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The Quadratic-Quadratic Regulator Problem:

Approximating feedback controls for quadratic-in-state nonlinear systems

Jeff Borggaard and Lizette Zietsman

Abstract— Feedback control problems involving autonomous
quadratic systems are prevalent, yet there are only a limited
number of software tools available for approximating their
solution due to the complexity of the problem. This paper
represents a step forward in the special case where both
the state equation and the control costs are quadratic. As it
represents the natural extension of the linear-quadratic regulator
(LQR) problem, we describe this setting as the quadratic-
quadratic regulator (QQR) problem. This is significantly more
challenging and holds the LQR as special case that must be
solved along the way. We describe an algorithm that exploits the
structure of the QQR problem that arises when implementing
Al’Brekht’s method. This approach is amenable to feedback
laws with low degree polynomials but have a relatively modest
model dimension that could be achieved by modern model
reduction methods. This problem has an elegant formulation
and a solution that introduces several linear systems where
the structure suggests modern tensor-based linear solvers. We
demonstrate this algorithm on a suite of random test problems
then apply it to a distributed parameter control problem that
fits the QQR framework. Comparisons to linear feedback
control laws show a modest benefit using the QQR formulation.

I. MOTIVATION

Linear feedback control of autonomous nonlinear systems,

such as those describing the behavior of fluids, can be suf-

ficient to achieve stabilization–even for an unstable steady-

state solution [6], [9]–[11]. There is a shortage of software

tools for nonlinear problems in control and systems theory.

The general Matlab Nonlinear Systems Toolbox (NST) by

Krener [19] takes a broad step toward delivering useful tools

for a number of important problems. Since we inherently

encounter the curse of dimensionality in these problems,

there is also a need to develop specialized tools for important

classes of problems. This paper addresses this by specifically

solving the quadratic-quadratic regulator problem: minimiz-

ing a quadratic cost subject to a state equation with a

quadratic nonlinearity.

For example, linear feedback laws found by solving the

linear-quadratic regulator (LQR) problem compute the linear

feedback law as the solution to a single algebraic Riccati

equation and have the property that the linear portion of the

nonlinear system becomes stable [3]–[5], [23]. Unfortunately,
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for nonlinear systems, this only guarantees local stability.

Thus the ability of linear feedback to stabilize the steady-

state solution depends on the initial condition, which must

be sufficiently close to the steady-state. An alternative would

be to develop nonlinear feedback control laws that could

offer the ability to expand the radius of convergence (shown

with a simple example in [12]). However, these require us

to approximate solutions to the Hamilton-Jacobi-Bellman

(HJB) equations, e.g. [13], [21]. The HJB equations are

notoriously complex in the general case. Nevertheless, if one

considers the quadratic-quadratic regulator (QQR) problem,

with autonomous quadratic state equations and a quadratic

control objective, there is sufficient structure in polynomial

approximations based on Al’Brekht’s method [22] for poly-

nomial feedback laws to be computable for modest problem

sizes. The QQR problem also happens to be exactly what is

needed to solve discretized versions of distributed parameter

control problems where the nonlinearity is quadratic (such as

the Navier-Stokes equations used as our motivation above).

This is particularly true when linear feedback laws are being

based on LQR problems. As in the LQR case, suitable

model reduction methods [1], [2], [17] are essential to

forming a solution methodology for distributed parameter

control problems with quadratic nonlinearities. First of all,

the Riccati equation is still needed to compute the linear

term [7], [25], [26] and the curse-of-dimensionality still

appears with higher-order polynomial approximations of the

feedback law.

In this paper, we briefly outline the HJB equations, the

QQR problem, and polynomial approximations to the value

function and the feedback control operators. Our formulation

leads to a sequence of linear systems in Kronecker product

form after an initial solution to the algebraic Riccati equation.

As we shall see, a naı̈ve construction of these matrices and

other terms would quickly become prohibitive. However, the

structure lends itself to newly developed recursive tensor

linear algebra that avoids assembly and other taxing of

computer memory. We present a numerical study with a set

of randomly selected control problems to compare solutions

obtained by Krener’s NST [19], direct assembly and solution

to the Kronecker system, and the recursive tensor-based

algorithm using the tensor toolbox [18] and a recursive

blocked algorithm for systems with a special Kronecker sum

form [16].

II. BACKGROUND

For simplicity of exposition, we describe the nonlinear

optimal control problem and its computational challenges for
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systems modeled by autonomous systems of ordinary differ-

ential equations. This can be widely found in the literature

and we are reintroducing it here to set up our notation. The

problem is to find a control u(·) ∈ L2(0,∞;Rm) that solves

min
u

J(x,u) =

∫
∞

0

ℓ(x(t),u(t)) dt, (1)

where ℓ : R
n × R

m −→ [0,∞) is a prescribed control

objective, and minimization occurs subject to

ẋ(t) = Ax(t) +Bu(t) + f(x(t),u(t)), (2)

from x(0) = x0 ∈ R
n, where A ∈ R

n×n and B ∈ R
n×m

are constant matrices and f : Rn × R
m −→ R

n is Lipschitz

continuous and satisfies f(0,0) = 0 and ∇xf(0,0) = 0.

We define the value function v(x0) = J(x∗( · ;x0),u
∗(·))

to be the value of (1) when the optimal control u∗ and

corresponding state x∗ are found from the initial point x0.

Assume that the optimal control is given by the feedback

relation

u(t) = K(x(t)). (3)

For f , ℓ, and v smooth enough, and v convex, the feedback

relation (3) satisfies the HJB partial differential equations

0 =
∂v

∂x
(x) (Ax+BK(x) + f(x,K(x))) + ℓ(x,K(x)),

(4)

0 =
∂v

∂x
(x)

(

B+
∂f

∂u
(x,K(x))

)

+
∂ℓ

∂u
(x,K(x)). (5)

Ideally, we could solve the HJB equations simultaneously for

v and K. This would provide the desired feedback relation

u(t) = K(x(t)). The value function v can often serve as

a Lyapunov function to examine the region of attraction

for the controlled system. Unfortunately, the HJB equations

suffer from the curse of dimensionality as they are partial

differential equations in R
n. There have been studies that use

model reduction to replace the nonlinear dynamics in (2) with

high-fidelity, yet much lower order, reduced dynamics for

simple problems [21]. However, direct solution of the HJB

equations will still be a computational challenge even when

we can replace the Navier-Stokes equations with modest

reduced-order models on the order of 30–50.

Therefore, even with optimal reduced models, solving

the nonlinear optimal control problem (1)-(2) is intractable

for general nonlinearities. Fortunately, as we outline below,

for problems where f and ℓ have quadratic nonlinearities,

there is enough structure to compute nonlinear feedback

laws for modest sized problems (at least n = 50). This

provides a useful tool for reduced systems of flow equations.

Many linear feedback laws are computed from linearized and

reduced models of this size in the literature, e.g. [11].

Our simplification comes from using Kronecker products

(which have a long history in the control literature [14], [24].

Let X ∈ R
ix×jx and Y ∈ R

iy×jy , with entries xij and yij ,

respectively. Then X⊗Y ∈ R
ixiy×jxjy is the block matrix

X⊗Y ≡








x11Y x12Y · · · x1jxY

x21Y x22Y · · · x2jxY
...

...

xix1Y xix2Y · · · xixjxY







.

III. THE QUADRATIC-QUADRATIC REGULATOR

To simplify the expressions, we use the Kronecker prod-

uct description of the quadratic-quadratic regulator (QQR)

problem. Thus, we seek the control u(t) = K(x(t)) that is

the solution to

min
u

∫
∞

0

q′

2 (x(t)⊗ x(t)) + r′2 (u(t) ⊗ u(t)) dt (6)

subject to

ẋ(t) = Ax(t) +Bu(t) +N (x(t)⊗ x(t)) , (7)

from any x(0) = x0 ∈ R
n. In this formulation, the matrices

above are time-invariant with dimensions

A ∈ R
n×n, B ∈ R

n×m, N ∈ R
n×n2

,

q2 ∈ R
n2

×1, and r2 ∈ R
m2

×1

(and ′ denotes the transpose). This is merely for a conve-

nient representation for the algorithm below. Note that we

require the standard control systems properties required by

the linear-quadratic regulator (LQR) problem and these can

be readily checked with the identities q2 = vec(Q2) and

r2 = vec(R2) with the usual quadratic cost integrand being

x′Q2x+ u′R2u.

We now expand the value function as

v(x) = v′

2 (x⊗ x)
︸ ︷︷ ︸

v[2](x)

+v′

3 (x⊗ x⊗ x)
︸ ︷︷ ︸

v[3](x)

+ · · ·

and the feedback operator as

K(x) = k′

1x
︸︷︷︸

k[1](x)

+k′

2 (x⊗ x)
︸ ︷︷ ︸

k[2](x)

+k′

3 (x⊗ x⊗ x)
︸ ︷︷ ︸

k[3](x)

+ · · · .

Note that vd ∈ R
nd

×1 and kd ∈ R
nd

×m. The Hamiltonian-

Jacobi-Bellman equations for this problem now has the form

∂v

∂x
(x) [Ax+Bu+N(x⊗ x)]

+q′

2(x ⊗ x) + r′2(K(x) ⊗ K(x)) = 0,

(8)

∂v

∂x
(x) [B] + r′2K(x) = 0.

(9)

Substituting in the expansions for the value function v

and the feedback operator K into (8), then collecting O(x2)
terms, we have

v′

2 ((Ax +Bk1x)⊗ x+x⊗ (Ax +Bk1x))

+q′

2(x⊗ x) + r′2((k1x)⊗ (k1x)) = 0 (10)



which, using k1 = −R−1
2 B′V2 is equivalent to the algebraic

Riccati equation (ARE) for finding V2

A′V2 +V2A−V2BR−1
2 B′V2 +Q2 = 0.

Note that it is natural to use the efficient algorithms for

solving the ARE and set v2 = vec(V2).

A. Coefficients of vd+1

When we gather higher degree terms, we ignore those

terms in (8) that involve components of K that have yet to be

computed. Those terms will be updated from (9). The degree

three terms in (8) can then be written using the definition

Ac = A+Bk1 as

(Ac ⊗ In ⊗ In + In ⊗Ac ⊗ In + In ⊗ In ⊗Ac)
′

v3

= − (N′
⊗ In + In ⊗N′)v2.

(11)

Note that this is a simplification that is independent of k2

since collecting those terms then factoring leaves us with

identities following from (9) involving the v2, r2 and k1

terms that define k1. For example,

((Bk2)
′
⊗ In)v2 + (k′

2 ⊗ k′

1)r2 = 0.

This identity appears in all subsequent collections of similar

degree terms since the k1 term will always be matched up

with kd terms. This fact serves to decouple equations for

vd+1 in (8) from the equations for kd in (9).

To write the equations from matching higher degree terms

in a more compact way, we define the N-way Lyapunov

matrix or a special Kronecker sum [8] matrix,

Ld(X) ≡ X⊗ · · · ⊗ In
︸ ︷︷ ︸

d terms

+ · · ·+ In ⊗ · · · ⊗X
︸ ︷︷ ︸

d terms

. (12)

Then the calculation of v3 follows from solving an equation

of the form

L3(A
′

c)v3 = −L2(N
′)v2. (13)

Once we have v3, we can readily compute k2 as shown

in Section III-B. The other terms in the series expansion

of the value function lead to equations that have a similar

form. All of the left-hand-sides are generically the same

Ld+1(A
′

c)vd+1. However, the right-hand-sides of the equa-

tions gather more terms due to the r2 term in (8) and the

interactions of the previously computed nonlinear feedback

terms with previously computed terms of the value function

(that are known and moved to the right-hand-side). This

process is clarified from explicitly writing the next two terms

for v(x) below. For O(x4), we have

L4(A
′

c)v4 = −L3((Bk2 +N)′)v3 − (k′

2 ⊗ k′

2)r2, (14)

which can be solved for v4 once k2 is computed from the

solution v3 from (13), and

L5(A
′

c)v5 =− L4((Bk2 +N)′)v4 − L3((Bk3)
′)v3

− (k2 ⊗ k3 + k3 ⊗ k2)
′r2.

(15)

Again, once we compute k3 from v4, we have everything

we need to compute v5.

In general, while calculation of the coefficients vd are

described by large linear systems (Ld(A
′

c) ∈ R
nd

×nd

), there

is a great deal of structure. For example, consistent with

the remarks in [20], the eigenvalues of Ld(A
′

c) are merely

sums of combinations of the eigenvalues of Ac. Therefore,

since Ac is a stable matrix, Ld(A
′

c) will also be. It is also

immediately obvious that without the nonlinear term N in

our state equation, the right-hand-side in (13) would vanish

leading to v3 = 0. The remaining equations for vd+1 would

have homogeneous right-hand-sides and thus vd+1 = 0 for

d = 2 and higher. This is consistent with the LQR theory.

B. Coefficients of kd

We now turn our attention to using (9) to calculate kd from

vd+1. This is again straight-forward using the specialized

Kronecker sum operator,

kd = −R−1
2 (Ld+1(B

′)vd+1)
′

. (16)

C. Computing Right-Hand-Side Vectors

The assembly and solution of linear systems with the form

Ld+1(Ac)vd+1 = c (17)

is only feasible for small values of d and n. We denote these

computations by full Kronecker in Section IV. The advantage

of the Kronecker product structure is that we can perform

operations with Kronecker product matrices without actually

forming the large block matrix. The main issue that we deal

with in this section is calculating the terms on the right-hand-

sides of e.g. (13)–(15) or (16). Solution of the system (17)

is described in the next section.

To calculate c for (13)–(16) involves two types of terms.

The first involves the multiplication of a Kronecker form

with a vector r2. Recall, e.g. [14], that

(X⊗Y)r2 = vec(Y′RX), (18)

where R has the appropriate dimensions and r2 = vec(R).
Therefore, the terms involving r2 only require matrix mul-

tiplications and no assembly of the Kronecker product is

required.

The second type of term are products of the Kronecker

sum with a vd+1: Ld+1(X)vd+1. Using the definition of

(12), we have to calculate d+ 1 different multiplications of

the Kronecker products with vd+1. Using the fact that the

Kronecker product is associative, we write

Inℓ = In ⊗ · · · ⊗ In
︸ ︷︷ ︸

ℓterms

.

The multiplications can be reduced to three different cases

(X⊗Ind)vd+1, (Ind−ℓ⊗X⊗Inℓ)vd+1, and (Ind⊗X)vd+1.

Here the relation (18) and the associative law for Kronecker

products are useful. The first and last terms above can be

handled by the appropriate reshaping of vd+1 and multi-

plying with X (the multiplication by Ind is trivial). The



associative law allows us to handle all of the intermediate

terms recursively as

(Ind−ℓ ⊗X⊗ Inℓ)vd+1 = ((Ind−ℓ ⊗X)⊗ Inℓ)vd+1

= (Ind−ℓ ⊗ (X⊗ Inℓ))vd+1.

The grouping can be done to maximize the size of the free

identity matrix.

D. Linear System Solutions

The Kronecker structure leads to larger systems (17),

but are now ameneble to modern high performance algo-

rithms [16], [18], [24]. Many of these algorithms, e.g. [16]

utilize a real Schur factorization of the matrix Ac. For this

study, we used the recursive algorithms in [16] for Laplace-

like equations. Their software was trivially modified to take

advantage of the fact that the same term Ac appears in every

block and gave the system exactly the form (12).

IV. NUMERICAL RESULTS

We present two sets of results. The first is a challenging

verification test using randomly generated matrices. This is

challenging since the conditioning of these systems are poor

for many of our randomly generated samples. Our study is

reproducible since we reset the random seed before each test.

The second set a discretized control problem involving the

one-dimensional Burgers equation. The systems are much

better conditioned in this case and there is a notion of

convergence as the problem sizes in our tests grow.

A. Random System Study

In this section, we perform computational tests for both

performance and accuracy. For accuracy, we compare against

the feedback matrices computed using the Nonlinear Systems

Toolbox (NST) [19]. We note that the NST is designed for

a wide range of control problem formulations and general

nonlinearities. Thus it is not used as a performance measure

but rather to provide a sense of general speed and accuracy.

Since much of the use of the symbolic toolbox in NST is in

the preprocessing step, we remove this calculation from our

comparative timings (though provide those times separately

for completeness).

For reproducibility, we provide the source to generate our

numerical findings in Matlab below.

rng(0,’v5uniform’); % set random seed

A = rand(n,n);

B = rand(n,m);

N = rand(n,n*n);

Q = eye(n);

R = eye(m);

All computations were performed on a 2017 Macbook Pro

with a 3.1GHz Inter Core i7 processor and 16GB of RAM

using MATLAB version R2019b.

Our first set of tests computed the degree 2 feedback term,

k2, and the required v3 component of the value function.

Problem sizes from 6 to 20 were randomly generated and the

Matlab runtimes are reported in Table I. Generally speaking,

only the first significant digits or two of the CPU times are

meaningful since we only averaged the time over a small

set of experimental runs. The trend is clear, however, that

our QQR algorithm is exceptionally fast primarily due to

the careful work assembling the right-hand-sides and the

recursive blocked algorithms of Chen and Kressner [16]. The

computational trend for the QQR is even more pronounced

when we extend these tests to include both the degree 3

feedback term, k3, and the corresponding v4 component of

the value function (seen in Table II). The calculation of the

full Kronecker problem for n = 16 encountered a memory

limit error, so computations beyond that could not be carried

out. However, the recursive solver and specially tailored

matrix-vector products allowed us to continue calculations

well beyond the limits seen with the full Kronecker form. In

fact, we were able to solve an order n = 40 random system

with a degree d = 3 feedback law in 12.72 seconds and an

order n = 30 random system with a degree d = 4 feedback

law in 142.26 seconds. This demonstrates that modest size

problems in the QQR framework can be readily incorporated

into control design workflows.

TABLE I

RANDOM: CPU TIME FOR DEGREE 2 TERMS

n recursive full Kronecker NST (symbolic calc.)

6 0.03584 0.00152 0.0123 (0.5665)
8 0.03958 0.00552 0.0258 (0.9183)
10 0.03531 0.02020 0.0515 (1.4596)
12 0.04466 0.07945 0.1006 (2.2126)
14 0.05852 0.22527 0.2528 (3.6933)
16 0.06112 0.67803 0.5932 (5.6935)
18 0.07812 1.55314 1.2353 (8.8498)
20 0.09467 3.50995 2.5385 (13.3123)

TABLE II

RANDOM: CUMULATIVE CPU TIME FOR DEGREE 3 TERMS

n recursive full Kronecker NST (symbolic calc.)

6 0.00700 0.04937 0.0333 (1.6310)
8 0.04363 0.87317 0.1219 (4.0723)
10 0.06942 6.6439 0.4928 (9.1590)
12 0.09098 53.2562 1.9644 (20.2047)
14 0.21810 588.826 7.1282 (41.0284)
16 0.53792 not computed 23.9001 (85.0918)
18 0.63851 not computed 68.1008 (174.518)
20 0.82421 not computed 170.217 (352.068)

There is no truth model for testing the accuracy of the

HJB series solution, so we relied on the well-tested NST

software to compare against. Therefore, relative ℓ2 errors

are those reported with respect to NST solutions. This was a

challenge since NST computes its solutions in a compact

Taylor series format (returning coefficients of the unique

monomial terms) whereas the Kronecker formulation intro-

duces a lot of repeated monomials. Thus there are multiple

correct representations for the coefficients (even though only

one unique representation will be calculated). To compare to

the coefficients in compact Taylor series form required us to

accumulate all of the coefficients for equivalent monomials to



generate the comparisons. The relative errors in ℓ2 are those

of the summed coefficients (i.e. summing the coefficients for

x1x2 with those from x2x1 etc.). Tables III and IV show

very good agreement for small problems. Note that both

the full Kronecker system and the NST systems generated

condition number warnings for n = 16 and n = 20 for

the d = 2 solutions and the NST generated an additional

warning when d = 3 for the n = 18 case. These warnings did

not occur in the recursive blocked algorithms since the full

system was never assembled. However, the systems that are

solved in the recursive and full Kronecker columns are the

same, so many of the large relative errors can be explained

by ill-conditioning. Therefore, our next numerical example

in Section IV-B will have more desirable control-theoretic

properties.

TABLE III

RANDOM: RELATIVE ERRORS IN k[2] AND v[3]

recursive full Kronecker

n error k[2] error v[3] error k[2] error v[3]

6 4.09e-12 3.09e-12 3.88e-12 2.61e-12
8 1.70e-11 1.67e-11 2.05e-11 2.66e-11

10 4.92e-08 4.95e-08 1.25e-06 1.27e-06
12 1.19e-10 1.04e-10 3.93e-10 3.72e-10
14 9.26e-07 9.95e-07 7.42e-06 7.88e-06
16 1.06e-04 1.13e-04 3.80e-03 3.97e-03
18 1.44e-04 1.50e-04 5.48e-03 5.75e-03
20 2.65e-02 3.23e-02 1.68e+00 1.70e+00

TABLE IV

RANDOM: RELATIVE ERRORS IN k[3] AND v[4]

recursive full Kronecker

n error k[3] error v[4] error k[3] error v[4]

6 1.68e-10 1.11e-10 3.37e-11 2.71e-11
8 9.18e-10 6.85e-10 1.17e-09 1.00e-09
10 7.52e-04 9.11e-04 2.32e-03 2.81e-03
12 7.21e-10 1.04e-09 1.15e-07 1.28e-07
14 7.95e-04 5.80e-04 1.86e-02 1.38e-02
16 2.11e-01 2.61e-01 not computed not computed
18 7.90e+00 1.15e+00 not computed not computed

B. Burgers Equation

As a more structured test problem, we consider the QQR

problem with a discretization of the Burgers equation. This

test problem has a long history in the study of control

for distributed parameter systems, e.g. [27], including the

development of effective computational methods, e.g. [15].

Thus, we consider

We consider the specific problem found in [12] but with

two control inputs (m = 2) that consist of uniformly

distributed sources over disjoint patches. Thus, we have

a bounded input operator. The formal description of the

problem is

min
u

J(z, u) =

∫
∞

0

(∫ 1

0

z2(ξ, t) dξ + u′(t)u(t)

)

dt

subject to

ż(x, t) = ǫzxx(x, t) −
1

2

(
z2(x, t)

)

x

+
m∑

k=1

χ[(k−1)/m, k/m](x)uk(t)

z(·, 0) = z0(·) ∈ H1
per(0, 1),

where χ[a,b](x) is the characteristic function over [a, b]. We

discretized the state equations with n linear finite elements,

set m = 2, and chose ǫ = 0.001 to make the nonlinearity

significant.

The discretized system fits within the QQR framework (6)-

(7). The matrices A, B and N come from the finite element

approximation. The matrix Q2 is the finite element mass

matrix and the matrix R2 = Im.

With the same rationale, the NST solution is used as the

truth model and used to compute relative errors. It is evident

that a well-conditioned feedback control problem produces

much more consistent errors. As expected, the n = 16
case also breaks down here (more memory is required since

m = 2), but the accuracy of the recursive block algorithm

is easily observed in Tables V and VI. There is very little

growth in the discrepancy between the two solutions with

increasing values of n. This suggests a convergence to an

infinite-dimensional representation that we will investigate

in future studies.

TABLE V

BURGERS: RELATIVE ERRORS IN k[2] AND v[3]

recursive full Kronecker

n error k[2] error v[3] error k[2] error v[3]

10 6.34e-12 3.99e-12 6.34e-12 3.99e-12
12 1.02e-11 4.94e-12 1.02e-11 4.94e-11
14 2.53e-11 1.85e-11 2.53e-11 1.85e-11
16 2.33e-11 1.24e-11 not computed not computed
18 3.63e-11 1.76e-11 not computed not computed
20 7.43e-11 4.44e-11 not computed not computed

TABLE VI

BURGERS: RELATIVE ERRORS IN k[3] AND v[4]

recursive full Kronecker

n error k[3] error v[4] error k[3] error v[4]

10 1.21e-12 3.02e-12 1.21e-12 3.02e-12
12 1.74e-11 4.79e-12 1.74e-11 4.80e-11
14 3.66e-11 1.67e-11 3.66e-11 1.67e-11
16 3.07e-11 1.00e-11 not computed not computed
18 4.76e-11 1.52e-11 not computed not computed
20 1.22e-10 4.60e-11 not computed not computed

Instead of presenting both degree 2 and the accumulation

up to degree three, we only report the accumulated times

up to degree 3 in Table VII. Again, the computational speed

to solve the QQR problem for the degree 2 and degree 3

feedback terms is impressive.

To test the possibility of using this software for larger

problems, we increased the degree and order to see what

sizes could be computed in two to three minutes for this



TABLE VII

BURGERS: CUMULATIVE CPU TIME FOR DEGREE 3 TERMS

n recursive full Kronecker NST (symbolic calc.)

10 0.07355 6.2939 0.5367 (12.0943)
12 0.06801 49.9701 2.2008 (26.7163)
14 0.19543 474.602 7.4379 (50.843)
16 0.39385 not computed 25.9467 (108.846)
18 0.42039 not computed 69.2946 (203.07)
20 0.50770 not computed 179.731 (388.069)

problem. We found that we could solve a degree d = 4
feedback law for order n = 32 and m = 2 in 182.9

seconds. Furthermore, a degree d = 3 feedback law for

order n = 64 and m = 2 was computed in 130.2 seconds.

Thus, some higher degree control laws are feasible with

modest discretizations in one-dimensional problems. It is

reasonable to expect that this would be an attractive option

to try when developing feedback control laws from modest

reduced models of fluid systems.

V. CONCLUSIONS AND FUTURE WORK

We presented a special formulation of the Al’Brekht poly-

nomial approximation for the quadratic-quadratic regulator

problem. Writing the expansions in terms of Kronecker

products leads to a series of progressively larger linear

systems for the next terms in the expansion. While easy

to write down and implement, efficiency is only achieved

by exploiting new numerical linear algebra tools that avoid

the assembly of the large, dense systems [16], [18]. Re-

peatable numerical experiments with random linear systems

of different order confirm the efficiency of our approach.

We performed a comparison with a general, well-developed

software tool, the Nonlinear Systems Toolbox [19], to verify

our implementation. Our solution method was competitive

with NST in terms of CPU time even if we neglect the

overhead in using Matlab’s symbolic toolbox (we described

an effective means to compute the derivatives of the system

that are required by NST using automatic differentiation in

a previous paper [12]).

Our future work will evolve down three paths. The first

will be to better understand the numerical trade-offs between

our use of [16] for our application and a linear system that

is built for a compact Taylor series representation of the

problem. This compact Taylor series removes redundant vari-

ables (e.g. coefficients of x1x2 and x2x1 can be combined).

Since NST uses the compact Taylor series approach, we have

already built the restriction and prolongation operators be-

tween polynomials up to order 5 for our verification. Part of

this will include a better understanding of the discrepancies

between the solutions for some of our randomly generated

test cases.

Our second path is to consider natural generalizations

to include in this software framework. This would include

the investigation of more general control costs, addition of

descriptor systems [28], and the related observer problem.

Finally, we will apply this to more significant applications

than the one-dimensional Burgers equation. In particular,

study how this work could be used in conjunction with

reduced models of complex flows that result in quadratic-

in-state systems.

This software is available for download at

https://github.com/jborggaard/QQR.git.
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