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Abstract— In this paper, we consider the problem of learning
a predictive model for population cell growth dynamics as a
function of the media conditions. We first introduce a generic
data-driven framework for training operator-theoretic models
to predict cell growth rate. We then introduce the experimental
design and data generated in this study, namely growth curves
of Pseudomonas putida as a function of casein and glucose
concentrations. We use a data driven approach for model
identification, specifically the nonlinear autoregressive (NAR)
model to represent the dynamics. We show theoretically that
Hankel DMD can be used to obtain a solution of the NAR
model. We show that it identifies a constrained NAR model and
to obtain a more general solution, we define a causal state space
system using 1-step, 2-step,..., τ -step predictors of the NAR
model and identify a Koopman operator for this model using
extended dynamic mode decomposition. The hybrid scheme
we call causal-jump dynamic mode decomposition, which we
illustrate on a growth profile or fitness prediction challenge as
a function of different input growth conditions. We show that
our model is able to recapitulate training growth curve data
with 96.6% accuracy and predict test growth curve data with
91% accuracy.

I. INTRODUCTION

One of the most fundamental processes in life is the ability
to replicate and pass on hereditary material [1]. From viral
particles to bacteria to mammalian cells, cell division is
fundamental to growth, maintenance of physiological health,
and intrinsically tied to the notion of senescence [2].

The mechanisms for controlling growth in organisms
are determined by metabolic networks [3], [4], namely
their topological structure and parametric realization. Known
metabolic networks in well studied model organisms such
as E. coli [5] and S. cerevisiae [6], [7] have given rise
to predictive models that translate environmental activity to
metabolic network state, and ultimately to predictions of
growth rate. For canonical biological model systems, these
models have been highly accurate in predicting growth rate
and found utility in industrial microbiology applications, e.g.
in the design of bioreactors or informing best practices in
food safety.
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For many biological life forms, relatively little is known
about their metabolic network or structure. This is especially
the case when developing bioengineering tools in novel host
microbes [8], [9]. For new organisms, canonical metabolic
networks are lacking and often obtained through a process of
sequence alignment and comparative analysis with existing
metabolic network models in relative species. However,
many novel strains do not exhibit significant similarity, and
even in the case of sequence similarity, small mutations can
lead to dramatically different growth phenotypes, e.g. growth
of non-pathogenic soil strains [10], [11] versus pathogenic
counterparts [12]. The absence of predictive cross-species
models, as well as the inability to predict growth phenotype
wholly from sequence data, motivates the need for data-
driven methods to accelerate the discovery of metabolic
models and growth rate prediction models.

Due to advances in high-throughput experimental tech-
niques, it is relatively easy to characterize growth rates as
a function of exposure to environment. Liquid and acoustic-
liquid handling robotics enables interrogation of thousands
of growth conditions in a single microtiter plate, which
in turn opens the door for using data-driven approaches
[13] to predict growth rate as a function of environmental
state. Is it possible to accurately predict the growth rate
of a microbe, entirely from the chemical composition and
environmental parameters of its growth condition? In this
paper we explore a data-driven operator theoretic approach
that utilizes microtiter plate reader data, and more generally
multi-variate time-series data, to develop predictive models
of growth rate in Pseudomonas putida, a broadly used
strain for commercial bioreactors and a target workhorse for
tractable genetic engineering [14].

A broadly successful class of data-driven modeling ap-
proaches stem from the study of Koopman operators, a
mathematical construct for representing the time-evolution of
nonlinear dynamical systems. In Koopman operator theory,
the time-evolution of a nonlinear system is defined on a
function space, acting on the original state of the system.
In this function space, known the observables space, the
Koopman operator is a linear operator, enabling spectral
analysis, the decomposition of eigenspaces, and study of
nonlinear structure [15]. The Koopman operator framework
has been developed for continuous [16] and discrete time sys-
tems [17], [18], for open-loop [17] and input-controlled [19],
[20] dynamic systems. Thus, Koopman operators present a
powerful framework for analyzing the behavior of nonlinear

ar
X

iv
:2

00
6.

12
72

6v
1 

 [
m

at
h.

O
C

] 
 2

3 
Ju

n 
20

20



systems, including predicting how experimental conditions
regulate growth dynamics.

Many numerical methods for identifying Koopman oper-
ators from data have been developed in the last two decades
[21]–[28]. The most common approach is to use dynamic
mode decomposition (DMD), which models nonlinear dy-
namics via an approximate local linear expansion [25]. In
[17] an extended dictionary of basis functions with universal
function approximation properties is used to discover an
approximation of the lifting map or observables. These
techniques suffer from combinatorial explosion, which gen-
erally has prohibited analysis of high-dimensional nonlinear
systems [29]. The most recent developments in the field
of DMD integrate established advances in deep learning
with DMD [27], [30]–[32] where the deep neural networks
have the capacity to approximate exponentially many distinct
observable functions. Recent work has shown deep Koopman
learning algorithms can be extended to synthesize controllers
for systems subject to uncertainty [33], suggesting that deep
Koopman learning can be used broadly for robust controller
synthesis.

The existing algorithms assume a full state measurement
and construct observables from that. With partial state ob-
servables like in biological systems, we construct a state
space model for an output nonlinear difference equation
model and identify a Koopman operator for that model. In
Section II we briefly introduce the Koopman operator and
DMD and the existing literature. In Section III we describe
the experimental setup for obtaining the growth curve data
of Pseudomonas putida by adding different concentrations
of casein and glucose substrates to the media. In Section
IV, we justify nonlinear autoregressive difference equation
model is an appropriate choice for this system. In Section
V, we formulate the Hankel DMD as a solution of the
NAR model and bring out its issues and in Section VI,
we formulate a state space model for the NAR model and
use extended dynamic mode decomposition to identify a
Koopman operator for the NAR model. In Section VII, we
show that the algorithm is able to train a predictive Koopman
operator, that predicts with 3.4% on the training data and 9%
on the test data on extended forecasting tasks approximately
500 time steps ahead.

II. MATHEMATICAL PRELIMINARIES

Consider a discrete-time autonomous nonlinear dynamical
system

xk+1 = f(xk) (1)

with f : Rn → Rn is analytic. There exists a Koopman
operator [34] of (1), which acts on a function space F as K
: F → F . This action can be given by

Kψ(xk) = ψ ◦ f(xk). (2)

where the function ψ : Rn → R is called an observable of
the system and the set of all observables ψ , {ψi}pi=1, p ≤
∞ on the system. Here F is invariant under the action of K.

The most important property of the Koopman operator that
we utilize is the linearity of the operator, in other words,

K(αψ1 + βψ2) = αψ1 ◦ f + βψ2 ◦ f = αKψ1 + βKψ2

which follows from (2) since the composition operator is
linear. Thus, we have that the Koopman operator of (1) is a
linear operator that acts on observable functions ψ(xk) and
propagates them forward in time.

A. DMD and relevant variants

The practical identification of Koopman operator for a
nonlinear system from input-output data is commonly done
using DMD [25] or extended DMD [17] which constructs
an approximate Koopman operator K. Rowley et. al showed
that the finite-dimensional approximation to the Koopman
operator obtained from DMD is closely related to a spectral
analysis of the linear but infinite-dimensional Koopman op-
erator [18]. The approach taken to compute an approximation
to the Koopman operator in both DMD and extended DMD
is as follows

K = min
K
||Ψ(Xf )−KΨ(Xp)|| = Ψ(Xf )Ψ(Xp)

† (3)

where Xf ≡
[
x1 . . . xN−1

]
, Xp ≡

[
x2 . . . xN

]
are

snapshot matrices formed from the discrete-time dynamical
system (1), Ψ(X) ≡

[
ψ1(x) . . . ψR(x)

]
is the mapping

from physical space into the space of observables and †

denotes the Moore-Penrose pseudoinverse. Here N is the
number of snapshots i.e. timepoints. We note that DMD is a
special case of extended DMD where ψ(x) = x. Throughout
the rest of the paper, when we refer to the Koopman operator
we mean the finite dimensional approximation to the infinite-
dimensional Koopman operator.

III. EXPERIMENTAL SETUP

We describe the procedure adopted to obtain P. putida’s
growth curve for varying concentrations of glucose and
casein substrates in the media.
Incubation: We revived P. putida cryopreserved at −80oC in
30% (vol/vol) glycerol stock by suspending a small portion
into a polypropylene test tube containing 4 mL of Lysogeny
Broth (LB). We cultured it at 30oC spinning with a speed
of 200 revolutions per minute (rpm) for 12 hours overnight.
A visual inspection of the culture tube resulted in a cloudy
culture medium, suggesting subsequent growth with the seed
P. putida culture in a plate reader was feasible.
Solution Preparation: We prepared 300 g/L solution of glu-
cose solution and 225 g/L casein acid hydrolysate solution.
Once the bacteria reached a certain optical density(OD), we
shifted the culture from LB media to R2A 2x media obtained
from Teknova Inc to 2x the required initial OD.
Serial dilution setup for P. putida culture: We use a 630
µL 96 well plate to create media with different substrate
concentrations. Each well of this plate contained 500 µL of
modified media - 250 µL of culture in 2x R2A at 0.4 OD and
120 µL containing a mixture of casein and glucose solutions.
To vary casein and glucose across the 96 well plate, we
perform 2D serial dilution such that the concentration of



glucose was halved across columns and concentration of
casein is halved across rows as shown in Figure 1. Then,
the culture was mixed into each well to get a starting OD of
0.2 in 1x R2A media since equal volumes of culture media
and substrate solutions were added.
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Fig. 1: Different initial conditions of substrates obtained by two
dimensional serial dilution of casein and glucose and the corre-
sponding growth curves are obtained for a period of 27 hours.

Data Collection: The microplate reader was set to 30oC
and the shaker to 807 cycles per minute, with continuous
double orbital mixing. The absorbance at 600 nanome-
ters(nm), which is termed as the Optical Density at 600 nm
(OD600), was measured as a function of time for 27 hours.
We assume in this work, as is widely accepted, that OD600

measurements were collected in a linear regime, where
cell population is proportional OD600 measurements. The
obtained data along with the varying substrate concentrations
are shown in Figure. 1.

IV. GROWTH CURVE DYNAMICS MODEL

The dynamics of the bacterial cell growth can be repre-
sented by N (b)

k+1

Ck+1

Gk+1

 = f(N
(b)
k , Ck, Gk) (4)

where the bacterial cell count (N (b)), casein substrate con-
centration (C) and glucose substrate concentration (G) are
the states of the system, f is the nonlinear dynamics and k
is the discrete time index. We measure the OD600 data as
mentioned in section III and the output equation is given by

yk = h(N
(b)
k ) (5)

as OD600 is a function of only the number of cells. Some
of the existing empirical nonlinear models for growth curve
dynamics include the Monod’s model [35] which uses a
single substrate to form the foundation of the growth curve
dynamics and in [36] and [37] multiple substrates are incor-
porated. Monod’s model is a two-state nonlinear dynamical

system comprising of the substrate (S) and the number of
bacteria (N (b)):

Ṅ (b)(t) = rmax
S(t)N (b)(t)

Ks + S(t)

Ṡ = −γṄ (b) (6)

where rmax is the maximum growth rate and Ks is the half
velocity constant. As N (b) is the only variable of measure-
ment in (5), we convert the model to a single differential
equation containing only N (b)

N̈ (b)(t) =
1

rmaxKsN (b)
(KsrmaxṄ

(b)2 − γṄ (b)3

+ 2γrmaxN
(b)Ṅ (b)2 − γr2maxN (b)2Ṅ (b))

(7)

The existing models though heuristic, suggest that N (b) at
any point in time is a function of the past

N
(b)
k+1 = f(N

(b)
k , N

(b)
k−1, · · · )

N
(b)
k to be a function of its finite past. This is the general

structure of the discrete nonlinear autoregressive (NAR)
model given by

yk = f(yk−1, yk−2, · · · , yk−τ )

yi ∈ Rp ∀i ∈ Z>0

f : Rp × Rp × · · · × Rp︸ ︷︷ ︸
τ times

→ Rp
(8)

where the current output is a function of the past τ outputs.

V. HANKEL DYNAMIC MODE DECOMPOSITION

Given the nonlinear system (4) with the state measurement
given by (5) and modeled by the discrete time difference
equation (8), Hankel DMD [38] is a suitable algorithm
to solve the model identification problem with the NAR
structure. The promising feature of using a DMD algorithm
is that it identifies a linear state space representation which
has a theoretical foundation in Koopman operator theory.

Given the autonomous state space system

x̃k+1 = f̃(x̃k)

yk = h(x̃k)
(9)

where xk ∈ Rn is the state, f̃ : Rn → Rn is the dynamics,
yk ∈ Rp is the output and h : Rn → Rp is a nonlinear
function that maps the state directly to itself, i.e. x is identical
to the output y, Hankel DMD constructs a Koopman model
of the form 

ψ(yk+1)
ψ(yk+2)

...
ψ(yk+τ )

 = K


ψ(yk)
ψ(yk+1)

...
ψ(yk+τ−1)

 (10)

such that ψ : Rp → RNp is the dictionary of state inclusive
observables of the state x̃k constructed by a nonlinear
transformation of the corresponding output yk and K is the
Koopman operator. Regardless of full-state measurements,



we nonetheless cast Hankel DMD in this form to compare
it with our subsequent causal jump DMD algorithm.

Given the output measurements {y1, y2, .., yN}, to identify
an approximate Koopman operator K using Hankel DMD,
the time shifted Hankel matrices are constructed as

Ψ(Yp) =


ψ(y1) ψ(y2) . . . ψ(yN−τ )
ψ(y2) ψ(y3) . . . ψ(yN−τ+1)

...
...

. . .
...

ψ(yτ ) ψ(yτ+1) . . . ψ(yN−1)



Ψ(Yf ) =


ψ(y2) ψ(y3) . . . ψ(yN−τ+1)
ψ(y3) ψ(y4) . . . ψ(yN−τ+2)

...
...

. . .
...

ψ(yτ+1) ψ(yτ+2) . . . ψ(yN )


(11)

and the optimization problem

min
K
||Ψ(Zf )−KΨ(Zp)|| (12)

is solved using the Moore-Penrose pseudoinverse method
mentioned in section II. This yields a solution of the form

ψ(yk+1)
ψ(yk+2)

...
ψ(yk+τ )

 =


0 INp · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 INp

k1 k2 · · · kτ−1 kτ




ψ(yk)
ψ(yk+1)

...
ψ(yk+τ−1)


Other than the last Np equations, the others are trivial. To
construct an output predictor, we take the component yk+τ
of ψ(yk+τ ) to get

yk+τ = k̃1ψ(yk) + k̃2ψ(yk+1) + · · ·+ k̃τψ(yk+τ+1) (13)

where k̃i are the components of ki that map ψ(yk+τ−1) to
yk+τ . More generally, this yields a nonlinear equation of the
form

yk = f̃1(yk−1) + f̃2(yk−2) + · · ·+ f̃τ (yk−τ ) (14)

where the functions f̃1, f̃2, · · · , f̃τ have the same basis func-
tions with different coefficients. This identifies a constrained
NAR model as it imposes an additive structure on the basis
of nonlinear models across time.

VI. DYNAMIC MODE DECOMPOSITION OF NONLINEAR
AUTOREGRESSIVE MODELS

To identify a Koopman operator for the unconstrained
NAR model (8), we formulate a state space representation
for the NAR model with full state observation and identify
an approximate Koopman operator for that model using the
general class of DMD algorithms like extended DMD and
deep DMD.

In this methodology, the problem is broken into two pieces
the system identification aspect where we select the model
structure and the dynamic mode decomposition aspect where
we have to construct the dictionary of observables. We define
a window parameter τ ∈ Z>0 indicating how many past
output snapshots are used to define a new extended dictionary
of monomial observable functions, up to order no ∈ Z>0.

The new τ -dictionary defines a general extended dynamic
mode decomposition problem, which we then solve using
classical methods.

We proceed as follows: given the NAR model (8) with
the system identification parameter τ , we construct a state
defined by

zk :=
[
yk+1 yk+2 · · · yk+τ

]T
(15)

with zk ∈ Rpτ .This yields the state space representation

zk+1 =


yk+2

yk+3

...
yk+τ
yk+τ+1

 :=


f1(yk+1, yk+2, · · · , yk+τ )
f2(yk+1, yk+2, · · · , yk+τ )

...
fτ−1(yk+1, yk+2, · · · , yk+τ )
fτ (yk+1, yk+2, · · · , yk+τ )



:=


yk+2

yk+3

...
yk+τ

f(yk+1, yk+2, · · · , yk+τ )

 = F (zk)

⇒ zk+1 = F̃ (zk) (16)

where F̃ : Rpτ → Rpτ represents the dynamics of the lifted
”state” model. The approximate EDMD model for the full
output observable model is given by

ψ(zk+1) = Kψ(zk) (17)

where ψ(zk) is the state inclusive dictionary of observables
defined as

ψ(zk) =

[
zk

ϕ(zk)

]
(18)

with ϕ : Rpτ → RNp being a nonlinear transformation
that constructs the nonlinear observables. Since the only
additional information in the state zk+1 when compared to
the state zk is yk+τ+1, the output predictor form for the
Koopman model can be identified considering the complete
Koopman model and extracting the equation that corresponds
to yk+τ+1 given by

ψ(zk+1) = Kψ(zk)

⇒


yk+2

...
yk+τ
yk+τ+1

ϕ(zk+1)

 =


• · · · • • •
...

. . .
...

...
...

• · · · • • •
k1 · · · kτ−1 kτ k11
• · · · • • •




yk+1

...
yk+τ−1
yk+τ
ϕ(zk)


⇒ yk+τ+1 = k1yk+1 + · · ·+ kτyk+τ

+ kT11ϕ(yk+1, · · · , yk+τ ) (19)

The output predictor form keeps the general structure of the
NAR model intact as opposed to the predictor identified by
Hankel DMD which identified a constrained model. But, the
issue with this model is the causality. It can be seen from
(19) that the Koopman model is non causal due to the overlap
of outputs yk between the states zk+1 and zk. This identifies
models that use future outputs to predict past outputs which



are inadmissible as our system is causal. To identify a causal
model, the property of (16) proved in proposition 1 is very
important.

Proposition 1: Given the state space model (16) for the
nonlinear autoregressive (NAR) model (8), if the state is
propagated i time steps where i ∈ {1, 2, ..., τ}

zk+i = F̃ i(zk) = F̃ ◦ F̃ ◦ · · · ◦ F̃︸ ︷︷ ︸
i times

(zk),

then the last i functions of F̃ iH(zk) are such that

(F̃ i)(τ−i+j)(zk) = f (j)(zk) j ∈ {1, 2, . . . , i}
yy+τ+j = f (j)(zk) = f (j)(yk+1, yk+2, . . . , yk+τ )

(20)

where (F̃ i)(b)(zk) corresponds to the bth function of F̃ i(zk)
and f (j)(zk) is the j-step predictor of the NAR model (8).

Proof: Given the state zk defined in (15), the state
propagated i time steps ∀i ∈ Z≥0 is given by

zk+i =
[
yk+i+1 yk+i+2 · · · yk+i+τ

]T
and the mth component of zk+i is given by z(m)

k+i = yk+i+m
where m ∈ {1, 2, ..., τ}.

A function f (j) : Rp × Rp × · · · × Rp︸ ︷︷ ︸
τ times

→ Rp is a j-step

predictor of the NAR model (8) if it has the following form

yk+τ+j = f (j)(xk) = f (j)(yk+1, yk+2, · · · , yk+τ ).

Now that we have the state definitions and the predictor
function definitions in place, we prove (20) by induction. For
i = 1,

zk+1 = F̃ (1)(zk)

(F̃ 1)(τ−i+j)(zk) = (F̃ 1)(τ)(zk) = f (1)(xk) j ∈ {1}
⇒ z

(τ)
k+1 = yk+τ+1 = f (1)(zk)

Hence (20) is satisfied for i = 1. We assume the result is
true for i = p. This yields

(F̃ p(zk))(τ−p+j)(zk) = f (j)(zk) j ∈ {1, 2, ..., p}

⇒ zk+p =



yk+p+1
...

yk+τ
yk+τ+1

...
yk+τ+p


= F̃ p(zk) =



yk+p+1
...

yk+τ
f (1)(zk)

...
f (p)(zk)


.

For i = p+ 1, the state zk+p+1 becomes

zk+p+1 = F̃ p+1(zk) = F̃ ◦ F̃ p(zk)

⇒



yk+p+2
...

yk+τ
yk+τ+1

...
yk+τ+p
yk+τ+p+1


= F̃





yk+p+1
...

yk+τ
f (1)(zk)

...
f (p−1)(zk)
f (p)(zk)




=



yk+p+2
...

yk+τ
f (1)(zk)

...
f (p)(zk)

g



where

g = f(yk+p+1, ..., yk+τ , f
(1)(zk), ..., f (p)(zk))

= f(z
(p+1)
k , ..., z

(τ)
k , f (1)(zk), ..., f (p)(zk))

:= g(zk).

Since g is a function of only zk and since yk+τ+p+1 = g,
g(zk) satisfies the definition of a predictor function and hence
is a (p+ 1)-step predictor of (8)

yk+τ+p+1 = z
(τ)
k+p+1 = (F̃ p+1(zk))(τ) = f (p+1)(zk).

Therefore, for i = p+ 1,

(F̃ i(zk))(τ−p−1+j) = f (j)(zk) j ∈ {1, 2, ..., (p+ 1)}

stating that the last (p + 1) entries of zk+p+1 are f (1)(x),
f (2)(x), ..., f (p+1)(x). Hence the proof.

To identify a causal Koopman model for the NAR system
(8), we propagate the model (16) by τ time steps to ensure
no intersection of outputs between the states zk+1 and zk.
We define a new state xk = zkτ which yields

xk = zkτ

⇒ xk+1 = zkτ+τ = F̃ τ (zkτ ) = F (xk) (21)

where F = F̃ τ = F̃ ◦ F̃ ◦ · · · F̃︸ ︷︷ ︸
τ times

Using proposition 1, we can say that the nonlinear state space
model contains functions that are 1-step, 2-step, ..., τ -step
predictors in the following form

xk+1 =


ykτ+τ+1

ykτ+τ+2

...
ykτ+2τ−1
ykτ+2τ

 :=


f1(ykτ+1, ykτ+2, · · · , ykτ+τ )
f2(ykτ+1, ykτ+2, · · · , ykτ+τ )

...
fτ−1(ykτ+1, ykτ+2, · · · , ykτ+τ )
fτ (ykτ+1, ykτ+2, · · · , ykτ+τ )



:=


f (1)(ykτ+1, ykτ+2, · · · , ykτ+τ )
f (2)(ykτ+1, ykτ+2, · · · , ykτ+τ )

...
f (τ−1)(ykτ+1, ykτ+2, · · · , ykτ+τ )
f (τ)(ykτ+1, ykτ+2, · · · , ykτ+τ )

 = F (xk)

(22)

where f (i) is the i-step predictor of the NAR model. We
prove the existence of a Koopman operator for this model in
Proposition 2.

Proposition 2: If the function f(x) in the NAR model (8)
is analytic, then a Koopman operator exists for (16) and (22).

Proof: Since f in (8) is analytic, F̃ in (16) is analytic
since all the entries of F̃ are either linear functions or are
equal to f . Since F is obtained by the composition of F̃ τ
times, F is also analytic.
F (x) admits a countable-dimension Koopman operator

Kx, with an invariant subspace isomorphic to either a fi-
nite or an infinite Taylor polynomial basis [34]. Moreover,
isomorphism with a Taylor polynomial basis ensures that the



Koopman observable space contains the full state observable,
i.e. it is state inclusive.

There are two easy arguments to conclude the proof. First,
note that since f is analytic, fτ is analytic and thus by the
same reasoning as in [34], fτ thus must admit a Koopman
operator. The second argument is a constructive one, noting
that equation

ψ(x[(k)τ ]) = Kτψ(x[(k − 1)(τ)) (23)

must hold due to τ applications of the 1-step Koopman
equation. This means therefore that the following matrix
equation must hold

ψ




x[(k)τ ]
x[kτ + 1]

...
x[(k + 1)τ − 1]


 = KJψ




(x[(k − 1)(τ))]
(x[(k − 1)]τ + 1])

...
(x[(k)τ − 1)]




(24)
where KJ = diag (Kτ ,Kτ , . . .Kτ ) . This concludes the
proof.

Since the existence of a Koopman operator has been
proved for the model (22) in Proposition 2, we construct
a state inclusive dictionary of observables

ψ(xk) =

[
xk

ϕ(xk)

]
(25)

with ϕ : Rpτ → RNp to define a Koopman model

ψ(xk+1) = Kψ(xk) (26)

This Koopman model is causal since there is no intersection
of outputs between xk+1 and xk. The added feature of
this model is that the DMD algorithm while identifying a
Koopman operator, also simultaneously minimizes the 1-
step, 2-step, ..., τ -step prediction error of the NAR model.

Now that we have a theoretical state space representation
of a NAR model and established the conditions under which
a Koopman operator exists, we turn our attention to the
algorithm for identification of the Koopman operator. Given
the data with M data sets and N data points in each data
set {y(i)1 , y

(i)
2 , ..., y

(i)
N } where i ∈ {1, 2, ...M} is the index

of the data set, we construct the Hankel states zk and the
dictionary of observables allowing the intermixing of states.
We compile the observables into snapshot matrices Ψ̃f (z)
and Ψ̃p(z) with a τ time step jump and solve the Koopman
learning problem

||Ψ̃f (z)−KΨ̃p(z)||F

using the methodology in Algorithm 1.

VII. RESULTS

From the data-sets obtained in the plate reader experiments
shown in Fig. 1, we used Algorithm 1 to implement extended
DMD using monomials as the dictionary of observables

ψ(zk) = [yk+1, ..., yk+τ , y
2
k+1, yk+1yk+2, ..., y

2
k+τ

y3k+1, y
2
k+1yk+2, ...]

T .

Algorithm 1 Extended DMD for NAR models

1: Get NAR model parameter τ
2: Get extended DMD parameter no for monomial observ-

ables
3: for dataset i = 1, 2, . . . ,M do
4: for time index j = 1, 2, . . . , N − τ do
5: Construct the Hankel state

z
(i)
j =

[
y
(i)
j+1 y

(i)
j+2 · · · y(i)j+τ

]
6: Construct the dictionary of observables ψ(z

(i)
j )

7: end for
8: Construct the snapshot matrices for each data set

with the τ -jump

Ψ(i)
p (x) =

[
ψ(z

(i)
1 ) ψ(z

(i)
2 ) ... ψ(z

(i)
N−2τ )

]
Ψ

(i)
f (x) =

[
ψ(z

(i)
1+τ ) ψ(z

(i)
2+τ ) ... ψ(z

(i)
N−τ )

]
9: end for

10: Compile the snapshot matrices across data sets

Ψ̃p(x) =
[
Ψ

(1)
p (x) Ψ

(2)
p (x) ... Ψ

(M)
p (x)

]
Ψ̃f (x) =

[
Ψ

(1)
f (x) Ψ

(2)
f (x) ... Ψ

(M)
f (x)

]
11: Compute the SVD of Ψ̃p(x) = USV ∗

12: Truncate to required number of singular values and
identify the Koopman operator

K̂ = Ψ̃f (x)Ṽ S̃−1Ũ∗

to identify an approximate Koopman operator for the state
space model (22) as a solution to the identification of the
NAR model (8).

We use all the datasets in Fig. 1 to find a Koopman
operator invariant to the substrate concentrations. They are
broken equally into training, validation and test set. Given the
two parameters τ (NAR model parameter) and no (extended
DMD parameter), we can find the optimal approximate
Koopman operator by cumulatively iterating through the
principal components and evaluating the summation of the
mean squared error(MSE) of training and validation data.
The number of principal components corresponding to the
minimum MSE yields the optimal Koopman operator for a
given τ and no. We then iterate through the two parameters
to find the optimal model that minimizes the

By choosing τ = 9 and keeping the maximum order of
monomials to 3, the Koopman operator has been identified
and the prediction on the training data is shown in Figure 2
and it has an MSE of 3.4%. The identified Koopman operator
has an MSE of 9% and the fit is shown in Figure 3.

The results on the experimental data suggest that Causal
Jump DMD is a suitable candidate algorithm for identifying
the Koopman operator of the population growth dynamics
of bacteria and can also be extended in general to identify
Koopman operators for NAR models.
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Fig. 2: The identified Koopman operator is tested on the training
sets with 9 point initial condition and up to 3rd order monomials
to get a MSE of 3.4%

VIII. CONCLUSION

In this paper, we introduced the microbial growth curve
dynamics to motivate the usage of DMD algorithms to
identify Koopman operators for NAR models. We formulated
Hankel DMD as a state space representations of the NAR
model and showed that it is restrictive in its structure. We
construct a causal state space model for the NAR model
and identify a Koopman operator for it using extended
dynamic mode decomposition with a monomial dictionary of
observables. We showed that it does a good job in predicting
the population growth dynamics of Pseudomonas putida
invariant to substrate concentrations. The future goals of this
work is to use this model to identify the optimal media
conditions for maximal and minimal growth of the microbe
thereby enabling us to develop a general methodology to
develop an external growth harness for microbes for dynamic
growth control. To achieve this, we need to extend the
mathematical models to allow for inputs and extend the
identification to NARX and NARMAX models. Further, if
we integrate this framework with deepDMD which aids in
finding the observable functions in a parsimonious fashion, it
renders a useful tool for identifying high dimensional linear
models for nonlinear systems.
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Fig. 3: The identified Koopman operator is tested on the test sets
by using the initial observablesψ(x0) and the mean squared error
remains the same as that of the training set.
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