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Abstract— In this paper, the following question is addressed:
given a linear assignment problem, how much can the all of the
individual assignment weights be perturbed without changing
the optimal assignment? The extension of results involving
perturbations in just one edge or one row/column are presented.
Algorithms for the derivation of these bounds are provided. We
also show how these bounds may be used to prevent assignment
churning in a multi-vehicle guidance scenario.

I. INTRODUCTION

Task assignment is a fundamental part of multi-agent
control. Here we represent task assignment optimization
over a weighted bipartite graph, with agents and tasks as
vertices and assignments as edges. The objective function
may be minimum completion time of all tasks, minimum
total fuel usage, balanced completion times, or any of a
multitude of other choices [1]. For many applications, the
edge weights that are parameters in the objective are uncer-
tain. Uncertainties may be due to sensor measurement errors,
finite difference estimation, or quantization in calculation or
communication. By studying which perturbations the optimal
assignment is invariant to, we characterize the uncertainty in
edge weights that can be tolerated, and when the optimal
assignment with the noisy measurements is optimal with
respect to the ground truth.

The terms robustness of the assignment will be used
frequently throughout this paper. Similar analyses may use
terms such as “sensitivity” [2], “stability” [3], or “post-
optimality” [4] of optimisation problems. These all explore
how the set of optimizers or optimal cost change as the
problem parameters are varied. The different definitions of
sensitivity analysis are covered in [5], as well as some prac-
tical applications of sensitivity analysis for linear programs.
Due to the additional constraints and particular structure
of assignments problems compared to a standard linear
program, we focus on which perturbations to the problem
parameters the optimal assignment is invariant to, “Type
2 Sensitivity Analysis” [5]. The robustness or sensitivity
of the assignment problem in this paper refers to intervals
within which the edge weights can vary without changing
the optimal assignment.

We focus on the robustness of the linear assignment
problem (LAP). The LAP minimizes the sum of all edge
weights in an assignment, i.e. finds the matching of agents to
tasks which minimizes the total cost. The linear assignment
problem has many and diverse applications. For example,
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finding maximum flow within a network [6], lower bound-
ing solutions to the quadratic assignment problem [7], and
maximum a-posteriori data association for object tracking
[8].

In this paper we focus on understanding which perturba-
tions the optimal assignment is robust to. However, in some
applications, it is preferable to find a potentially sub-optimal
assignment which is less sensitive to perturbation. For linear
assignment, [10] provides an algorithm with guaranteed
robustness to uncertainty in a subset of the parameters.
Similarly, but for the bottleneck assignment problem, [11]
provides robustness to weights within predefined intervals,
as well as complexity improvements on similar bottleneck
assignment algorithms. However, these papers necessarily
sacrifice optimality for robustness. We focus on applications
that involve quantifying the robustness of the optimal assign-
ment.

Previous work in assignment problem sensitivity has been
restricted to perturbations in one or a small subset of edges.
The sensitivity of the linear assignment problem to perturba-
tions in a single edge weight perturbation is covered by [12]
and [13]. Robustness to coupled perturbations in the weight
of all edges incident on a vertex (one ”row” or ”column” of
edge weights) is investigated in [2] and [14]. In a multi-agent
scenario, with weights as distances for example, this could
be interpreted as an error in the state of an agent or a task,
causing a coupled error in the weights of all edges incident
on that agent or task. Most relevant to the work presented
here for the LAP, [15] examines robustness of all weights
under uniform perturbation, and proves complexity results.
A similar analysis to the one provided is presented in [9],
however for the bottleneck assignment problem.

The contribution of this work is to allow perturbations in
all edge weights, without coupling. That is, each weight may
be perturbed individually and independently. This coincides
with the work done in [15] for the minimal sensitivity
edge. However, the results of [15] are conservative for all
other edges. In other work, such as [2] [14], simultaneous
perturbation is only considered in edges sharing a common
vertex. These cannot be co-assigned due to the assign-
ment constraints, and thus extend the single edge results
to considering a subset of edges. However, in the case of
the linear assignment problem, the changing of an edge
weight effects all assignments, in terms of relative cost.
We provide algorithms which compute the sensitivity for
a given weighted bipartite graph, and discuss the compu-
tational complexities. With these algorithms, we formulate
a set of sufficient conditions with which an assignment
made on noisy measurements can be proved to be optimal
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despite the noise. The results are used to mitigate the effects
of “assignment churning” [16] in a multi-vehicle guidance
application. The paper is organized as follows. Section II
is devoted to background on the assignment problem and
a formal definition of robustness. Section III shows that a
single allowable perturbation can be extended to a set of
allowable perturbations. In Section IV we show how to find
an allowable perturbation. Section V motivates and defines a
recursive application of the algorithm provided in Section IV.
The example case of assignment churning is covered in
Section VI, and Section VII concludes.

II. PROBLEM FORMULATION

Define a bipartite graph G = (V, E) along with a set of
weights W over which the LAP is solved. Let the set of
vertices V = VA ∪ VT be such that VA ∩ VT = ∅, with the
edge set E ⊆ VA × VT , and edge weights W = {wij ∈ R |
(i, j) ∈ E}. The vertices VA and VT represent the agents and
tasks respectively. Without loss of generality we may assume
there are not more tasks than agents, i.e., |VA| ≥ |VT |. Also
define the assignment as a set of binary decision variables
Π = {πij ∈ {0, 1} | (i, j) ∈ E}. The linear assignment
problem can be formulated as

min
Π

∑
(i,j)∈E

πijwij (1a)

s.t.
∑
i∈VA

πij = 1, j ∈ VT , (1b)∑
j∈VT

πij ≤ 1, i ∈ VA. (1c)

If πij = 1, then we say that that edge (i, j) is assigned
or vertex i is assigned to vertex j. Constraints (1b) and (1c)
ensure that every agent is assigned to either one or zero other
tasks and that every task is assigned to one agent. The cost
of an assignment Π can be written as

f(W,Π) =
∑

(i,j)∈E

πijwij . (2)

There are many algorithms to solve the LAP, such as
the Hungarian Algorithm [17], the JV algorithm [18], or
Bertsekas’ auction algorithm [19]. In this paper we assess
the robustness of the optimal assignment, independent of the
algorithm used to solve (1). Define the mapping LAP (G,W)
which takes a weighted bipartite graph and returns the opti-
mizer of (1). If there are multiple equivalent optimal assign-
ments, LAP (G,W) returns the set of optimal assignments.
In this paper we assume that the initial optimal assignment
is unique, as the presence of degeneracy in the beginning
significantly complicates the discussion. Degeneracy in the
initial assignment will be studied in future work.

Let ∆ := {δij | (i, j) ∈ E} be a set of scalar edge weight
perturbations. For convenience, we also define the addition
of the set of perturbations to the set of edge weights

W + ∆ := {wij + δij | (i, j) ∈ E}.

We now define robustness, and the concept of an allowable
perturbation.

Definition 1. Define ∆ to be an additive perturbation
to the set of edge weights W . If the optimal assignment
Π∗ ∈ LAP (G,W) is invariant to the addition of ∆, i.e.,
Π∗ ∈ LAP (G,W+∆), then ∆ is an allowable perturbation.
Equivalently, Π∗ ∈ LAP (G,W) is robust to the perturbation
∆.

With this definition of robustness, the problem addressed
in this paper can be stated as follows

Problem. Given a bipartite graph G, weights W , with
optimal assignment Π∗ ∈ LAP (G,W), characterize a set
Λ such that if ∆ ∈ Λ then ∆ is an allowable perturbation.

III. INTERVAL BOUND

We first show that if we have found an allowable per-
turbation ∆, the linearity of the cost function allows us to
construct an entire set of allowable perturbations based on
∆.

Theorem 1. Let Π∗ ∈ LAP (G,W), and let ∆ = {δij |
(i, j) ∈ E} be an allowable perturbation as in Definition 1.
Define another perturbation ∆′ = {δ′ij | (i, j) ∈ E} such
that

δ′ij ≤ δij ∀ (i, j) : π∗ij = 1, (3)

δ′ij ≥ δij ∀ (i, j) : π∗ij = 0. (4)

Then ∆′ is an allowable perturbation.

Proof. We will show that any perturbation ∆′ which sat-
isfies (3) and (4) can be represented as the sum of the
perturbation ∆ and ∆′′, which are both allowable. By the
linearity of the cost function then, we conclude that ∆′ is
allowable.

Let ∆′′ = {δ′ij − δij | (i, j) ∈ E}. By the linearity of the
cost function (1a),

f(W + ∆′,Π∗) = f(W + ∆,Π∗) + f(∆′′,Π∗). (5)

By assumption, ∆ is an allowable perturbation. In other
words, for Π∗ the optimizing assignment over the graph G
with weightsW , Π∗ is an optimizing assignment for weights
W+∆. Additionally, by construction, δ′′ij is non-positive for
all assigned edges in Π∗ and non-negative for all unassigned
edges in Π∗. Therefore,

f(∆′′,Π∗) ≤ f(∆′′,Π) ∀ Π

In other words, no other assignment will have a experi-
ence/have a greater reduction in cost than Π∗. Therefore,
as both terms on the right hand side of (5) are minimized
by assignment Π∗, Π∗ is the minimizer over the graph with
weights perturbed by ∆′, i.e. ∆′ is an allowable perturba-
tion.

Intuitively, Theorem 1 demonstrates that any perturbation
which only reduces the weight of edges in the optimal
assignment and increases the weight of edges not in the



optimal assignment is an allowable perturbation. Using the
theorem, any allowable perturbation ∆ defines a set Λ∆ of
perturbations which the graph is also robust to.

Example 1. Consider a scenario with |VA| = |VT | = 3 and
E = VA × VT . The weight set W is represented by a cost
matrix C, where wij is the ijth element. This is a convenient
representation and will be used for the rest of the paper.

C =

91 33 15
5 86 92
85 9 42

 .
The edges assigned in the optimal matching Π∗ over this
cost matrix are (2, 1), (3, 2), (1, 3) with cost f(Π∗,W) = 29.
Trivially, the graph is robust to a perturbation of 0 to each
edge ∆ := {0 | (i, j) ∈ E}. Using Theorem 1, this set
of perturbations can be interpreted as a set of intervals as
shown in Table I.

TABLE I
TRIVIAL PERTURBATION INTERVALS

[0,∞) [0,∞) (−∞, 0]
(−∞, 0] [0,∞) [0,∞)
[0,∞) (−∞, 0] [0,∞)

By Theorem 1, any other weight perturbation ∆′ whose
elements are within the intervals shown in Table I is allow-
able.

IV. CONSTRUCTION OF ALLOWABLE PERTURBATION

In the previous section we showed that an allowable
perturbation can be interpreted as a bound on a set of
allowable perturbations. However, this does not provide us
with a method of constructing an allowable perturbation.
In order to construct an allowable perturbation, we expand
on the element-wise results derived in [4] where a similar
question of robustness to perturbations in a single edge
weight are considered. For an edge (a, b) ∈ E , define the
element-wise sensitivity sab as

sab =

{
f(W,Π∗)− f(W,Πab) if π∗ab = 0

f(W,Πab)− f(W,Π∗) if π∗ab = 1
(6)

where the assignment Πab is defined to be the optimizer of 1a
with the additional constraint (7d)

min
Π

∑
(i,j)∈E

πijwij (7a)

s.t.
∑

(i,j)∈E

πij = 1, (7b)

∑
(i,j)∈E

πij ≤ 1, (7c)

πab 6= π∗ab. (7d)

The new constraint (7d) either forces the assignment of
an edge (a, b), if the edge was not included in the original
optimal assignment, or it blocks the edge (a, b) if it was
part of the original optimal assignment. To understand the

effect this has, consider constructing a set of weights W̄
that is the same as W except perturb the weight wab by
its sensitivity sab. By construction, the assignment costs
f(W̄,Πab) and f(W̄,Π∗) would then be equal. Therefore
each sab represents a bound on the allowable element-wise
perturbation of the LAP over the graph G with weights W .
Here we use element-wise to indicate only one edge weight
is perturbed and all other edge weights are held fixed.

Clearly, the set of element-wise sensitivities do not form
an allowable perturbation when taken together. To illustrate,
consider the costs of the optimal solution Π∗ and some other
solution Π̄ 6= Π∗ over the graph with weights perturbed by
the set of all sensitivities, as defined in (6), ∆s = {sij |
(i, j) ∈ E}.

f(W + ∆s, Π̄)− f(W + ∆s,Π
∗) = f(W, Π̄−Π∗)

+ f(∆s, Π̄−Π∗)
(8)

In order for ∆s to be an allowable perturbation, the cost
difference (8) must be non-negative for all assignments Π̄.
However, for each edge (i, j) ∈ Π̄, sij may be as large
as f(W,Π∗ − Π̄), as in (6). Similarly, for each edge in
(i, j) ∈ Π∗, sij may be as large as f(W, Π̄ − Π∗). Any
of these perturbations individually may be sufficient to bring
the cost difference to zero and combinations of the individual
perturbation can make (8) negative. We therefore modify the
sensitivity values to form an allowable perturbation for the
graph G.

Proposition 1. Let Π∗ be the optimal assignment over a
bipartite graph G with weights W and let the set of values
S = {sij | (i, j) ∈ E} be the element-wise sensitivities as
defined in (6). For N the maximal number of assigned edges
in an assignment over G, the perturbation

∆ := {δij =
sij
2N
| (i, j) ∈ E} (9)

is an allowable perturbation.

Proof. Define a bipartite graph G = (V, E) and a set of
weightsW , with the optimal assignment Π∗ ∈ LAP (G,W).
For an assignment Π′ 6= Π∗, the perturbed cost difference is

f(W + ∆,Π′)− f(W + ∆,Π∗) = f(W,Π′ −Π∗)

+ f(∆,Π′ −Π∗).

If this difference is non-negative for all assignments Π′, then
Π∗ is the optimizer of the graph G with weightsW+∆, and
∆ is allowable. Since Π∗ is the optimizer with the weights
W , f(W,Π′−Π∗) must be non-negative for all assignments
Π′. If f(∆,Π′−Π∗) is non-negative as well then the proof is
trivial. However, in the case where f(∆,Π′−Π∗) is negative,
if we can show that

f(∆,Π∗ −Π′) ≤ f(W,Π′ −Π∗) (10)

then ∆ is an allowable perturbation.



First we expand the term on the left of (10) into the sum
of individual perturbations

f(∆,Π∗ −Π′) =
∑

(i,j)∈E

π∗ijδij − π′ijδij .

Weight perturbations of edges assigned in both Π′ and Π∗

will not effect the cost difference, so let Ē = {(i, j) | πij 6=
π∗ij ∀ (i, j) ∈ E} be the set of edges which are assigned
in Π′ or Π∗ but not both. The cost difference can now be
written as

f(∆,Π∗ −Π′) =
∑

(i,j)∈Ē

π∗ijδij − π′ijδij .

Recall that for each δij =
sij
2N , element-wise sensitivity

sij is constructed using the difference between the optimal
assignment Π∗ and the lowest cost assignment which forces
or blocks (i, j), Πij , as defined in (7). Using this, we can
bound each perturbation δij ∈ Ē∑

(i,j)∈Ē

π∗ij
sij
2N

=
∑

(i,j)∈Ē

π∗ij
f(W,Πij)− f(W,Π∗)

2N
,

≤
∑

(i,j)∈Ē

π∗ij
f(W,Π′ −Π∗)

2N
,

where the bound on the perturbations for the edges assigned
in Π′ are the same except for a negative sign in the numer-
ator, as in (6). Substituting these upper bounds

f(∆,Π∗ −Π′) =
∑

(i,j)∈Ē

π∗ijδij −
∑

(i,j)∈Ē

π′ijδij ,

≤
∑

(i,j)∈Ē

π∗ij
f(W,Π′ −Π∗)

2N
− π′ij

f(W,Π∗ −Π′)

2N
,

≤
∑

(i,j)∈Ē

π∗ij
f(W,Π′ −Π∗)

2N
+ π′ij

f(W,Π′ −Π∗)

2N
,

≤ N f(W,Π′ −Π∗)

2N
+N

f(W,Π′ −Π∗)

2N
,

= f(W,Π′ −Π∗).

Where we removed the summations by noting that N is
the largest number of assigned edges in an assignment.
Therefore, since the weight perturbation for any solution Π′

is less than f(W,Π′)− f(W,Π∗), Π∗ is an optimizer with
weight W + ∆, so ∆ is allowable.

Using Proposition 1 we can construct an allowable per-
turbation ∆, and using Theorem 1 this can be extended into
a set of allowable perturbations, as desired in the problem
statement in Section II.

Example 2. Recall the cost matrix from the previous ex-
ample. Using (7), the matrix of element-wise sensitivities as
defined in 6 is,

S =

−163 −51 51
157 −157 −163
−157 51 −51

 .

Dividing the sensitivities by 2N = 6, and converting into
intervals as before, the set of allowable perturbations is
shown in Table II

TABLE II
ALLOWABLE PERTURBATION INTERVALS FROM PROPOSITION 1

[−27.1,∞) [−8.5,∞) (−∞, 8.5]
(−∞, 26.1] [−26.1,∞) [−27.1,∞)
[−26.1,∞) (−∞, 8.5] [−8.5,∞)

V. CRITICAL PERTURBATION

So far we have shown how to construct a set of allowable
perturbations, using a particular allowable perturbation ∆.
Therefore, we would like to maximize (or minimize) the
bounding weights in ∆, in order to obtain the largest set of
tolerances for application. To this end, we define a critical
perturbation.

Definition 2. Let Π∗ ∈ LAP (G,W), and let ∆ = {δij |
(i, j) ∈ E} be an allowable perturbation as in Definition 1.
Define another perturbation ∆′ = {δ′ij | (i, j) ∈ E}
satisfying

δ′ij = δij + εij ∀ (i, j) : π∗ij = 1,

δ′ij = δij − εij ∀ (i, j) : π∗ij = 0.

The allowable perturbation ∆ is critical if ∆′ is not allow-
able for any εij > 0.

Intuitively, a critical perturbation ∆ is allowable buton the
boundary of not being so.

With this definition, we may note an interesting connection
to the element-wise sensitivity discussed in the previous
section. The element-wise sensitivity is the amount that a
weight can be perturbed, with all other edges fixed, with-
out changing the optimal solution. Therefore, equivalent to
Definition 2, a perturbation ∆ is critical if and only if the
element-wise sensitivities ofW+∆ are all zero. To check if
the allowable perturbation ∆ returned from Proposition 1
is critical we can simply recompute the set of element-
wise sensitivities of W + ∆. If they are zero, then the
perturbation is critical. However, if they are not zero, then
we can divide them by 2N as in Proposition 1 construct
a new allowable perturbation. The recursive algorithm is
described in pseudo-code in Algorithm 1, where the function
”sensitivities” returns the set of element-wise sensitivities sij
as defined in (6).

Proposition 2. For a bipartite graph G = (V, E) with
weights W and optimal assignment Π∗ ∈ LAP (G,W),
Algorithm 1 converges and the resulting perturbation ∆ is
critical in the sense of definition 2.

Proof. We first prove that the sum of the perturbations
∆ converges by showing that the sequence is monotonic
and bounded, and thus also show that the element-wise
sensitivities converge to zero. The sensitivities converging
to zero thus proves that the perturbation ∆ is critical.



Data: G,W,Π∗, N
1 S ← sensitivities(G,W,Π∗);
2 ∆← 1

2N S;
3 S ← sensitivities(G,W + ∆,Π∗);
4 while S 6= {0 | (i, j) ∈ E} do
5 ∆← ∆ + S

2N ;
6 S ← sensitivities(G,W + ∆,Π∗);
7 end
Algorithm 1: Constructing a critical perturbation over G
with respect to W and Π∗.

Let ∆k = {δkij | (i, j) ∈ E} be the perturbation at the k-th
iteration of the while loop in lines 4−7 of Algorithm 1, and
likewise let skij be the element-wise sensitivity of the edge
(i, j), as defined in (6), at the k-th iteration. At iteration
k + 1, the perturbations increment according to

δk+1
ij = δkij +

skij
2N

. (11)

For all edges (i, j) such that π∗ij = 1, skij ≥ 0. Likewise
for all edges (i, j) such that π∗ij = 0, skij ≤ 0. Therefore,
for each edge (i, j), the sequence δkij is monotonic non-
decreasing/non-increasing for edges assigned/not-assigned in
the optimizer.

Each perturbation δij =
∑

k

skij
2N is bounded by its

element-wise sensitivity over the original graph G = (V, E)
with weights W , i.e.

|δkij | ≤ |sij | ∀ k.

If an edge perturbation δij was larger than the sensitivity
sij , then the perturbation ∆ would not be allowable. Since
∆k is allowable at each iteration k by construction, the
weight perturbations perturbation δij must be bounded. The
sequence of edge perturbations δkij is both monotonic and
the sum is bounded, so it must converge.

By the convergence of each sequence δkij , the sequence
skij must converge to zero. In other words, as k → ∞, the
perturbed weights W + ∆k have element-wise sensitivities
of 0 for all edges. Therefore, as k → ∞, ∆k is a critical
perturbation.

Example 3. Recall the cost matrix from the previous exam-
ple. Using Algorithm 1 to obtain an allowable perturbation,
and Theorem 1 to convert the allowable perturbation into a
set of intervals, the results are shown in Table III.

TABLE III
ALLOWABLE PERTURBATIONS FROM ALGORITHM 1

[−37,∞) [−8.5,∞) (−∞, 8.5]
(−∞, 35] [−35,∞) [−37,∞)
[−35,∞) (−∞, 8.5] [−8.5,∞)

VI. MULTI-VEHICLE GUIDANCE

In this section we apply the assignment sensitivity analysis
to a multi-vehicle guidance problem. Multi-vehicle guidance
may involve several vehicles cooperating to achieve more
complex tasks, necessitating task assignment among the
agents. The assignment may be sensitive to errors in the
input data, leading to potentially suboptimal assignments
during the completion of the task. A naive approach is to
reassign tasks as new data is available under the assumption
that the most recent measurements are the most reliable.
However, continuously re-solving the assignment problem
may be costly. Furthermore, reassignment based on real-time
measurements while agents are completing their assigned
tasks may lead to repeated switching of tasks referred to
as churning behavior [16] [20]. To mitigate the effects of
assignment churning, a new objective function focusing on
robustness and penalizing the switching of assignments was
used in [16]. However, this may compromise the optimality
of the assignment, as the objective function is modified. The
assignment invariant perturbation intervals derived in this pa-
per can be used to guarantee the optimality of an assignment,
preventing the need for reassignment, and avoiding churning.

Consider a set of vehicle positions {xi}Ni=0, xi ∈ R2, and
target destinations {yi}Ni=0, yi ∈ R2, shown in Fig. 1 as dots
and crosses. Let the edge weights be

w
(k)
ij = d(x

(k)
i , y

(k)
j ) + ε

(k)
ij

where d(·) is a distance function and ε(k)
ij , with |ε(k)

ij | ≤ ε̄
(k)
ij

the bounded error of the distance measurement at step k. The
set of measurements at each time step may be naively used
to construct the assignment at time k, Πk, subject to a new
realization of the noise ε(k)

ij . This can lead to reassignment
while the agents are traveling, or churning, as shown in
Fig. 1.

Fig. 1. Assignment Churning

In Fig. 1, the the solid blue lines show the trajectories
of agents that may begin with the optimal assignment, but
without ground truth knowledge continue to reassign on
new data. Then, as the agents draw nearer to the targets,
the assignments settle. Clearly, the total distance traveled is



significantly increased due to the deviations from the optimal
path, shown as a dashed line. Given that the agents are
traveling the shortest paths to their assigned destinations, if
the assignment was optimal at any point then reassignment
can only increase the total traveled distance.

The bounds for allowable perturbations as described in
Section IV or Section V can be used to avoid churning. Let
∆ = {δij | (i, j) ∈ E} be the allowable perturbation as
described in Section V, and recall that ε̄(k)

ij bounds the error
for each edge weight at each step. If, at some reassignment
step k, the error bounds satisfy

ε̄
(k)
ij ≤ δ

(k)
ij ∀ π

(k)
ij = 1, (12)

δ
(k)
ij ≤ −ε̄

(k)
ij ∀ π

(k)
ij = 0, (13)

then the assignment over the measurements is the optimal
assignment over the ground truth states. This is easily shown
by noting that any realization of the bounded measurement
errors ε(k)

ij will form an allowable perturbation by Theorem 1,
and the optimal assignment is invariant under these errors.
Therefore, the assignment Πk made over the measurements
must be equal to the optimal assignment Π∗k made on the
noiseless measurements. After this time step, reassignment
can only increase the total traveled distance. This avoids
churning and any computation involved with constructing
the new costs and finding the new assignments.

VII. CONCLUDING REMARKS

In this paper the robustness of the linear assignment
problem (LAP) to a set of perturbations is analyzed, and
applied to prevent assignment churning without changing the
objective function. We first showed that a perturbation which
does not change the optimal assignment can be interpreted
as the bound on a set of allowable perturbations, and then
constructed an allowable perturbation based on the element-
wise sensitivities. We also proved that this method can be
used recursively to construct critical perturbation. These
element-wise bounds can be used to ensure LAP optimality
under uncertainty, or to prevent unnecessary resolving of the
LAP in online scenarios.

In future work, a closed form solution for the recur-
sive algorithm will be investigated. Similar robustness for
various other assignment problem formulations are to be
investigated. Another research direction is the interpretation
of these results as a strategy to deploy agents informed
by the robustness. This would ensure that reassignments
would be unlikely, even under uncertainty. In a similar
vein, a definition of sensitivity which extends to sub-optimal
assignments, and an algorithm to explore their utility, is a
subject of interest.
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