
Compositional synthesis of almost maximally permissible safety controllers

Siyuan Liu and Majid Zamani

Abstract— In this work, we present a compositional safety
controller synthesis approach for the class of discrete-time
linear control systems. Here, we leverage a state-of-the-art
result on the computation of robust controlled invariant sets.
To tackle the complexity of controller synthesis over complex
interconnected systems, this paper introduces a decentralized
controller synthesis scheme. Rather than treating the intercon-
nected system as a whole, we first design local safety controllers
for each subsystem separately to enforce local safety properties,
with polytopic state and input constraints as well as bounded
disturbance set. Then, by composing the local controllers,
the interconnected system is guaranteed to satisfy the overall
safety specification. Finally, we provide a vehicular platooning
example to illustrate the effectiveness of the proposed approach
by solving the overall safety controller synthesis problem by
computing less complex local safety controllers for subsystems
and then composing them.

I. INTRODUCTION

Nowadays, there is a growing need for the controller syn-
thesis of complex large-scale interconnected systems, e.g.
autonomous vehicular control, biological networks and air-
plane formation flight. Treating the interconnected system in
a monolithic manner is impractical owing to its inherent com-
plexity, especially when the number of subsystems is large.
Instead, compositional approaches have been developed in
recent years to overcome this challenge by the so-called
“divide-and-conquer” strategy [1]. In particular, subsystems
are analyzed and tackled separately and the correctness can
be ensured by the well-known “assume-guarantee” reasoning
scheme [2].
Recently, there has been some research on compositionality
based on the construction of (in)finite abstractions of the
original control systems [3], [4], [5], [6], [7], [8], [9]. The
abstraction is served as a substitution of the original system
while designing the controller. The results presented in [5],
[7], [8] leverage the small-gain type conditions to facili-
tate the compositional construction of abstractions, which
may not hold as the number of subsystems increases. The
results proposed in [6], [9] take advantage of dissipativity
approaches to break the requirements on the number of sub-
systems, whereas they restrict the interconnection topology
to satisfy some graph equitability condition. The results in
[3], [5], [6], [7], [8], [9] mainly deal with the compositional
construction of (in)finite abstractions, whereas the ones in
[4] additionally investigate compositional safety controller
synthesis as well.
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Compositional synthesis schemes without the construction
of (in)finite abstractions are also presented in [10], [11].
The work in [10] studies optimal control policies and op-
timal communication graphs based on distributed robust
set-invariance. A synthesis of separable controlled invariant
sets for physically coupled linear subsystems are developed
in [11]. This result employs slack variable identities for
relaxation and provides sufficient conditions based on opti-
mization over linear matrix inequality (LMI). However, this
method requires the state set to be symmetric zonotopes.
Both approaches rely on some relaxed optimization problem
while computing robust invariant sets, which can be conser-
vative in terms of finding the maximally permissible safety
controllers.
In this work, we introduce a novel approach on decentral-
ized synthesis of safety controllers for linear interconnected
systems by leveraging the recent result developed in [12].
The proposed scheme is based on the so-called outer and
inner invariant approximation of the maximal robust con-
trolled invariant (RCI) set, respectively. The outer invariant
approximation scheme is shown to be δ-complete [12], [13]
in the sense that the algorithm either returns an empty set
when the maximal invariant set is empty, or we obtain
a δ-relaxed RCI set (cf. Definition 3.4) of interest. We
show that given synthesized local safety controllers, which
are computed separately to enforce subsystems to satisfy
local safety properties, the composed controller serves as a
safety controller for the overall interconnected system. In
addition, the maximality of the composed controller can be
obtained using the maximality of local controllers. Similarly,
the overall safety controller preserves the δ-completeness
property given the δ-completeness property of the local
safety controllers. Finally, the effectiveness of the proposed
results is illustrated on a vehicular platoon example.

II. NOTATION AND PRELIMINARIES

A. Notation
We use N and R to denote the sets of natural and real num-
bers, respectively. The symbols are annotated with subscripts
to restrict the sets in the usual way, e.g. R>0 denotes the
positive real numbers. The symbol Rn×m, with n,m ∈ N≥1
is used to denote the vector space of real matrices with
n rows and m columns. We use In and 0n×m to denote
the identity matrix and zero matrix in Rn×n and Rn×m,
respectively. For a, b ∈ R with a ≤ b, the closed, open, and
half-open intervals in R are denoted by [a, b], ]a, b[, [a, b[,
and ]a, b], respectively. For a, b ∈ N and a ≤ b, the symbols
[a; b], ]a; b[, [a; b[, and ]a; b] denote the corresponding inter-
vals in N. Given sets X and Y , we denote by f : X → Y
an ordinary map of X into Y , whereas f : X ⇒ Y denotes
a set-valued map. Given N ∈ N≥1, vectors xi ∈ Rni , with
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ni ∈ N≥1, n =
∑N
i=1 ni and i ∈ [1;N ], x = [x1; . . . ;xN ]

is used to denote the concatenated vector in Rn. We use
πi(x) = Rn → Rni to denote the projection of vector x over
components xi. We denote by ‖x‖2 and ‖x‖, respectively, the
Euclidean norm and the infinity norm of the vector x ∈ Rn.
Given a function f : Rn → Rm and x̄ ∈ Rm, we use
f ≡ x̄ to denote that f(x) = x̄ for all x ∈ Rn. Given
sets Xi, i ∈ [1;N ], the Cartesian product X1 × . . . × XN

is denoted by
N∏
i=1

Xi. Similarly, for set X ⊆ Rn, we denote

by πi(X) = 2R
n → 2R

ni the projection of X over the i-
th component. Given functions fi : Xi → Yi, i ∈ [1;N ],

the product function
N∏
i=1

fi :
N∏
i=1

Xi →
N∏
i=1

Yi is defined

as
N∏
i=1

fi(x1, . . . , xN ) = [f1(x1); . . . ; fN (xN )]. Notation B

denotes the closed unit ball in Rn w.r.t the infinity norm ‖·‖.
Given sets X , Y with X ⊂ Y , Y \X denotes the complement
of X with respect to Y , defined by Y \X = {x : x ∈ Y, x /∈
X}. The Minkowski sum for two sets P,Q ⊆ Rn is defined
by X+Y = {x ∈ Rn|∃p∈P,q∈Q, x = p+q}. Throughout the
paper, for a given vector x ∈ Rn and a set W , we slightly
abuse the notation and use x + W instead of {x} + W to
denote the Minkowski sum. The Pontryagin set difference is
defined by X − Y = {x ∈ X|x+ Y ⊆ X}.

B. Interconnected Control Systems
First, we define control subsystems studied in this paper.
Definition 2.1: A control system Σ is a tuple

Σ = (Rn,Rm,Rp,U ,Z,W, f,Rq, h),

where Rn, Rm, Rp, Rq , are the state set, external input set,
internal input set and output set, respectively. Sets U and Z ,
respectively, are used to denote the subsets of the set of all
measurable functions of time from N → Rm and N → Rp.
Set W ⊆ Rn is an additive set of disturbances. Function
f : Rn×Rm×Rp×W → Rn is the state transition function
as the following: x(t + 1) = f(x(t), u(t), z(t), w(t)), and
h : Rn → Rq is the output function.
Now, we provide a formal definition of interconnected con-
trol systems based on the one presented in [5]. We consider
N ∈ N≥1 control subsystems

Σi = (Rni ,Rmi ,Rpi ,Ui,Zi,Wi, fi,Rqi , hi),

where i ∈ [1;N ], inputs and outputs are partitioned as

zi = [zi1; . . . ; zi(i−1); zi(i+1); . . . ; ziN ], (1)
yi = [yi1; . . . ; yiN ], (2)

with zij ∈ Rpij , yij = hij(xi) ∈ Rqij and output function

hi(xi) = [hi1(xi); . . . ;hiN (xi)]. (3)

The outputs yii are considered as external ones, whereas
yij with i 6= j are interpreted as internal ones which are
used to construct interconnections between subsystems. The
dimension of zij is assumed to be equal to that of yji. In
the case that no connection exists between subsystems Σi
and Σj , we simply have hij ≡ 0. The interconnected control
system is defined as the following.

Definition 2.2: We consider N ∈ N≥1 control subsystems
Σi = (Rni ,Rmi ,Rpi ,Ui,Zi,Wi, fi,Rqi , hi) as described
in (1)-(3). The interconnected control system denoted by
I(Σ1, . . . ,ΣN ) is a tuple

Σ = (Rn,Rm,U ,W, f,Rq, h), (4)

where n =
∑N
i=1 ni, m =

∑N
i=1mi, q =

∑N
i=1 qii, with

disturbance set W =
N∏
i=1

Wi, state transition function and

output function

f(x, u, w) = [f1(x1, u1, z1, w1); . . . ; fN (xN , uN , zN , wN )],

h(x) = [(h11(x1); . . . ;hNN (xN ))],

where u = [u1; . . . ;uN ], x = [x1; . . . ;xN ], w =
[w1; . . . ;wN ] and the interconnection variables are con-
strained by zij = yji and Yji ⊆ Zij , ∀i, j ∈ [1;N ], i 6= j.

C. Safety Controller

In this subsection, we define the notion of safety controller
which will be used throughout the paper. Suppose the state
constraint for each subsystem Σi is given by the compact
safe set Xi ⊆ Rni and admissible input set is denoted by
Ui ⊆ Rmi . Then for the interconnected system Σ, the safe
set X and input constraint set U have the following structure

X =

N∏
i=1

Xi, withXi ⊆ Rni ,

N∑
i=1

ni = n, (5)

U =

N∏
i=1

Ui, withUi ⊆ Rmi ,

N∑
i=1

mi = m. (6)

We define Out = Rn \ X and its projection on Σi as
Outi = Rni \ Xi. From the above structure, the state
transition function of the interconnected system holds the
following relations:
For all x = [x1; . . . ;xN ] ∈ X , u = [u1; . . . ;uN ] ∈ U ,
x′ = [x′1; . . . ;x′N ] ∈ X , w = [w1; . . . ;wN ] ∈W ,

x′ = f(x, u, w)⇐⇒ ∀i, j ∈ [1;N ], i 6= j,

x′i = fi(xi, ui, zi, wi), zij = hji(xj), (7)

where x′ is the successor state from state x under input u
and disturbance w.
For all x = [x1; . . . ;xN ] ∈ X , u = [u1; . . . ;uN ] ∈ U ,
w = [w1; . . . ;wN ] ∈W ,

Out ∩ {f(x, u, w)} 6= ∅ ⇐⇒ ∃i ∈ [1;N ],∀j ∈ [1;N ] \ i,
Outi ∩ {fi(xi, ui, zi, wi)} 6= ∅, zij = hji(xj). (8)

Now we provide the formal definition of safety controller.
Definition 2.3: A safety controller for system Σ in (4) and
safe set X is a set-valued map C : Rn ⇒ U such that:

1) ∀x ∈ Rn, C(x) ⊆ U ;
2) dom(C) = {x ∈ Rn|C(x) 6= ∅} ⊆ X;
3) ∀ x ∈ dom(C), ∀u ∈ C(x), and ∀w ∈ W ,

f(x, u, w) ∈ dom(C).
Remark 2.4: Note that the definition of a safety controller
for subsystems Σi is similar to that of Definition 2.3, and
the slight modification lies in condition 3) where the state
transition function has to be modified to fi(xi, ui, zi, wi).



It is known [14] that, there exists a maximal safety controller
C∗ for control system Σ and safe set X containing all safety
controllers, i.e., C(x) ⊆ C∗(x) for all x ∈ Rn. This maximal
safety controller can be computed theoretically using the
well-known fixed-point algorithm [15].

III. COMPOSITIONAL SAFETY CONTROLLER SYNTHESIS

In this section, we provide a method to compute compo-
sitionally safety controllers for interconnected system Σ in
Definition 2.2. Suppose we are given safety controllers Ci
for all i ∈ [1;N ], each corresponding to subsystems Σi.

A. Compositional Safety Controller Synthesis

Let controller C : Rn ⇒ U be defined by C(Out) = ∅ and

∀i ∈ [1;N ] with xi ∈ Xi,

C(x) = {u ∈ U |ui ∈ Ci(xi),∀i ∈ [1;N ]}, (9)

where x = [x1; . . . ;xN ], u = [u1; . . . ;uN ].
First, we show that the compositional controller as defined
above works for the overall interconnected system.
Theorem 3.1: Controller C defined in (9) is a safety con-
troller for interconnected system Σ and safe set X .

Proof: By (9), ∀x ∈ X , C(x) ⊆ U , and C(Out) =
∅ ⊆ U . Therefore, ∀x ∈ Rn, C(x) ⊆ U . It is clear to see that
dom(C) ⊆ X trivially follows by C(Out) = ∅. We continue
by showing 3) in Definition 2.3. Let x ∈ dom(C) ⊆ X ,
u ∈ C(x) and x′ = f(x, u, w). First, we show x′ ∈ X by
contradiction. If x′ /∈ X , then x′ ∈ Out from (8). There
exists i ∈ [1;N ], such that Outi ∩ {fi(xi, ui, zi, wi)} 6= ∅,
which contradicts the fact that ui ∈ Ci(xi) with Ci being the
safety controller for subsystem Σi and the corresponding safe
set Xi. Therefore, we have x′ ∈ X . From (7), it is clear that,
∀i ∈ [1;N ], x′i = fi(xi, ui, zi, wi). Moreover, ui ∈ Ci(xi)
implies that x′i ∈ dom(Ci). For i ∈ [1;N ], let u′i ∈ Ci(x′i)
and by (9), we have u′ = (u′1, u

′
2, . . . , u

′
N ) ∈ C(x′) and x′ ∈

dom(C). Hence, we conclude that C is a safety controller
for Σ and X .
In the next result, we show that the maximality of the
compositional controller holds when safety controller of each
subsystem is maximal.
Theorem 3.2: For i ∈ [1;N ], let C∗i be the maximal safety
controller for subsystem Σi, and safe set Xi. Then, controller
C∗ defined by C∗(Out) = ∅:

∀i ∈ [1;N ] with xi ∈ Xi,

C∗(x) = {u ∈ U |ui ∈ C∗i (xi),∀i ∈ [1;N ]}, (10)

where x=[x1;. . .;xN], u=[u1;. . .;uN], is the maximal safety
controller for the interconnected system Σ and safe set X .

Proof: Let C ′ : Rn ⇒ U be a safety controller for
system Σ and safe set X . For i ∈ [1;N ], let controllers
C ′i : Rni ⇒ Ui be defined by C ′i(Outi) = ∅ and for all
xi ∈ Xi = πi(X),

C ′i(xi) = {ui ∈ πi(C ′(x))|x ∈ X,xi = πi(x)}, (11)

where the projections for all x ∈ X and u ∈ U over N
components are xi = πi(x) ∈ Xi and ui = πi(x) ∈ Ui.
We proceed with showing that C ′i is a safety controller for
system Σi and safe set Xi. Since C ′i(Outi) = ∅ and C ′

is a safety controller, for all xi ∈ Rni , we readily have
C ′i(xi) ⊆ Ui from (11), so that condition 1) in Definition
2.3 is satisfied. For condition 2), we can trivially obtain
dom(C ′i) ⊆ Xi from C ′i(Outi) = ∅. Now, let xi ∈ dom(C ′i),
ui ∈ C ′i(xi), and x′i = fi(xi, ui, zi, wi). We prove that
x′i ∈ dom(C ′i). From (11), there exist x ∈ dom(C ′) and
u ∈ C ′(x) such that πi(x) = xi and πi(x) = ui. As C ′

is a safety controller, we have f(x, u, w) ∈ dom(C ′) ⊆ X .
Moreover, using the state transition function in (7), there
exists x′ = f(x, u, w) such that πi(x′) = x′i. Then, since
x′ ∈ dom (C ′) and by (11), we get x′i ∈ dom(C ′i), which
satisfies condition 3) in Definition 2.3. Therefore C ′i is a
safety controller for system Σi and safe set Xi. Then, for
all xi ∈ Xi, C ′i(xi) ⊆ C∗i (xi) follows from the maximality
of C∗i as in Theorem 3.2. Finally, let us assume that x ∈
dom(C ′) and u ∈ C ′(x). Then ui ∈ C ′i(xi) ⊆ C∗i (xi), for
all i ∈ [1;N ], clearly follows from (11). The definition of
maximal safety controller in (10) verifies u ∈ C∗(x), which
shows the maximality of C∗ and completes the proof.

B. Safety Controller based on Robust Controlled Invariant
Set

For the remainder of the paper, we make an assumption that
the class of control subsystems in Definition 2.1 is linear,
discrete-time and described by difference inclusion

Σi :

{
ξi(t+ 1) ∈ Aiξi(t) +Biυi(t) +Dizi(t) +Wi,

yi(t) = Ci(ξi(t)),
(12)

where Ai ∈ Rni×ni , Bi ∈ Rni×mi , Ci ∈ Rqi×ni and
Di ∈ Rni×(n−ni) are constant matrices, ξi : N → Rni

and yi : N → Rqi are called state trajectory and output
trajectory, respectively, υi ∈ Ui and zi ∈ Zi denote input
trajectories. The state transition function is of the form:
fi(xi, ui, zi, wi) = Aixi+Biui+Dizi+wi, where wi ∈Wi.
We write ξxiυiziwi

(t) to denote the state value at time t with
initial state ξi(0) = xi under input trajectories υi, zi, and
disturbance signal wi. We denote by yxiυiziwi

the output
trajectory corresponding to state trajectory ξxiυiziwi

.
One can readily see that the safety controller in Definition
2.3 enforces every trajectory ξxiυiziwi

of Σi to evolve inside
the safe set Xi. Note that the problem of computing this
safety controller is equivalent to finding a robust controlled
invariant set inside X , which is defined as the following.
Definition 3.3: A set Ωi ⊆ Rni contained in Xi ⊆ Rn is
robust controlled invariant (RCI) w.r.t subsystem Σi if

∀xi ∈ Ωi,∃ui ∈ Ui, s.t. x′i = fi(xi, ui, zi, wi) ∈ Ωi.
Given a safe set X , it is known that there exists a maximal
RCI set inside X containing all RCI sets. It corresponds
to maximal safety controller C∗ and is denoted by Ω∞.
However, the computation of Ω∞, which requires implement-
ing the well-known fixed-point algorithm, is still an open
problem owing to termination and computational complexity
issues. Hence, we leverage two algorithms proposed in [12],
which are called outer and inner approximation of Ω∞, to
find RCI set for (12). The main idea of the method is briefly
explained here.
The method is targeted at controllable linear systems of
the form of ξ(t) ∈ Aξ(t) + Bυ(t) + W with compact



constraint sets X and U . The computation of outer invariant
approximation is based on set iteration (13) and stopping
criterion (14) as follows

R0 = X,Ri+1 = pre(Ri) ∩X, (13)
Ri ⊆ Ri+n + εB, (14)

where pre(R) = {x ∈ Rn|∃u∈UAx + Bu + W ⊆ R} and
n is the dimension of the system. This method tolerates an
arbitrarily small constraint violation. A δ−relaxed RCI set R
can be provided (see [12, Theorem 1]), which satisfies Ω∞ ⊆
R ⊆ X+δB, where δ = cε with c being a constant depending
on the system dynamics. Constant δ can be interpreted as the
relaxation of constraints. By choosing ε, δ arbitrarily small,
set R converges to the maximal RCI set Ω∞.
Due to the equivalence property of computing RCI set and
safety controller, we provide a definition of δ−relaxed safety
controller w.r.t outer approximation of maximal RCI set.
Definition 3.4: A δ−relaxed safety controller for system Σ
and δ−relaxed safe set X+δB, based on outer approximation
given by (13) and (14), is a set-valued map Cδ : Rn ⇒
U + δB such that:

1) ∀x ∈ Rn, Cδ(x) ⊆ U + δB;
2) dom(Cδ) = {x ∈ Rn|Cδ(x) 6= ∅} ⊆ X + δB;
3) ∀x ∈ dom(Cδ) and u ∈ Cδ(x), Ax + Bu + W ⊆

dom(Cδ).
For the inner invariant approximation, the set iteration and
stopping criterion are modified to

R0 = X,Rρi+1 = preρ(R
ρ
i ) ∩X, (15)

Rρi ⊆ R
ρ
i+1 + ρB, (16)

where preρ(R
ρ
i ) = {x ∈ Rn|∃u∈UAx+Bu+W+ρB ⊆ Rρi }.

The RCI set is given by Rρi+1 in (16), see [12, Sec. III]. The
corresponding inner safety controller is defined as follows.
Definition 3.5: A ρ−inner safety controller for system Σ and
safe set X , based on inner approximation given by (15) and
(16), is a set-valued map Cρ : Rn ⇒ U such that:

1) ∀x ∈ Rn, Cρ(x) ⊆ U ;
2) dom(Cρ) = {x ∈ Rn|Cρ(x) 6= ∅} ⊆ X;
3) ∀x ∈ dom(Cρ) and u ∈ Cρ(x), Ax + Bu + W ⊆

dom(Cρ).
Remark 3.6: Note that the above method does not impose
any restrictions on the shape of constraint sets or disturbance
set, but simply consider compact sets which could be given
by finite unions of polytopes. For the subsystems in (12),
there exist interconnected variables which are constrained
by zij = yji. We basically follow an assume-guarantee rea-
soning [2] to bound interconnected variables. We guarantee
that the trajectory of each subsystem evolves inside its safe
set under the assumption that the other N−1 subsystems do
the same. In this view, the Minkowski sum of Dizi(t) +Wi

satisfies the compact requirement as well, so that one can
take it as a disturbance set while computing the outer/inner
approximation.

C. Compositional Controller Synthesis based on Outer Ap-
proximation of Maximal Safety Controller

Here, we continue with compositional controller synthesis
results based on separately computed δ−relaxed safety con-
trollers of subsystems.

Let Cδii : Rni ⇒ Ui + δiBi, ∀i ∈ [1;N ], be the δi−relaxed
safety controller for Σi and the δi−relaxed safe set Xi+δiBi,
where Bi ⊆ Rni is the closed unit ball in Rni .
Then, let Cδ : Rn ⇒ Uδ be defined by Cδ(Outδ) = ∅ and

∀x∈Xδ,Cδ(x)={u ∈ Uδ|ui ∈ Cδii (xi),∀i ∈ [1;N ]}, (17)

where x = [x1; . . . ;xN ], u = [u1; . . . ;uN ], xi ∈ Xi + δiBi,

ui ∈ Ui + δiBi, Xδ =
N∏
i=1

(Xi + δiBi), U δ =
N∏
i=1

(Ui + δiBi)

and Outδ = Rn \Xδ .
In order to show the next result, we need the following
technical lemma.
Lemma 3.7: The Cartesian product of sets is distributive
over Minkowski sum and Pontryagin difference.
The lemma can be proved simply by following the definitions
of Minkowski sum, Pontryagin difference and Cartesian
product, so that is omitted here due to space limitation.
The following result shows that the compositional controller
in (17) works for the overall interconnected system.
Theorem 3.8: The controller Cδ in (17) is a δ−relaxed
safety controller w.r.t the interconnected system Σ,
δ−relaxed safe set X + δB and U + δB.

Proof: By Lemma 3.7, for the composed safe set Xδ

and composed constrained input set Uδ in (17), we have

Xδ =
N∏
i=1

(Xi + δiBi) ⊆
N∏
i=1

Xi + δB = X+ δB, and Uδ =

N∏
i=1

(Ui+δiBi)⊆
N∏
i=1

Ui+δB=U+δB, where δ=‖[δ1; . . . ; δN ]‖.
Rest of the proof follows the same structure as that in
Theorem 3.1 and is omitted.

D. Compositional Controller Synthesis based on Inner Ap-
proximation of Maximal Safety Controller
In this subsection, the composed safety controller is syn-
thesized based on inner approximation of maximal safety
controller.
Let Cρii : Rni ⇒ Ui, ∀i ∈ [1;N ], be the ρi−inner safety
controller for Σi and the safe set Xi.
Then, let the controller Cρ : Rn ⇒ U be defined by
Cρ(Outρ) = ∅ and

∀x∈X,Cρ(x)={u∈U |ui ∈ Cρii (xi),∀i∈ [1;N ]}, (18)

where x=[x1; . . . ;xN ], u=[u1; . . . ;uN ], xi ∈ Xi, ui ∈ Ui.
Proposition 3.9: The set-valued map Cρ is a ρ−inner safety
controller w.r.t the interconnected system Σ, safe set X and
U , where the parameter ρ = ‖[ρ1; . . . ; ρN ]‖.

Proof: From (18), it is clear that the inner approximated
controller Cρ follows the structure of the general safety
controller in (9), which completes the proof.
The next proposition shows that the controller Cρ, with
the parameters ρi ∈ R≥0,∀i ∈ [1;N ] suitably chosen as
described in the proof, contains all the safety controllers for
the interconnected system, w.r.t the deflated constraint sets
X̄ε and Ūε defined as

X̄ε = {x ∈ X|x+ εB ⊆ X},
Ūε = {u ∈ U |u+ εB ⊆ U},

where ε ∈ R>0.



1x
2x

3x

1 023

Fig. 1: A platoon of 4 vehivles.

Proposition 3.10: The compositional inner approximated
safety controller Cρ for the interconnected system Σ w.r.t
X and U is larger than any safety controller w.r.t X̄ε and
Ūε.

Proof: As showed in [12, Theorem 3], for each sub-
system Σi, there exists ρi ∈ R≥0 such that for any RCI set
R̄εi ⊆ X̄εi which satisfies

x ∈ R̄εi =⇒ ∃Ūεi : Ax+Bu+W ⊆ R̄εi,

we have R̄εi ⊆ Rρii . Suppose for each subsystem Σi, we
can compute an RCI set R̄εi, which implies we have a
safety controller C̄εi w.r.t X̄εi and Ūεi. Following the same
proof idea as in Theorem 3.1, it is readily to see that
the compositional controller C̄ε : Rn ⇒ Ūε defined by
C̄ε(Out) = ∅ and

∀x ∈ X̄ε, C̄ε(x) = {u ∈ Ūε|ui ∈ C̄εi(xi),∀i ∈ [1;N ]},

where x = [x1; . . . ;xN ], u = [u1; . . . ;uN ], xi ∈ X̄εi,
ui ∈ Ūεi, is a safety controller w.r.t X̄ε and Ūε. Since
R̄εi ⊆ Rρii , ∀i = [1;N ], it follows from [12, Theorem 3]
that any compositional safety controller C̄ε w.r.t X̄ε and Ūε
is contained in Cρ.

IV. EXAMPLE

We provide two case studies to illustrate our results. First,
we implement the δ-relaxed and ρ-inner safety controllers in
a platoon model to show their performance.

A. Safety Controller for Centralized Vehicular Platoon
Consider a vehicular platoon example taken from [16]. The
platoon system consists of N + 1 autonomous vehicles with
1 leader and N followers moving on a single-lane road (see
Fig. 1). The dynamics is built in a relative manner with
respect to the leader as follows

x̃i(t+ 1) = x̃i(t) + ṽi(t)∆τ + ũi(t)∆τ
2/2 + wi,x(t),

ṽi(t+ 1) = ṽi(t) + ũi(t)∆τ + wi,v(t),

v0(t+ 1) = v0(t) + u0(t)∆τ + w0,v(t),

(19)

where x̃i(t) = x0(t) − xi(t), ṽi(t) = v0(t) − vi(t),
ũi(t) = u0(t) − ui(t), i ∈ [1;N ] denote the relative
distance, relative velocity and relative input, respectively,
with respect to the leader (with subscript 0). wi,x and
wi,v , i ∈ [0;N ] are the disturbances affecting position
and velocity. The platoon state is defined as the vector
y := (x̃1, ṽ1, x̃2, ṽ2, . . . , x̃N , ṽN , v0), y ∈ R2N+1. The
evolution of state is therefore given by y(t+ 1) = Ay(t) +
Bu(t) + Ew(t), with A, B and E being constant matrices
derived from dynamics in (19). The specification that the
system should satisfy includes: 1). Collision avoidance: x̃i >
x̃i−1 + li−1, x̃0 = 0, where li denotes the length of the i-th
vehicle; 2). Constraint on the platoon length: x̃N ≤ L; 3).

Fig. 2: Projection of the outer and inner approximation of
the maximal RCI set.

The platoon velocity is bounded: v0(t) ∈ [v0,min, v0,max] for
all times and all admissible disturbances.
Let N = 2, li = 4.5m, ∆τ = 0.5s, L = 10m, v0,min =
13m/s, and v0,max = 17m/s. The constraints imposed on
the input and disturbance are U =

∏N
i=0[−3, 3]m/s2, and

W = λ∗ ×
∏N
i=0[−1, 1]m/s ×[−0.25, 0.25]m, where the

parameter λ∗ is a scalar. We compute the outer and inner
approximation of the maximal RCI set. The corresponding
parameters are set to ε = ρ = 0.01. By choosing the largest
value of λ∗ = 0.23, we were still able to compute the
inner and outer approximation of the maximal RCI set. The
projection of safe set S onto the x̃1-x̃2 space can be given
by the triangle: {(x̃1, x̃2)|x̃1+4.5 ≤ x̃2, x̃2 ≤ 10, x̃1 ≥ 4.5}.
In this case, we first used the multi-parametric toolbox [17]
and computed the maximal RCI set. The projections of outer
and inner approximation RCI sets onto the x̃1-x̃2 space with
respect to that of the maximal one are illustrated in Fig. 2.
In comparison with the RCI set computed in [16, Fig.2], the
ones we obtained here are much less conservative. However,
this centralized framework requires full state knowledge so
that the computation becomes costly as N increases.

B. Compositional Controller for Interconnected Platoon

In this example, we apply our main results to an intercon-
nected platoon system with N followers and 1 leader (see
Fig. 3(b) top), as adopted from [10]. For the i-th follower,
the state variable is defined as xi = (di, vi), i ∈ [1;N ],
with di denoting the relative distance between itself (the i-th
follower) and the preceding vehicle (the (i − 1)-th vehicle,
the 0-th vehicle represents the leader), vi is its velocity in
the leader’s frame. The evolution of states is given by

xi(t+1)=

[
1 −1
0 1

]
xi(t)+

[
0
1

]
ui(t)+

[
0 ε
0 0

]
xi−1(t)+Wi,

yi = [yi1, . . . , yi,i, yi,i+1, . . . , yiN ],

where yi,i = yi,i+1 = xi; yi,j = 0,∀j 6= i, i + 1, xi−1
represents the state variable of the preceding vehicle that is
acting as the interconnection here, the parameter ε represents
the interconnection degree, ui(t) ∈ [−1, 1] is the bounded
control input, whereas Wi is a polytopic disturbance set
given by λ∗ × [−0.1, 0.1]m ×[−2, 2]m/s. The length of the
vehicles is set to be li = 5m, ∀i ∈ [1;N ]. The overall control
objective is to avoid collisions: di(t) ≥ 0, ∀i ∈ [1;N ], ∀t ∈
N and in the meanwhile the length of the platoon is always
bounded:

∑N
i=1 di(t) + Nli ≤ L. Here, we decompose

and under approximate the overall specification so that each
vehicle is constrained by its own safe set: 0.1 ≤ di(t) ≤ ∆,
∀i ∈ [1;N ], where ∆ = (L−Nli)/N .
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(b) Platoon model and vehicular displacements in the leader frame.

Fig. 3: Trajectories of the Decentralized Platoon Model under Outer Safety Controller.

Let N = 6, ε = 0.1 and ∆ = 0.5m. We found λ∗ = 0.06
to be the largest parameter for the disturbance set while still
finding a safety controller. We simulated the system for 60
seconds. The initial states were set at the centers of the
safe sets. The disturbances were randomly generated at each
second. The control inputs were computed using a quadratic
program problem: ui(xi) = argmin ‖ui‖2 such that Aixi +
Biui + Dizi + Wi ⊆ Ω, where Ω denotes the outer/inner
approximation of the maximal RCI set. Simulation results
show that both the outer and inner compositional controller
successfully enforce the interconnected system to satisfy the
properties. The results of the outer approximated controller
are shown in Fig. 3. As depicted in Fig. 3(a), the distances are
always greater than 0.1m, which indicates that the collision
avoidance is ensured. The vehicular displacements are shown
in Fig. 3(b), where the horizontal axis represents relative
distances of follower vehicles with respect to the leader. The
leader is fixed in this frame depicted on the right by the
black rectangle, and the followers depicted by gray rectangles
move under disturbances.
Now, we analyze the largest disturbance and interconnection
degree that the platoon can accommodate using outer and
inner compositional controllers. The accuracy parameters of
the outer and inner safety controllers are set to ε = ρ = 0.01.
To obtain the largest disturbance magnitude, we set ε = 0.1
and analyze how λ∗ varies with the density % = N/L. As for
the largest interconnection degree ε∗, we set λ = 0 and see its
variation with the density. The results are shown in Table. I.
It can be seen that λ∗ grows as vehicular density % decreases.
Therefore, wider inter-vehicular spacings are recommended
so as to adapt the system to larger disturbances. It is also
observed that, the outer approximated controller can accom-
modate a slightly larger magnitude of disturbances than the
inner approximated controller. However, the inner approxi-
mated controller slightly outperforms the outer one in terms
of tolerating stronger interconnection as vehicular density
goes down. Note that the dimension of each subsystem is 2,
and the control policies of this decentralized framework have
O(1) complexity. The computation time of safety controllers
at each step is less than 0.01s, which is almost negligible.
All the computations were conducted using MATLAB on a
computer with Intel Core i7 3.4 GHz CPU.
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