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Multi-Agent Coordination for Distributed

Transmit Beamforming

Jemin George, Anjaly Parayil and He Bai

Abstract

This paper presents the formulation and analysis of a two time-scale optimization algorithm for multi-

agent coordination for the purpose of distributed beamforming. Each agent is assumed to be randomly

positioned with respect to each other with random phase offsets and amplitudes. Agents are tasked with

coordinate among themselves to position themselves and adjust their phase offset and amplitude such that

they can construct a desired directed beam. Here we propose a two time-scale optimization algorithm

that consists of a fast time-scale algorithm to solve for the amplitude and phase while a slow time-scale

algorithm to solve for the control required to re-position the agents. The numerical results given here

indicate that the proposed two time-scale approach is able to reconstruct a desired beam pattern.

I. INTRODUCTION

Distributed beamforming is concerned with the problem of cooperative communication where randomly

located independent nodes coordinate among themselves to form a virtual antenna array. Although

numerous studies on distributed beamforming have been carried out for over a decade, it was initially

considered impractical due to the high complexity involved in modeling the generated beam pattern and the

hardly achievable requirements on positioning and synchronization. Recent research results demonstrating

the efficacy of distributed beamforming as a suitable solution for 5G communication systems such as

mm-wave communication and machine to machine communications has further ignited the interest in this

research field. The concept of distributed beamforming was conceived in early 2000s by two independent

pieces of research under the names collaborative beamforming [1] and distributed beamforming [2].

While initial research on collaborative beamforming focused on the beampattern analysis and the random
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array theory while assuming perfect phase synchronization among the nodes, the research on distributed

beamforming focused only on the feasibility of achieving synchronization among distributed nodes and

did not consider the significance of the physical array geometry and the beampattern. Over the years,

the lines that separated the collaborative beamforming and distributed beamforming significantly blurred

such that both the terms are now interchangeable.

Similar to the conventional antenna array beamforming, the distributed beamforming provides improve-

ment in the received signal-to-noise ratio (SNR) compared to a point-to-point transmission. With a fixed

radiated power at each antenna element (node), an ideal distributed beamformer with n collaborating nodes

will result in n2 fold increase in the received power at the destination [1]. Conversely, received power

can be reduced by an order of 1
n2 for a fixed received power threshold. Thus distributed beamforming

based collaborative communication drastically decreases the transmit power requirements allowing the

individual nodes to conserve crucial resources and battery life especially in applications where the network

is deployed at places where it difficult to replace or recharge the power source. Distributed beamforming

has also shown to helps alleviate the long-distance transmission limitation in circumstances where it is

unsuitable to layout sink node and multi-hop transmission.

Though much of the distributed beamforming works simply focus on achieving a desired SNR at the

receiver, sophisticated distributed array techniques such as null-forming has also shown to be achieved

through distributed beamforming as a solution to the covert communication problem [3], [4]. However,

null-forming is a formidable problem due to its sensitivity to small phase errors. Furthermore, since

null-forming fundamentally relies on a nodes transmitted signal cancelling the signals from all other

transmitters, the amplitude and phase of the transmitted signal at each node cannot be chosen indepen-

dently of the amplitudes and phases of other nodes. Therefore distributed null-forming algorithms often

assume that each transmitter knows every transmitters complex channel gain to the receiver, in other

words, global channel state information at each of the transmitters (CSIT).

There exists a plethora of literature on the concept of distributed transmit beamforming. For example,

reference [5] reviews several results in architectures, algorithms, and working prototypes available almost

a decade ago to address the changes of coordinating the sources for information sharing and timing

synchronization and, most crucially, distributed carrier synchronization so that the transmissions combine

constructively at the destination. In order to ensure phase coherence of the radio frequency signals from

the different transmitters in the presence of unknown phase offsets between the transmitters and unknown

channel gains from the transmitters to the receiver, in [6], authors propose a distributed adaptation scheme,

where each transmitter independently makes a small random adjustment to its phase at each iteration,

while the receiver broadcasts a single bit of feedback, indicating whether the signal-to-noise ratio (SNR)



improved or worsened after the current iteration. Reference [7] investigates linear beamforming techniques

in relay networks with multiple independent sources, destinations and relay(s), where the goal is to

determine the beamforming matrix to minimize the sum transmit power at the relays while meeting signal-

to-interference (SINR) requirements at the destinations. In [8] authors describes a receiver-coordinated

distributed transmission protocol for the joint beamforming and nullforming problem, in which the receive

nodes feedback periodic channel measurements to the transmit cluster and the transmit nodes use this

feedback to generate optimal channel predictions and then calculate a time-varying transmit vector that

minimizes the average total power at the protected receivers while satisfying an average power constraint

at the intended receiver during distributed transmission. Similarly, [9] proposes a fast baseband transmit

beamforming algorithm for the distributed antennas with one-bit feedback control using the received

signal strength (RSS) at the receiver. An adaptive minimum variance distortion-less response (MVDR)

beamformer for nonuniform linear arrays with enhanced degrees of freedom is presented in [10] to

enforce a unit response at the direction of the desired signal and places nulls in the directions of the

interferences. In [11] authors consider the distributed joint beamforming and nullforming problem where

N single antenna transmitters must broadcast a common message signal by forming beams towards each

of the single antenna receivers, while simultaneously forming nulls at another set of receivers. After

formulating the problem as an unconstrained optimization problem to minimize the mean square error

between the achieved and desired modulating amplitudes at the receivers, authors propose a gradient

descent algorithm that utilizes a common feedback message, broadcasted by each of the receivers to all

transmitters, consisting of a single complex number representing the amplitude of the aggregate (total)

baseband received signal in the previous iteration. While most of the above mentioned work only considers

the phase coherence of the radio frequency signals at each of the transmitters as the control variable,

more resent works [12]–[14] focuses on both the transmitter position as well the phase offset. Finally a

comprehensive survey of various distributed beamforming research, as well as its classifications, inherent

features, constraints, challenges and the lessons learned from the shortcomings of previous research are

summarized in [15].

In this paper we consider the problem of beam matching, as opposed to previous methods for distributed

and mobile beamformers that wish to maximize SINR at the client while minimizing transmit power [16].

The reasoning’s behind our proposed objective are two-fold; first, the transmit power given the proposed

devices and frequencies used are minimal when compared to the power used to maneuver the transmit

nodes. With that being said, minimizing transmit power is not a major performance objective. Second,

we wish to have more precision with the formed beam that would provide built in null-forming for covert

missions. [17] proposes a phase adjustment protocol to maintain perfect nulls at desired locations while



mobile nodes alter their positions to improve the received power at the client. This method relies on

random perturbations to the phase displacement vector and use of the heavy ball method.

Consider an equally spaced linear array (ESLA) of n elements. See Fig. 1. The general array factor

x
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Fig. 1. ESLA with n = 5 and d =
λ

2

can be written as

AF (θ) =

n−1
∑

m=0

Im ejkr
⊤

mr̂, (1)

where rm is the vector to the m-th element, r̂ is a unit vector pointing in the direction of interest i.e.,

r̂ =
[

cos(θ) sin(θ)
]⊤

,

k is the wave number and Im is the element excitation with amplitude am and linear phase gradient of

α across the array, i.e.,

Im = am ejmα. (2)

For the ESLA given in Fig. 1, we have

rm =
[

(m− 2)λ2 0
]⊤

,

and

AF (θ) =

n−1
∑

m=0

am ej(mα+k(m−2)λ

2
cos(θ)). (3)

Figure I shows the beam pattern obtained for the 5 element ESLA with Binomial amplitude tapering

and a phase gradient of α = −π/2 at 40 MHz.

The generalized array factor for n-elements located at
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 . . .
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 . . .





xn

yn



 can be written as

AF (θ) =

n−1
∑

m=0

am ej(mα+kxm cos(θ)+kym sin(θ)). (4)
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Fig. 2. 2-D Beam Pattern

Assume there exists a receiver at location p ∈ R
2. The channel between the m-th element and the receiver

is modeled as

cm(p) = γ (rm) β(dm)ejkdm , (5)

where dm = ‖p − rm‖2 is the distance between the m-th element and the receiver, γ (·) : R2 7→ R

captures multipath fading and β (·) : R 7→ R denotes the path loss. Here we model the path loss as

β(dm) = d−µ/2
m , (6)

where µ is the path loss exponent. For the frequency we are considering we model the multipath gain

as a random variable γm. If p = ρr̂, then the beam pattern taking the channel into consideration is

AF (ρ, θ) =

n−1
∑

m=0

am γm

(dm)µ/2
ej(mα+kxm cos(θ)+kym sin(θ)+kdm), (7)

where dm = ‖ρr̂− rm‖2. Note that the channel could affect both amplitude and phase.

II. PROBLEM FORMULATION

Consider the following desired array pattern constructed by n fictitious agents located at





x̄0

ȳ0



, . . .,





x̄n−1

ȳn−1



:

AFd(ρ, θ) =

n−1
∑

m=0

ām γ̄m
(

d̄m
)µ̄/2

ej(mᾱ+kx̄m cos(θ)+kȳm sin(θ)+kd̄m), (8)



where

d̄m =

∥

∥

∥

∥

∥

∥





x̄m

ȳm



− ρ





cos(θ)

sin(θ)





∥

∥

∥

∥

∥

∥

2

,

ām, µ̄, and ᾱ are nominal system values (these could be unknown parameters). Now s mobile agents

(array elements) located at r0(t0) . . . rs−1(t0) would like to construct the desired pattern such that

J =
1

2

∫ 2π

0

∫ ρb

ρa

‖|AFd(ρ, θ)| − |AF (ρ, θ)|‖22 dθ dρ+

s−1
∑

m=0

∫ tf

t0

[rm(t)− rm(t0)]
⊤ Sm [rm(t)− rm(t0)] dt

(9)

is minimized. Here Sm is a positive definite matrix. The true array factor is given as

AF (ρ, θ) =

s−1
∑

m=0

am γm

(dm(tf ))
µ/2

ej(αm+kxm(tf ) cos(θ)+kym(tf ) sin(θ)+kdm(tf )), (10)

where rm(tf ) =
[

xm(tf ) ym(tf )
]⊤

is the actual element locations, and

dm(tf ) =

∥

∥

∥

∥

∥

∥





xm(tf )

ym(tf )



− ρ





cos(θ)

sin(θ)





∥

∥

∥

∥

∥

∥

2

.

Design parameters are α0, . . . , αs−1, a0, . . ., as−1, r0(tf ), . . ., rs−1(tf ).

A. Simplification

In practice, it is usually not required to match the beam pattern over a continuous space, but to rather

match the beam at desired instances of ρ and θ deemed valuable for either transmission or null forming.

We start with discretizing the polar coordinates as {θ1, . . . , θl} and {ρ1, . . . , ρℓ}. Thus the magnitude of

the desired total array factor for all (ρi, θi) pairs, where θi ∈ {θ1, . . . , θl} and ρi ∈ {ρ1, . . . , ρℓ}, can be

denoted as f(ρi, θi). For example, Fig. I could present one such pattern of f(ρi, θi).

Now the resulting problem can be viewed as the following optimization problem

min
α,a,r(tf )

J =
1

2

∑

i

‖f(ρi, θi)− |AF (ρi, θi,α,a, rm(tf ))|‖
2
2

+

s−1
∑

m=0

∫ tf

t0

[rm(t)− rm(t0)]
⊤ Sm [rm(t)− rm(t0)] dt.

(11)

III. A PROPOSED SOLUTION

The proposed solution consists of a two time-scale process. A fast time-scale optimization process to

identify the amplitude and phase, while a slow time-scale process to relocate the agents if needed.

Before we proceed we simplify the problem by assuming that the number of antenna-elements involved

in the construction of desired beam pattern is same as the number of mobile-agents involved in distributed

beamforming, i.e., n = s.



A. Fast-Scale Optimization

Given the current location of the agents, r0(t) . . . rs−1(t), AF (ρi, θi) can be written as

AF (ρi, θi) =

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+kxm(t) cos(θi)+kym(t) sin(θi)+kdmi
(t)), (12)

where

dmi
(t) =

∥

∥

∥

∥

∥

∥





xm(t)

ym(t)



− ρi





cos(θi)

sin(θi)





∥

∥

∥

∥

∥

∥

2

. (13)

Thus an optimization problem can be posed as

min
α,a

1

2

∑

i

∥

∥

∥

∥

∥

f(ρi, θi)−

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+kxm(t) cos(θi)+kym(t) sin(θi)+kdmi
(t))

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

2

. (14)

Let

Φi (α,a, ρi, θi, t) =
1

2

∥

∥

∥

∥

∥

f(ρi, θi)−

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+kxm(t) cos(θi)+kym(t) sin(θi)+kdmi
(t))

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

2

Now the above optimization problem can be rewritten as

min
α,a

∑

i

Φi (α,a, ρi, θi, t) (15)

Note that the objective Φi is time-varying since it changes with agent location. Ideally, we would like to

keep the agents stationary while solving for the optimal beamforming weights. However the agents are

constantly moving and therefore we propose the following fast gradient flow to solve for the weights:

ǫȧ(t) = −
∑

i

∇aΦi (α,a, ρi, θi, t) , ǫ ≪ 1, and (16)

ǫα̇(t) = −
∑

i

∇αΦi (α,a, ρi, θi, t) (17)

In other words, we assume that the agents are moving sufficiently slow comparing with the above

optimization algorithm, i.e., ṙm ∼ O(ǫ). The gradients ∇aΦi (α,a, ρi, θi, t) are calculated as

∇aΦi (α,a, ρi, θi, t) =

(∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+kxm(t) cos(θi)+kym(t) sin(θi)+kdmi
(t))

∣

∣

∣

∣

∣

− f(ρi, θi)

)

×

∂

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+kxm(t) cos(θi)+kym(t) sin(θi)+kdmi
(t))

∣

∣

∣

∣

∣

∂a

(18)

Define

ζmi
(t) = kxm(t) cos(θi) + kym(t) sin(θi) + kdmi

(t). (19)



Now using the Euler identity we have

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

=

((

s−1
∑

m=0

amγm

(dmi
(t))µ/2

cos (αm + ζmi
(t))

)2

+

(

s−1
∑

m=0

amγm

(dmi
(t))µ/2

sin (αm + ζmi
(t))

)2)1/2
(20)

Let

ui(t) =













γ0

(d0i
(t))

µ/2 cos (α0 + ζ0i
(t))

...

γs−1

(ds−1i
(t))

µ/2 cos (αs−1 + ζs−1i(t))













and vi(t) =













γ0

(d0i
(t))

µ/2 sin (α0 + ζ0i
(t))

...

γs−1

(ds−1i
(t))

µ/2 sin (αs−1 + ζs−1i
(t))













(21)

Thus we have
∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

=
(

a
⊤
ui(t)u

⊤

i (t)a+ a
⊤
vi(t)v

⊤

i (t)a
)1/2

(22)

and

∂

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

∂a
=

a
⊤
ui(t)

√

a⊤ui(t)u⊤

i (t)a+ a⊤vi(t)v⊤

i (t)a
ui(t)

+
a
⊤
vi(t)

√

a⊤ui(t)u⊤

i (t)a+ a⊤vi(t)v⊤

i (t)a
vi(t).

(23)

Therefore

∇aΦi (α,a, ρi, θi, t) =

(
∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

− f(ρi, θi)

)

a
⊤
ui(t)

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

ui(t)

+

(
∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

− f(ρi, θi)

)

a
⊤
vi(t)

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

vi(t).

(24)

Similarly the gradients ∇αΦi (α,a, ρi, θi, t) are calculated as

∇αΦi (α,a, ρi, θi, t) =

(
∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

− f(ρi, θi)

) ∂

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

∂α

(25)



Note

∂

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

∂α
=

a
⊤
ui(t)

√

a⊤ui(t)u⊤

i (t)a+ a⊤vi(t)v⊤

i (t)a

∂a⊤ui(t)

∂α

+
a
⊤
vi(t)

√

a⊤ui(t)u
⊤

i (t)a+ a⊤vi(t)v
⊤

i (t)a

∂a⊤vi(t)

∂α

(26)

where

∂a⊤ui(t)

∂α
= − (a ◦ vi(t)) and

∂a⊤vi(t)

∂α
= (a ◦ ui(t)) . (27)

Here ◦ denotes the Hadamard product or the element-wise product. Therefore

∇fαΦi (α,a, ρi, θi, t) = −

(∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

− f(ρi, θi)

)

a
⊤
ui(t)

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

(a ◦ vi(t))

+

(∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

− f(ρi, θi)

)

a
⊤
vi(t)

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

(a ◦ ui(t)) .

(28)

B. Slow-Scale Motion Planning

We rewrite the slow-scale optimization in (11) as

min
r(t)

J =
∑

i

Φi (α,a, ρi, θi, t) +

s
∑

m=1

∫ t

t0

[rm(τ)− rm(t0)]
⊤ Sm [rm(τ)− rm(t0)] dτ. (29)

Thus we propose the following gradient flow to solve for the control:

ṙm(t) = −∇rm
J, ∀m = 0, . . . , s− 1 (30)

Substituting (29), the above equation can be rewritten as

ṙm(t) = −
∑

i

∇rm
Φi (α,a, ρi, θi, t) + vm(t) (31)

v̇m(t) = −2Sm (rm(t)− rm(t0)) . (32)

The gradients ∇rm
Φi (α,a, ρi, θi, t) are calculated as

∇rm
Φi (α,a, ρi, θi, t) =

(
∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

− f(ρi, θi)

) ∂

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

∂rm

(33)



Note

∂

∣

∣

∣

∣

∣

s−1
∑

m=0

am γm

(dmi
(t))µ/2

ej(αm+ζmi
(t))

∣

∣

∣

∣

∣

∂rm
=

a
⊤
ui(t)

√

u
⊤

i (t)aa
⊤
ui(t) + v

⊤

i (t)aa
⊤
vi(t)

∂a⊤ui(t)

∂rm

+
a
⊤
vi(t)

√

u
⊤

i (t)aa
⊤
ui(t) + v

⊤

i (t)aa
⊤
vi(t)

∂a⊤vi(t)

∂rm
.

(34)

Also note

∂a⊤ui(t)

∂rm
=









∂amγm (dmi
(t))−µ/2 cos (αm + ζmi

(t))

∂xm(t)

∂amγm (dmi
(t))−µ/2 cos (αm + ζmi

(t))

∂ym(t)









(35)

and

∂a⊤vi(t)

∂rm
=









∂amγm (dmi
(t))−µ/2 sin (αm + ζmi

(t))

∂xm(t)

∂amγm (dmi
(t))−µ/2 sin (αm + ζmi

(t))

∂ym(t)









(36)

Recall

dmi
(t) =

∥

∥

∥

∥

∥

∥





xm(t)

ym(t)



− ρi





cos(θi)

sin(θi)





∥

∥

∥

∥

∥

∥

2

and

ζmi
(t) = kxm(t) cos(θi) + kym(t) sin(θi) + kdmi

(t).

Now the partials can be computed as

∂amγm (dmi
(t))−µ/2 cos (αm + ζmi

(t))

∂xm(t)
=−

µamγm cos (αm + ζmi
(t)) (2xm(t)− 2ρi cos(θi))

4 (dmi
(t))µ/2+2

−
amγm sin (αm + ζmi

(t))
(

k cos(θi) +
k(2xm(t)−2ρi cos(θi))

2dmi
(t)

)

(dmi
(t))µ/2

(37)

∂amγm (dmi
(t))−µ/2 cos (αm + ζmi

(t))

∂ym(t)
=−

µamγm cos (αm + ζmi
(t)) (2ym(t)− 2ρi sin(θi))

4 (dmi
(t))µ/2+2

−
amγm sin (αm + ζmi

(t))
(

k sin(θi) +
k(2ym(t)−2ρi sin(θi))

2dmi
(t)

)

(dmi
(t))µ/2

(38)



∂amγm (dmi
(t))−µ/2 sin (αm + ζmi

(t))

∂xm(t)
=−

µamγm sin (αm + ζmi
(t)) (2xm(t)− 2ρi cos(θi))

4 (dmi
(t))µ/2+2

+
amγm cos (αm + ζmi

(t))
(

k cos(θi) +
k(2xm(t)−2ρi cos(θi))

2dmi
(t)

)

(dmi
(t))µ/2

(39)

∂amγm (dmi
(t))−µ/2 sin (αm + ζmi

(t))

∂ym(t)
=−

µamγm sin (αm + ζmi
(t)) (2ym(t)− 2ρi sin(θi))

4 (dmi
(t))µ/2+2

+
amγm cos (αm + ζmi

(t))
(

k sin(θi) +
k(2ym(t)−2ρi sin(θi))

2dmi
(t)

)

(dmi
(t))µ/2

(40)

C. Summary

In summary the proposed solution consists of the following process:

• Select an appropriate ǫ ≪ 1

• Simultaneously solve the

– Fast gradient flow for amplitude and phase

ǫȧ(t) = −
∑

i

∇aΦi (α,a, ρi, θi, t) , and (41)

ǫα̇(t) = −
∑

i

∇αΦi (α,a, ρi, θi, t) (42)

– Slow gradient flow for control input

ṙm(t) = −
∑

i

∇rm
Φi (α,a, ρi, θi, t) + vm(t) (43)

v̇m(t) = −2Sm (rm(t)− rm(t0)) . (44)

IV. NUMERICAL RESULTS

For numerical simulations we consider a 5 element beamforming array transmitting at 40 MHz. Given

in Fig. 3(a) is the desired beam pattern obtained by a linear array consisting of 5 elements. Initially the

agents are randomly positioned and they have random phase offsets. The initial beam pattern obtained

from the initial agent positions and phase offsets are given in Fig. 3(b). Finally given in Fig. 3(c) is the

reconstructed beam pattern obtained by implementing the proposed two time-scale optimization scheme.

Note that the reconstructed beam pattern clearly matches the desired beam pattern.

Given in Fig. 4 are the parameters obtained from implementing the proposed fast scale optimization

algorithm. Fig. 4(a) contains the amplitude for the each of the 5 array elements while Fig 4(b) contains

the phase.



V. CONCLUSION

Here we presented a two time-scale optimization algorithm for multi-agent coordination for the purpose

of distributed beamforming. Each agent is assumed to be randomly positioned with respect to each other

with random phase offsets and amplitudes. We propose a two time-scale optimization algorithm that

consists of a fast time-scale algorithm to solve for the amplitude and phase while a slow time-scale

algorithm to solve for the control required to re-position the agents. The numerical results given here

indicate that the proposed two time-scale approach is able to reconstruct a desired beam pattern. Future

work include considering positioning as well as synchronization uncertainties and errors. We would also

consider the uncertainties associated with channel model and the recruitment problem when the number
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(c) Final constructed beam pattern

Fig. 3. 2D beam pattern reconstructed using the proposed two time-scale approach
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Fig. 4. Evolution and amplitude and phase all 5 elements during the optimization process

of required array elements is unknown.
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