
ar
X

iv
:2

00
4.

03
26

2v
1 

 [
m

at
h.

O
C

] 
 7

 A
pr

 2
02

0

Decentralized Control of Constrained Linear Systems via

Assume-Guarantee Contracts

Weixuan Lin† Eilyan Bitar†

Abstract—We consider the decentralized control of a discrete-
time, linear system subject to exogenous disturbances and
polyhedral constraints on the state and input trajectories. The
underlying system is composed of a finite collection of dynam-
ically coupled subsystems, where each subsystem is assumed
to have a dedicated local controller. The decentralization of
information is expressed according to sparsity constraints on
the state measurements that each local controller has access
to. In this context, we investigate the design of decentralized
controllers that are affinely parameterized in their measure-
ment history. For problems with partially nested information
structures, the optimization over such policy spaces is known
to be convex. Convexity is not, however, guaranteed under
more general (nonclassical) information structures in which the
information available to one local controller can be affected
by control actions that it cannot access or reconstruct. With
the aim of alleviating the nonconvexity that arises in such
problems, we propose an approach to decentralized control
design where the information-coupling states are effectively
treated as disturbances whose trajectories are constrained to
take values in ellipsoidal contract sets whose location, scale,
and orientation are jointly optimized with the underlying affine
decentralized control policy. We establish a natural structural
condition on the space of allowable contracts that facilitates the
joint optimization over the control policy and the contract set
via semidefinite programming.

I. INTRODUCTION

We investigate the design of affine decentralized con-

trol policies for stochastic discrete-time, linear systems that

evolve over a finite horizon, and are subject to polyhedral

constraints on the state and input trajectories. The computa-

tional tractability of such problems depends in part on their

information structures [1], [2]. In particular, a decentralized

control problem is said to have a nonclassical information

structure if the information available to one controller can

be affected by the control actions of another that it cannot

access or reconstruct. Under such information structures, the

calculation of optimal decentralized control policies is known

to be computationally intractable, because of the incentive for

controllers to communicate with each other via the actions

they undertake—the so called signalling incentive [1]–[3].

To complicate matters further, there may be hard constraints

coupling the local actions and states of different controllers

that must be jointly enforced without explicit communication.

In this paper, we address these challenges by relaxing the

requirement that the decentralized controller be optimal with

respect to the broad family of all causal policies, and instead
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search for suboptimal decentralized controllers that can be

efficiently computed via convex programming methods.

Related Literature: There is a related literature that

leverages on techniques derived from tube-based model pre-

dictive control (MPC) to facilitate the design of decentralized

controllers for constrained dynamical systems [4]–[14]. Typi-

cally, these approaches rely on a decomposition of the decen-

tralized control problem into a collection of decoupled local

control problems by treating the coupling states and inputs

associated with each subsystem’s “neighbors” as independent

exogenous disturbances that are assumed to take values in

the given state and input constraint sets. Given the resulting

collection of decoupled local control problems, centralized

MPC methods can be applied to compute local control poli-

cies that are guaranteed to be feasible for each sub-problem.

Although decentralized control policies calculated according

to such decomposition methods are guaranteed to be feasible

for the full problem, they may result in behaviors that are

overly conservative in terms of the cost they incur for a

number of reasons. First, the treatment of the coupling states

and inputs as independent disturbances ignores the potential

dynamical coupling between these variables. Second, the

over approximation of the coupling state and input trajectory

sets by their corresponding state and input constraint sets

will likely be very loose for many problem instances. More

importantly, the over approximation of the coupling state and

input trajectory sets in this manner ignores the fact that these

sets depend on the control policy being used to regulate

the system, and, therefore, neglects the possibility of co-

optimizing their specification with the control policy.

Contribution: We provide a computationally tractable

method to calculate control policies that are guaranteed to

be feasible for constrained decentralized control problems

with nonclassical information structures. Loosely speaking,

the proposed approach seeks to neutralize the nonconvexity

arising from the informational coupling between subsystems

by treating the information-coupling states as disturbances

whose trajectories are “assumed” to take values in a certain

“contract” set. To ensure the satisfaction of this assumption,

we impose a contractual constraint on the control policy

that “guarantees” that the information-coupling states that

it induces indeed belong to said contract set. Naturally,

this approach yields an inner approximation of the original

decentralized control design problem, where the conservatism

of the resulting approximation depends on the specification

of the contract set. To limit the extent of the suboptimality

that may result, we formulate a semi-infinite program to co-

optimize the decentralized control policy with the location,
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scale, and orientation of an ellipsoidal contract set. We

establish a condition on the set of allowable contracts that

facilitates the joint optimization of the control policy and the

contract set via semidefinite programming.

We note that there are several recent papers appearing

in the literature that investigate a similar approach to de-

centralized control design via the co-optimization of control

policies and contract sets [15], [16]. Importantly, the tech-

niques developed in these papers only permit the scaling and

translation of a base contract set when co-optimizing it with

the control policy. To the best of our knowledge, the method

proposed in this paper provides the first systematic approach

to co-optimize the control policy with the location, scale,

and orientation of the contract set, expanding substantially

the family of contracts that can be efficiently optimized over.

Notation: Let R and R+ denote the sets of real and

non-negative real numbers, respectively. Given a collection of

vectors x1, . . . , xN , we let (x1, . . . , xN ) denote their vector

concatenation in ascending order of their indices. Given an

index set J ⊆ {1, . . . , N}, we let xJ denote the vector

concatenation of the vectors xj for j ∈ J in ascending order

of their indices. Given a sequence {x(t)} and time indices

s ≤ t, we let xs:t = (x(s), x(s + 1), . . . , x(t)) denote its

history from time s to time t. Given a block matrix A, we

let [A]ij denote its (i, j)-th block. We denote the trace of a

square matrix A by Tr (A). We denote the Minkowski sum

of two sets S, T ⊆ R
n by S⊕T := {x+y |x ∈ S, y ∈ T }.

II. PROBLEM FORMULATION

A. System Model

Consider a discrete-time, linear time-varying system con-

sisting of N dynamically coupled subsystems whose dynam-

ics are described by

xi(t+ 1) =

N∑

j=1

(Aij(t)xj(t) +Bij(t)uj(t)) + wi(t), (1)

for i = 1, . . . , N . We denote the local state, local input,

and local disturbance associated with each subsystem i at

time t by xi(t) ∈ R
ni

x , ui(t) ∈ R
ni

u , and wi(t) ∈ R
ni

x ,

respectively. The system is assumed to evolve over a finite

time horizon T , and the initial condition is assumed to be

a random vector with known probability distribution. In the

sequel, we will work with a more compact representation of

the full system dynamics given by

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t).

Here, we denote by x(t) := (x1(t), .., xN (t)) ∈ R
nx ,

u(t) := (u1(t), .., uN (t)) ∈ R
nu , and w(t) :=

(w1(t), .., wN (t)) ∈ R
nx the full system state, input, and

disturbance at time t. The dimensions of the system state

and input are given by nx :=
∑N

i=1 n
i
x and nu :=

∑N
i=1 n

i
u,

respectively.

The input and disturbance trajectories are related to the

state trajectory according to

x = Bu + Lw, (2)

where x, u, and w denote the system state, input, and

disturbance trajectories, respectively.1 They are defined by

x := (x(0), . . . , x(T )) ∈ R
Nx , Nx := nx(T + 1), (3)

u := (u(0), . . . , u(T − 1)) ∈ R
Nu, Nu := nuT, (4)

w := (w(−1), w(0), . . . , w(T − 1)) ∈ R
Nx , (5)

where the initial component w(−1) of the system disturbance

trajectory is given by w(−1) = x(0). This notational con-

vention will help simplify the specification of disturbance-

feedback control policies in the sequel.

B. Disturbance Model

We model the disturbance trajectory w as a zero-mean

random vector whose support is an ellipsoid given by

W :=
{
z ∈ R

Nx

∣∣ z⊤Σ−1z ≤ 1
}
, (6)

where the shape parameter Σ ∈ R
Nx×Nx is assumed to be

symmetric and positive definite. We let M := E[ww⊤] de-

note the second moment matrix of the disturbance trajectory

w. The matrix M is guaranteed to be positive definite and

finite-valued, as the support of w is assumed to be an ellipsoid

with a non-empty interior.

C. System Constraints

We consider a general family of polyhedral constraints on

the state and input trajectories of the form

Fxx+ Fuu+ Fww ≤ g ∀w ∈ W , (7)

where Fx ∈ R
m×Nx , Fu ∈ R

m×Nu , Fw ∈ R
m×Nx , g ∈

R
m are assumed to be given. Note that such constraints may

couple states and inputs across subsystems and time periods.

D. Information Structure

We consider information structures that are specified ac-

cording to sparsity constraints on the state measurements

that each controller has access to. Specifically, we encode

the pattern according to which information is shared between

subsystems with a directed graph GI = (V,EI), which we

refer to as the information graph of the system. Here, the

vertex set V = {1, . . . , N} assigns a distinct vertex i to

each subsystem i. Additionally, we include the directed edge

(i, j) ∈ EI if and only if subsystem j has access to subsystem

i’s local state at each time t. We let V −
I (i) denote the in-

neighborhood of each subsystem i ∈ V in the information

graph GI .

Each subsystem is assumed to have access to the entire

history of its local information up until and including time t.
More formally, we define the local information available to

each subsystem i at time t as

zi(t) := {x0:t
j | (j, i) ∈ EI}. (8)

The local control input to each subsystem i is restricted to be

a causal function of its local information. That is, the local

input to subsystem i at time t is of the form

ui(t) = γi(zi(t), t), (9)

1The matrices B and L are specified in Appendix A.



where γi(·, t) is a measurable function of the local informa-

tion zi(t). We define the local control policy for subsystem

i as γi := (γi(·, 0), . . . , γi(·, T − 1)). We refer to the

collection of local control policies γ := (γ1, . . . , γN ) as the

decentralized control policy, which relates the state trajectory

x to the input trajectory u according to u = γ(x). Finally,

we let Γ denote the set of all decentralized control policies

respecting the information constraints encoded in Eq. (9).

E. Decentralized Control Design

We consider the following family of constrained decentral-

ized control design problems:

minimize E
[
x⊤Rxx+ u⊤Ruu

]

subject to γ ∈ Γ

u = γ(x)

x = Bu + Lw

Fxx+ Fuu+ Fww ≤ g




∀w ∈ W .

(10)

Here, the cost matrices Rx ∈ R
Nx×Nx and Ru ∈ R

Nu×Nu

are assumed to be symmetric and positive semidefinite.

The tractability of the decentralized control design problem

(10) depends on the nature of the information structure. In

particular, if the information structure is partially nested,

then problem (10) can be equivalently reformulated (via the

Youla parameterization) as a convex program in the space

of disturbance feedback policies [17]. If, on the other hand,

the information structure is nonclassical (i.e., not partially

nested), then problem (10) is known to be computationally

intractable, in general [2], [18], [19].

III. INFORMATION DECOMPOSITION

The primary difficulty in solving decentralized control

design problems stems from the informational coupling that

emerges when a subsystem’s local information is affected

by prior control actions that it cannot access or reconstruct.

With the aim of isolating the effects of these actions on the

information available to each subsystem, we propose an in-

formation decomposition that partitions the local information

available to each subsystem into a partially nested subset (i.e.,

an information subset that is unaffected by control actions

previously applied to the system) and its complement. This

information decomposition enables an equivalent reformula-

tion of the decentralized control design problem where the

control policy is expressed as an explicit function of the

system disturbance and the so called information-coupling

states. This reformulation will serve as the foundation for

the contract-based approach to decentralized control design

proposed in Section IV.

A. Decomposition of Local Information

We decompose the local information available to each

subsystem according to a partition of its in-neighbors in the

information graph GI . More specifically, for each subsystem

i ∈ V , we let

N (i) ⊆ V −
I (i)

denote the set of in-neighboring subsystems whose local state

measurements contain information that is unaffected by the

prior control actions of any subsystem. This requirement is

satisfied if the local information of subsystem i is such that

it permits the reconstruction of all states and control actions

directly affecting the local states of all subsystems belonging

to N (i). We denote the complement of this set by C(i) :=
V −
I (i) \ N (i) for each subsystem i ∈ V .

With the goal of providing an explicit characterization of

these sets, we first provide a characterization of the physical

coupling between different subsystems as reflected by the

block sparsity patterns of the system matrices A and B. We

describe this coupling in terms of a pair of directed graphs,

GA := (V,EA) and GB := (V,EB), whose edge sets are

defined according to

EA := {(j, i) ∈ V × V | ∃t = 0, . . . , T − 1 s.t. Aij(t) 6= 0},

EB := {(j, i) ∈ V × V | ∃t = 0, . . . , T − 1 s.t. Bij(t) 6= 0}.

We let V −
A (i) and V −

B (i) denote the in-neighborhoods asso-

ciated with each node i ∈ V in GA and GB , respectively.

Building on these representations, we have the following

definition that formalizes the class of information decompo-

sitions considered in this paper. For each subsystem i ∈ V ,

define the set

N (i) := {j ∈ V −
I (i) | (11), (12) are satisfied},

where the above conditions are given by

V −
A (j) ⊆ V −

I (i) (11)

and
⋃

k∈V −

B
(j)

V −
I (k) ⊆ V −

I (i). (12)

Condition (11) requires that subsystem i has access to all

states that directly affect subsystem j’s state through the

system dynamics. Condition (12) requires that subsystem

i has access to the local information of each subsystem

whose control actions directly affect subsystem j’s state. This

ensures that subsystem i is able to reconstruct all control

actions that directly affect subsystem j’s state. Collectively,

conditions (11) and (12) can be interpreted as a requirement

on the local nesting of information, in the sense that if

j ∈ N (i), then subsystem i is assumed to have access to

all states and control actions that directly affect subsystem

j’s state through the state equation. As a result, subsystem

i can explicitly reconstruct the local disturbance wj(t − 1)
acting on any subsystem j ∈ N (i) based only on its local

information zi(t) as follows:

wj(t− 1) = xj(t)−
∑

k∈V −

A
(j)

Ajk(t− 1)xk(t− 1)

−
∑

k∈V −

B
(j)

Bjk(t− 1)uk(t− 1).

The local states of subsystems not belonging to N (i),
on the other hand, may contain information that can be

influenced by prior control actions. We refer to these states



as the information-coupling states associated with subsystem

i at time t, denoting them by xC(i)(t) where

C(i) := V −
I (i) \ N (i).

The collection of information-coupling states across all sub-

systems are denoted by the xC(t) ∈ R
nC

x , where

C :=
⋃

i∈V

C(i). (13)

The trajectory of information-coupling states is denoted by

xC := (xC(0), . . . , xC(T )) ∈ R
NC

x ,

where NC
x := nC

x(T + 1). Finally, it will be notationally

convenient to express the mapping from the state trajectory

x to its subvector xC in terms of the projection operator ΠC :
R

Nx → R
NC

x , where xC = ΠCx.

Remark 1 (Partially Nested Information). It can be shown

that the given information structure is partially nested if and

only if the set of information coupling states is empty, i.e.,

C = ∅. It is well known that such information structures

permit the equivalent reformulation of problem (10) as a

convex optimization problem in the space of disturbance-

feedback control policies.

B. Control Input Reparameterization

The proposed information decomposition suggests a nat-

ural reparameterization of the control policy in terms of the

following equivalent information set.

Lemma 1 (Equivalence of Information). Define the informa-

tion set ζi(t) according to

ζi(t) := {x0:t
j |j ∈ C(i)} ∪ {w−1:t−1

j |j ∈ N (i)}.

The sets zi(t) and ζi(t) are functions of each other for each

subsystem i and time t.

The proof of Lemma 1 is omitted, as it mirrors that of

[20, Lemma 1]. Lemma 1 suggests the following equivalent

reparameterization of the local control input:

ui(t) = φi(ζi(t), t), (14)

where φi(·, t) is a measurable function of its arguments. We

let φi := (φi(·, 0), . . . , φi(·, T − 1)) and φ := (φ1, . . . , φN )
denote the reparameterized control policy associated with

each subsystem i ∈ V and the full system, respectively. With

a slight abuse of notation, we express the input trajectory

induced by the reparameterized control policy φ as

u = φ(w, xC).

Finally, we denote by Φ the set of reparameterized decentral-

ized control policies that respect the information constraints

encoded in Eq. (14).

The reparameterization of the control input according to

Eq. (14) results in the following equivalent reformulation of

the original decentralized control problem (10):

minimize E
[
x⊤Rxx+ u⊤Ruu

]

subject to φ ∈ Φ

u = φ(w, xC)

x = Bu+ Lw

Fxx+ Fuu+ Fww ≤ g




∀w ∈ W .

(15)

Clearly, problem (15) remains nonconvex, in general, if the

set of information-coupling subsystems is nonempty, i.e., C 6=
∅. In Section IV, we construct a convex inner approximation

to problem (15) where the information-coupling states are

assumed to behave as disturbances with bounded support,

and the control policy is constrained in a manner that ensures

the consistency between the assumed and actual behaviors of

the information-coupling states.

IV. DECENTRALIZED CONTROL DESIGN VIA CONTRACTS

In this section, we construct a convex inner approximation

of the decentralized control design problem (15) via the

introduction of an assume-guarantee contractual constraint on

the information-coupling states xC . We do so by introducing

a surrogate information structure in which the information-

coupling states are modeled as fictitious disturbances that are

“assumed” to take values in a “contract” set. To “guarantee”

the satisfaction of this assumption, we impose a contractual

constraint on the control policy requiring that the actual

information-coupling states induced by the control policy

belong to the contract set. Given a fixed contract set, the

resulting problem is a convex disturbance-feedback control

design problem, whose feasible policies are guaranteed to be

feasible for problem (15).

A. Surrogate Information

We associate a fictitious disturbance vi(t) ∈ R
ni

x with

each subsystem i ∈ V and time t = 0, . . . , T . We let

v ∈ R
Nx denote the corresponding fictitious disturbance

trajectory induced by these individual elements, which we

model as a random vector whose support V ⊂ R
Nx is

assumed to be a convex and compact set. We also assume

that the fictitious disturbance trajectory v is independent of

the system disturbance trajectory w.

Letting the collection of fictitious disturbances serve as

surrogates for the information-coupling states, we define the

surrogate local information for subsystem i as

ζ̃i(t) := {v0:tj |j ∈ C(i)} ∪ {w−1:t−1
j |j ∈ N (i)}.

Given a decentralized control policy φ ∈ Φ, the surrogate

local information induces a surrogate control input for each

subsystem i defined according to

ũi(t) := φi(ζ̃i(t), t).

Additionally, the surrogate input trajectory induced by the

surrogate information structure is given by

ũ := φ(w, vC),

where vC := ΠCv.



B. Surrogate Dynamics

The treatment of the information coupling states as fic-

titious disturbances induces a surrogate system state that

evolves according to the following surrogate state equation:

x̃i(t+ 1) =
∑

j∈V \C(i)

Aij(t)x̃j(t) +
∑

j∈C(i)

Aij(t)vj(t)

+

N∑

j=1

Bij(t)ũj(t) + wi(t), (16)

where x̃i(t) denotes the surrogate state of subsystem i at

time t. We require that the initial condition of the surrogate

system equal that of the true system, i.e., x̃i(0) = xi(0) for

each subsystem i. Moving forward, it will be convenient to

express the surrogate state dynamics in terms of trajectories

as follows:

x̃ = B̃ũ+ L̃w + H̃vC , (17)

where the matrices B̃, L̃, and H̃ are defined in Appendix A.

We close this subsection with a lemma that establishes

conditions for the equivalence between the surrogate and

actual state trajectories. We omit the proof, as it directly

follows from the definition of the surrogate state equation

(17).

Lemma 2. Let u ∈ R
Nu and w ∈ R

Nx . It holds that x =
Bu+ Lw if and only if x = B̃u+ L̃w + H̃xC .

C. Assume-Guarantee Contracts

Thus far, we have treated the information-coupling states

as fictitious disturbances that are assumed to take values in

a given set VC . Leveraging on concepts grounded in assume-

guarantee reasoning [21], [22], we guarantee the satisfaction

of this assumption by imposing a contractual constraint on

the control policy, which ensures that it induces information-

coupling states that belong to VC . We formalize the notion

of an assume-guarantee contract in the following definition.

Definition 1 (Assume-Guarantee Contract). A control policy

φ ∈ Φ is said to satisfy the assume-guarantee contract

speficied in terms of the contract set VC ⊆ R
NC

x if

ΠC x̃ ∈ VC ∀ (w, vC) ∈ W × VC ,

where x̃ = B̃φ(w, vC) + L̃w + H̃vC .

Here, the set VC is referred to as a contract set, as it

specifies the set that the information-coupling states are

both assumed and required to belong to. The satisfaction

of the assume-guarantee contract guarantees that the sur-

rogate information-coupling states x̃C := ΠCx̃ belong to

the contract set. In the following lemma, we show that the

actual information-coupling states that result under the policy

u = φ(w, xC) are guaranteed to belong to the contract set if

the assume-guarantee contract is satisfied.

Lemma 3. Let φ ∈ Φ be a control policy that satisfies the

assume-guarantee contract specified in terms of the contract

set VC ⊆ R
NC

x . It follows that ΠCx ∈ VC for all w ∈ W ,

where x = Bφ(w, xC) + Lw.

The proof of Lemma 3 is omitted due to space constraints.

In the following proposition, we provide an inner approxima-

tion of the decentralized control design problem (15) via the

introduction of an assume-guarnatee contractual constraint.

Its proof is omitted, as it follows directly from Lemma 3.

Proposition 1. Let φ ∈ Φ be a feasible control policy for

the following problem:

minimize E
[
x̃⊤Rxx̃+ ũ⊤Ruũ

]

subject to φ ∈ Φ

ũ = φ(w, vC)

ΠCx̃ ∈ VC

x̃ = B̃ũ+ L̃w + H̃vC
Fxx̃+ Fuũ+ Fww ≤ g





∀(w, vC) ∈ W × VC ,

(18)

It follows that φ is also feasible for problem (15).

Problem (18) is a convex disturbance feedback control

design problem, given a fixed contract set VC . The choice

of the contract set does, however, play an important role in

determining the performance of the control policies that it

gives rise to. In Section V, we develop a systematic approach

to enable the joint optimization of the contract set with the

control policy via semidefinite programming.

V. POLICY-CONTRACT OPTIMIZATION

In this section, we provide a semidefinite programming-

based method to co-optimize the design of the decentralized

control policy together with the contract set that constrains

its design. As part of the proposed approach, we consider

a restricted family of control policies that are affinely pa-

rameterized in both the disturbance and fictitious disturbance

histories. We also parameterize the fictitious disturbance

process as a causal affine function of a given (primitive)

disturbance process—an approach that is similar in nature

to the class of parameterizations that have been recently

studied in the context of robust optimization with adjustable

uncertainty sets [23]. As one of our primary results in this

section, we identify a structural condition on the family of

allowable contract sets that permits the inner approximation

of the resulting policy-contract optimization problem as a

semidefinite program.

A. Affine Control Policies

We restrict our attention to affine decentralized

disturbance-feedback control policies of the form

ũi(t) = uo
i (t) +

∑

j∈N (i)

t−1∑

s=−1

Qw
ij(t, s+ 1)wj(s)

+
∑

j∈C(i)

t∑

s=0

Qv
ij(t, s)vj(s), (19)

for t = 0, . . . , T − 1 and i = 1, . . . , N . Here, uo
i (t) denotes

the open-loop control input, and the matrices Qw
ij(t, s + 1)

and Qv
ij(t, s) denote the feedback control gains. The affine



control policy specified in Eq. (19) can be expressed in terms

of trajectories as

ũ = uo +Qww +Qvv, (20)

where the gain matrices Qw and Qv are both T × (T + 1)
block matrices, whose (t, s)-th block is defined according to

[Qw(t, s)]ij =

{
Qw

ij(t, s) if j ∈ N (i) and t ≥ s,

0 otherwise,
(21)

[Qv(t, s)]ij =

{
Qv

ij(t, s) if j ∈ C(i) and t ≥ s,

0 otherwise.
(22)

for i, j = 1, . . . , N . We let QN and QC denote the matrix

subspaces respecting the block sparsity patterns specified

according to Eqs. (21) and (22), respectively.

B. Affine Parameterization of the Fictitious Disturbance

We focus our analysis on fictitious disturbances that are

expressed according to affine transformations of a primitive

disturbance. Such a parameterization yields contract sets that

have adjustable location, scale, and orientation. Specifically,

we let the random vector ξ denote the primitive disturbance

trajectory, which is assumed to be an i.i.d. copy of the sys-

tem disturbance trajectory w. We parameterize the fictitious

disturbance trajectory affinely in the primitive disturbance as

v := v + Zξ. (23)

Here, the parameters v ∈ R
Nx and Z ∈ R

Nx×Nx can be

adjusted to control the shape of the resulting contract set VC ,

which takes the form of

VC = ΠC (v ⊕ ZW) . (24)

Throughout the paper, we will restrict our attention to trans-

formations (23) in which the matrix parameter Z is both

lower triangular and invertible. We denote the set of all such

matrices by Z ⊂ R
Nx×Nx .

The specification of the fictitious disturbance according to

Eq. (23) induces the following the surrogate control input:

ũ = uo +Qvv +Qww +QvZξ. (25)

We eliminate the bilinear terms in Eq. (25) through the

following the change of variables:

u := uo +Qvv and Qξ := QvZ. (26)

This change of variables gives rise to a reparameterization of

the surrogate input trajectory as

ũ = u+Qww +Qξξ, (27)

where the matrix Qξ ∈ R
Nu×Nx must satisfy the sparsity

constraint

QξZ−1 ∈ QC

in order to ensure the satisfaction of the original sparsity

constraint that Qv ∈ QC .

The parameterization of the contract set and control policy

in this manner permits their co-optimization as follows:

minimize E
[
x̃⊤Rxx̃+ ũ⊤Ruũ

]

subject to Qw ∈ QN , Qξ ∈ R
Nu×Nx , Z ∈ Z

u ∈ R
Nu, v ∈ R

Nx ,

QξZ−1 ∈ QC

v = v + Zξ

ũ = u+Qww +Qξξ

x̃ = B̃ũ+ L̃w + H̃vC
ΠCx̃ ∈ ΠC (v ⊕ ZW)

Fxx̃+ Fuũ+ Fww ≤ g





∀(w, ξ) ∈ W2,

(28)

where W2 := W × W . Problem (28) is a nonconvex

semi-infinite program, where the nonconvexity is due to the

sparsity constraint on the matrix QξZ−1 and the contractual

constraint on the affine control policy. In what follows, we

provide convex inner approximations of these constraints,

which yield an inner approximation of problem (28) as a

semidefinite program.

C. Restricting the Contract Set

In what follows, we introduce an additional restriction on

the set of allowable matrix parameters Z that guarantees the

invariance of the subspace QC under multiplication by such

matrices. This permits the equivalent reformulation of the

bilinear constraint QξZ−1 ∈ QC as Qξ ∈ QC .

Specifically, we require that the matrix Z be of the form

Z = λI − Y, (29)

where λ ≥ 1 is scalar parameter and Y ∈ R
Nx×Nx is a

(T + 1) × (T + 1) strictly block lower triangular matrix of

the form

Y =




0

Y (1, 0) 0
...

. . .
. . .

Y (T, 0) · · · Y (T, T − 1) 0


 . (30)

Furthermore, each block of the matrix Y is an N ×N block

matrix, whose (i, j)-th block is of dimension ni
x × nj

x. We

impose an additional restriction on the structure of the matrix

Y in the form of sparsity constraints (that reflect the pattern

of informational coupling between subsystems) on each of

its blocks.

More specifically, we encode the pattern of informational

coupling between subsystems according to a directed graph

GC := (V,EC), whose directed edge set EC is defined as

EC := {(j, i) ∈ EI | j ∈ C(i)}.

We let V +
C (i) denote the out-neighborhood of a node i ∈ V

in the graph GC . Using this graph, we impose a sparsity

constraint on each block of the matrix Y of the form:

[Y (t, s)]ij = 0 if V +
C (i) * V +

C (j) (31)



for all i, j = 1, . . . , N , and t, s = 0, . . . , T . We let Y(GC)
denote the subspace of all matrices that respect the sparsity

constraints implied by Eqs. (30) and (31).

We have the following result establishing the invariance

of the subspace QC under multiplication by matrices Y ∈
Y(GC).

Lemma 4. If Q ∈ QC and Y ∈ Y(GC), then QY ∈ QC

Proof: The sparsity constraint QY ∈ QC is satisfied if the

matrix Q(t, s)Y (s, r) satisfies the sparsity constraint

[Q(t, s)Y (s, r)]ij = 0 ∀i /∈ V +
C (j)

for all times r, s, t satisfying 0 ≤ r < s ≤ t ≤ T − 1.

We prove this claim by showing that [Q(t, s)Y (s, r)]ij 6= 0
implies i ∈ V +

C (j). The condition that [Q(t, s)Y (s, r)]ij 6= 0
implies that there exists k ∈ V such that the blocks

[Q(t, s)]ik and [Y (s, r)]kj are both nonzero. The fact that

[Q(t, s)]ik is nonzero implies that i ∈ V +
C (k), as the matrix Q

satisfies Q ∈ QC . The fact that [Y (s, r)]kj is nonzero implies

that V +
C (k) ⊆ V +

C (j), as the matrix Y satisfies Y ∈ Y(GC).
The desired result follows. �

We have the following result as an immediate consequence

of Lemma 4.

Lemma 5. Let Y ∈ Y(GC) and λ ∈ [1,∞). It follows that

QC =
{
Qξ(λI − Y )−1 |Qξ ∈ QC

}
.

It follows from Lemma 5 that the constraint QξZ−1 ∈ QC

is equivalent to Qξ ∈ QC if Z = λI−Y , where Y ∈ Y(GC)
and λ ≥ 1.

D. Semidefinite Programming Approximation

To lighten notation, we write the surrogate state trajectory

x̃ more compactly as

x̃ = x+ Pww + P ξξ,

where x := B̃u + H̃ΠCv, Pw := B̃Qw + L̃, and P ξ :=
B̃Qξ + H̃ΠC(λI − Y ).

We first address the robust linear constraints in prob-

lem (28). The following result provides an equivalent re-

formulation as second-order cone constraints. Its proof is

omitted, as it is an immediate consequence of the identity

supw∈W c⊤w = ‖Σ1/2c‖2 for all c ∈ R
Nx .

Lemma 6. The semi-infinite constraint Fxx̃+Fuũ+Fww ≤
g for all (w, ξ) ∈ W2 is satisfied if and only if

∥∥∥Σ1/2e⊤i (FxP
w + FuQ

w + Fw)
∥∥∥
2

+
∥∥∥Σ1/2e⊤i (FxP

ξ + FuQ
ξ)
∥∥∥
2

≤ e⊤i (g − Fxx− Fuu), i = 1, . . . ,m, (32)

where ei is the ith standard basis vector in R
m.

We now address the nonconvexity that stems from the

contractual constraint in problem (28). First, notice that

the contractual constraint is equivalent to the following set

containment constraint

ΠC

(
x⊕ PwW ⊕ P ξW

)
⊆ ΠC (v ⊕ ZW) . (33)

The set containment constraint (33) amounts to requiring that

the Minkowski sum of two ellipsoids be contained within

another ellipsoid. It follows from [24][Theorem 4.2] that this

class of set containment constraints can be approximated

from within by a quadratic matrix inequality. Through an

application of Schur’s Lemma, one can approximate the

resulting quadratic matrix inequality from within by a linear

matrix inequality. We summarize the resulting inner approx-

imation in the following lemma.

Lemma 7. The set containment constraint (33) is satisfied if

there exists a scalar β ∈ [0, λ] such that

ΠC (x− v) = 0, (34)

ΠCΣ̃Π

⊤
C ΠCP

w ΠCP
ξ

Pw⊤Π⊤
C βΣ−1 0

P ξ⊤Π⊤
C 0 (λ− β)Σ−1


 � 0, (35)

where Σ̃ = λΣ− Y Σ− ΣY ⊤.

By applying Lemmas 5–7, one can approximate the non-

convex semi-infinite program (28) from within as the follow-

ing finite-dimensional semidefinite program.

Proposition 2. Each feasible solution to the following

semidefinite program is feasible for problem (28):

minimize Tr
(
P ξ⊤RxP

ξM + Pw⊤RxP
wM

)

+Tr
(
Qw⊤RuQ

wM +Qξ⊤RuQ
ξM

)

+ x⊤Rxx+ u⊤Ruu

subject to Qw ∈ QN , Qξ ∈ QC , Y ∈ Y(GC),

u ∈ R
Nu , v, x ∈ R

Nx , λ, β ∈ R+,

Pw, P ξ ∈ R
Nx×Nx ,

λ ≥ max{1, β},

x = B̃u+ H̃ΠCv

Pw = B̃Qw + L̃

P ξ = B̃Qξ + H̃ΠC(λI − Y )

(32), (34), (35).
(36)

The decision variables for problem (36) are the matrices

Qw, Qξ, Y , Pw, P ξ, the vectors u, v, x, and the scalars

λ and β. Problem (36) is a convex inner approximation

of the reformulated decentralized control design problem

(15), in the sense that each feasible solution of problem

(36) can be mapped to a feasible affine control policy for

problem (15) via the change of variables specified in (26).

The decentralized control policies that this approximation

gives rise to are suboptimal, in general. Bounds on their

suboptimality, however, can be efficiently calculated using

information-based convex relaxations [25].

VI. CONCLUSION

We provide a method to compute feasible control policies

for constrained decentralized control design problems by

leveraging on the concept of assume-guarantee contracts.



At the heart of this approximation is the treatment of

information-coupling states as fictitious disturbances that are

“assumed” to take values in a contract set. We “guaran-

tee” the inclusion of the information-coupling states in the

contract set by imposing an assume-guarantee contractual

constraint on the control policy. The introduction of such

assume-guarantee contracts gives rise to an inner approxi-

mation of the decentralized control design problem, whose

quality depends on the specification of the contract set. We

provide a method of co-optimizing the decentralized control

policy with the location, scale, and orientation of the contract

set via semidefinite programming.
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APPENDIX A

MATRIX DEFINITIONS

Define the matrices Ã(t) and H̃(t) according to

Ãij(t) =

{
Aij(t) if j ∈ V \ C(i),

0 otherwise,

H̃ij(t) = Aij(t)− Ãij(t),

where i, j ∈ V . The matrices (B,L) in Eq. (2) and the

matrices (B̃, L̃) in Eq. (17) are defined according to

B :=




0

A1
1B(0) 0

A2
1B(0) A2

2B(1) 0
...

. . .
. . .

...
. . . 0

AT
1 B(0) AT

2 B(1) · · · · · · AT
TB(T − 1)




,

B̃ :=




0

Ã1
1B(0) 0

Ã2
1B(0) Ã2

2B(1) 0
...

. . .
. . .

...
. . . 0

ÃT
1 B(0) ÃT

2 B(1) · · · · · · ÃT
TB(T − 1)




,

L :=




A0
0

A1
0 A1

1
...

. . .

AT
0 AT

1 · · · AT
T


 , L̃ :=




Ã0
0

Ã1
0 Ã1

1
...

. . .

ÃT
0 ÃT

1 · · · ÃT
T



,

where At
s :=

∏t−1
r=s A(r) and Ãt

s :=
∏t−1

r=s Ã(r) for s < t,

and At
t = Ãt

t = I . Additionally, the matrix H̃ in Eq. (17) is

defined as H̃ := HΠ⊤
C , where

H :=




0

Ã1
1H̃(0) 0

Ã2
1H̃(0) Ã2

2H̃(1) 0
...

. . .
. . .

...
. . . 0

ÃT
1 H̃(0) ÃT

2 H̃(1) · · · · · · ÃT
T H̃(T − 1) 0




.
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