the geometry, while
(Rok, Iok) is the location of the nominal system, as illustrated
in Figures 1(a) and 1(b).

In the case of the convex polytope, as shown in
Fig. 1(a), the geometry is defined by the set of vertices{
δ̂1
k δ̂2

k . . . δ̂pkk
}

, where pk defines the number of
vertices of the polytope used in case k. Hence, each δ̂jk =

(δ̂R
j

k , δ̂I
j

k ) is defined such that the bounds of the real system
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at the vertices are R̄jk = Rok + δ̂R
j

k and Ījk = Iok + δ̂I
j

k , with
j = 1, . . . , pk.

The circular case, depicted in Fig. 1(b), can be defined in
terms of a radius ρk and an angle θk

0 ≤ ρk ≤ ρ̄k 0 ≤ θk < 2π (16)

Denoting Re {·} and Im {·} as the real-part and imaginary-
part operators, respectively, then,

δRk = Re
{
ρkeθk

}
δIk = Im

{
ρkeθk

}
which must be repeated for each k-block in Eq. (13). Then,
for both cases (polytope and circle),

Rk = Rok + δRk Ik = Iok + δIk (17)

where
(
δRk , δ

I
k

)
represents the deviation from the nominal

model and (Rk, Ik) ∈ Pk. On the other hand, Eq. (13) can
be expressed as:

JN = −T
2

N/2∑
k=1

Rk(u2
2k−1 + u2

2k) +K

[
u2k

u2k−1

]
(18)

with K =
[
e2kRk − e2k−1Ik e2kIk − e2k−1Rk

]
. The

expression in Eq. (18) shows that the problem concavity will
be consistent (for both the nominal and real systems), with
the sign of each Rk. Thus,

Rk = Rok + δRk > 0 (19)

Eq. (19) explicitly shows the feasibility condition men-
tioned in Sec. II-C, for the nominal (δRk = 0) and robust
(δRk 6= 0) cases. If the expression in Eq. (19) is greater than
zero, then concavity is guaranteed, and thus the maximisation
problem stated in Eq. (8), as a quadratic programming
problem, has a feasible formulation and an optimal solution.

Finally, if the optimal solution can be expressed as:

û? =

N/2⊕
k=1

−1

2

[
1 Ik

Rk

− IkRk
1

]
ê⇔ ∂JN

∂û

∣∣∣∣
û=û?

= 0 (20)

then, by substituting û? from Eq. (20) into Eq. (13),

J?N =
T

8

N/2∑
k=1

(
R2
k + I2

k

) (
e2

2k−1 + e2
2k

)
Rk

(21)

In Sections III-C and III-D two solution methodologies
for the best-WCP, are shown. The first, in Sec. III-C, based
on an analytic approach, is limited to circular and polytopic
convex boundaries. In Sec. III-D, the scope of the problem
is extended, via a numerical formulation, to consider uncer-
tainty sets of arbitrary shape.

C. Analytical Solution Approach

1) Circular Boundary: Due to the fact that the solution
will be reached on the hull of the circle (ρk = ρ̄k), Rk and
Ik can be replaced by:

Rk = Rok + δRk = Rok + ρ̄k cos θk (22a)

Ik = Iok + δIk = Iok + ρ̄k sin θk (22b)

Replacing Eq. (22a) and (22b) in Eq. (21),
J?N (θ1, . . . , θN

2
) is defined. Then,

û?r =

N/2⊕
j=1

−1

2

[
1 B?k
−B?k 1

]
, where B?k =

Iok + ρ̄k sin θk
?

Rok + ρ̄k cos θk
?

(23)
To obtain the best-WCP, the minimum value of

J?N (θ1, . . . , θN
2

) is studied. Then

∂J?N
∂θk

∣∣∣∣
θk=θ?k

= 0⇒ θ?k =
c3k√

c1k
2

+ c2k
2
− arctan

c1k
c2k

(24)

with

c1k = 2IokRok c2k = ρ̄2
k + Iok −Rok

2 c3k = −2ρ̄kIok (25)

which gives the location for θk where JN reaches the
minimum over U .

Replacing Eq. (24) in (23), the input û?r that guarantees
the best-WCP is obtained. Finally, the best-WCP is given by:

JWCP
N = J?N (θ?1 , . . . , θ

?
N
2

)

2) Polytopic Boundary: For the polytopic boundary, using
the fact, that if the optimal solution exists it will be on a
vertex of the polytope. Then, for each Pk defined in Sec. III-
B, using Eq. (21)

(Rj
?

k , I
j?

k )← j?k ← min
jk=1,...,pk

J?N

∣∣∣∣
Rk=R̄j

k, Ik=Ījk

(26)

for jk = 1, . . . , pk and k = 1, . . . , N/2. Defining the vertex
for each k where the WCP is reached, Eq. (20) is used for
the computation of û?r . Then,

JWCP
N = J?N (Rj

?

k , I
j?

k , . . . ,R
j?

N
2

, Ij
?

N
2

)

D. Numerical Approach and Custom Bounding
In order to pose the problem in a standard form, Eq. (14)

is rewritten into a minimax framework:

û?r ← max
û∈RN

min
∆∈U

JN = min
û∈RN

max
∆∈U

− JN (27)

To proceed with the numerical approach for the solution, the
uncertainty space is discretised (mesh). Different possible
uncertainty sets, and their meshing in the plane defined by
R and I, can be chosen. To define the mesh, a detailed
procedure is provided in [7] for four different sets: (1) non-
polytopic convex, (2) polytopic convex, (3) non-convex poly-
topic, and (4) arbitrary points.

Once the discretisation is carried out, the problem is
restated in terms of the discretised grid:

min
û∈RN

max
∆i∈U

T

2
ûᵀGi(û + ê) (28)

with Gi = Go+∆i where ∆i is the perturbation associated
at each i-point selected for the grid.

Following these specifications, the problem is formulated
in the standard minimax form for the use with numerical
optimisation solvers. Even though constraints can be straight-
forwardly included when minimax problem solvers are used,
the analytical study of the constrained case is not within the
scope of this study.
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Fig. 2: (a) Physical model of the cylindrical WEC. (b) Cylindrical WEC and controller
system block scheme.

IV. APPLICATION EXAMPLE

Using the results for the circular case shown in Sec. III, an
application example, based on a cylindrical WEC model as
depicted in Fig. 2(a), is shown here. For further details about
WEC applications and definitions, the reader is referred
to [9]. The radius r, the length l, and the mass mb of the
oscillating device are 4 m, 20 m, and 514 tons, respectively.
The input and output to the nominal system go(ω) are the
input force ui(t) = Fe(t)+u(t) and the device velocity v(t),
respectively, both defined for the vertical motion. In Fig. 2(b)
a block diagram of the application example is illustrated,
showing the input ui(t), the output v(t), and the controller
block.

The data for the nominal model go(ω) are generated using
the boundary element methods-based environment NEMOH
[12], obtaining the model frequency response go(ω), repre-
sented in Fig. 3.

For simplicity in the results illustration, this study is made
assuming N = 2 (û?o, û?r , ê ∈ R2 and G, Go ∈ R2×2) and
using the Fourier basis functions:

Φ(t) =
[
cos(ωt) sin(ωt)

]
. (29)

In order to highlight the impact of the uncertainties in-
cluded in the dynamical system g0(ω), this study assumes
perfect knowledge of the excitation force, and the vector ê
is defined to be constant for the complete frequency range,

ê = α
[
1 1

]ᵀ
, ∀ω in Eq. (29) and constant α ∈ R. (30)

In a more realistic representation, ê should vary with fre-
quency, as shown in [7]. However, with the simplification
considered in Eq. (30), the variation of the resulting WEC

10-2 10-1 100 101 102
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Fig. 3: Nominal system go(ω) frequency response.
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Fig. 4: Nyquist plot of go(ω) showing the circular boundary when ω = 1.412 rad
sec ,

assuming R = 25%.

performance only depends on the system (nominal or not)
definition. In Eq. (30), an illustrative value α = 100 has
been chosen to simplify the visualisation of the resulting
WEC performance.

For each individual frequency, within the range ω? ∈
[0, 10] rad

sec , the robust and nominal solutions are computed.
A circular uncertainty boundary set, centred on go(ω

?),
is defined for each ω?, using as maximum radius ρ̄ (see
Eq. (16)) as a percentage of the nominal system magnitude
|go(ω?)|; e.g. if the uncertainty level is R =25% then
ρ̄ = 0.25|go(ω?)|. In Fig. 4 the Nyquist plot for the
nominal system g0(ω) is represented with a solid blue line.
Additionally, for the case ω? = 1.412 rad

sec , Fig 4 shows: (1)
the nominal system magnitude |go(ω?)|, illustrated with the
long solid arrow; (2) the displacement effect of

(
δR, δI

)
from the nominal system go(ω

?), depicted by the blue solid
marker, to any other position inside the boundary, illustrated
with the empty circle marker; and (3) the uncertainty level
R = 25%. Finally, the integration time, for each different
frequency case, is defined as T ? = 2π/ω?.

A. Results

The main aim of this study is to assess the impact of
the size of the boundaries, i.e. the conservativeness of the
boundary, on the resulting performance, for the cylindrical
WEC model, using the robust approach. Furthermore, a com-
parison with the resulting WCP, when the nominal solution
is applied to the system with uncertainty, is made.

Considering circular boundaries, three different uncer-
tainty levels, R =10%, 25% and 50%, are studied, for which
the robust input û?r , is calculated. When the nominal system
go(ω) is considered, the nominal input û?o is obtained.

The resulting WCP, when each input û?r , computed for
each respective boundary, is applied to the complete set of
models, is shown in Fig. 5. The performance achieved with
the nominal control input û?o is also shown for reference.
Additionally, in Fig. 5: (1) the nominal performance (NP ),
obtained when the nominal model is considered without
uncertainty, is plotted using the dotted line; (2) the WCP,
obtained by applying û?o to the complete family set, is plotted
using the dashed line; and (3) the WCP, obtained by applying
û?r to the complete family set, is plotted using the solid line.
The different uncertainty levels, depicted with the grey scale,
are shown on the right-hand side in Fig. 5. Although the
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Fig. 5: Comparison of the WCP obtained with the robust and nominal approaches. The
different uncertainty levels are depicted with the grey scale. The results for û?

r and
û?

o are plotted with solid and dashed lines, respectively. The dotted line represents
the result for the nominal performance (NP ) considering the system go(ω) without
uncertainty.

analysis is made for the range ω ∈ [0, 10] rad
sec , the most

significant results are within ω ∈ [1.2, 1.6] rad
sec , mainly

around ω = 1.41 rad
sec (where the nominal system has its

resonance frequency), as shown in Fig. 5. The coordinate
location for û?o, and the different robust inputs û?r , are shown
in Fig. 6, where: (1) for the nominal input, û?o =

[
u1
o u2

o

]ᵀ
,

the first and second coordinate, labelled with u1
o and u2

o

respectively, are depicted with the dashed line; (2) for the
robust input,û?r =

[
u1
r u2

r

]ᵀ
, using the same grey scale code

as in Fig. 5, the first and second coordinate, labelled with
u1
r and u2

r respectively, are illustrated with the dash-dot and
solid lines, respectively.

B. Results Analysis

Comparing the results obtained, using different circular
uncertainty set cases, the impact of the size of the bound-
aries is highlighted. The larger the boundary is, the more
conservative the approach, and the lower the consequent
performance. Furthermore, Fig. 6 shows that the robust
approach never results in the consumption of power, while
the nominal controller results in negative energy, for some
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Fig. 6: Coordinate location for each û?
r =

[
u1

r u2
r

]ᵀ and û?
o =

[
u1

o u2
o

]ᵀ. With
the dashed line u1

o and u2
o, are referred. The dash-dot and solid lines show the first

and second coordinates of û?
r , respectively. The uncertainty level is indicated with the

grey scale.

subset of ω. In addition, when the nominal approach is
applied to the complete family of models, the larger the
boundary is, the narrower is the band with positive energy
consumption. In Fig. 6, at the system resonance frequency,
both robust and non-robust approaches obtain the same
worst-case performance, for each particular R. Finally, the
performance obtained at the system resonance frequency is
maximal over ω for each R, as shown in Fig. 6.

V. CONCLUSION

This study shows the application procedure, to a cylin-
drical WEC, of a new robust framework for computing
and solving spectral and pseudospectral control problems in
energy maximising problems with uncertainty. The results
show how the robust approach ensures that the resulting
absorbed energy will never be negative, guaranteeing positive
generated energy. In this sense, this study shows how a cor-
rect uncertainty bound can significantly improve the results,
exposing the existing trade-off between the conservativeness
and the worst-case performance. In all cases, the nominal
controller shows significant performance degradation for the
nominal case compared to the robust approach. Finally, the
robust approach provides convergence guarantees to the best-
WCP, ensuring better performance for any model within the
uncertainty bound. study.
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