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Robust data-driven state-feedback design

Julian Berberich1, Anne Koch1, Carsten W. Scherer2, and Frank Allgöwer1

Abstract—We consider the problem of designing robust state-
feedback controllers for discrete-time linear time-invariant sys-
tems, based directly on measured data. The proposed design
procedures require no model knowledge, but only a single open-
loop data trajectory, which may be affected by noise. First, a
data-driven characterization of the uncertain class of closed-
loop matrices under state-feedback is derived. By considering
this parametrization in the robust control framework, we design
data-driven state-feedback gains with guarantees on stability
and performance, containing, e.g., the H∞-control problem as a
special case. Further, we show how the proposed framework can
be extended to take partial model knowledge into account. The
validity of the proposed approach is illustrated via a numerical
example.

I. INTRODUCTION

Recently, the design of controllers directly from measured

data has received increasing interest [1], [2]. While established

methods, e.g., those based on reinforcement learning, rarely

address closed-loop guarantees, there has been a renewed

effort to provide such guarantees using novel statistical estima-

tion techniques [3], [4], [5], [6]. Potential alternatives are, e.g.,

robust control with prior set membership identification [7],

which is however well-known to be computationally demand-

ing, and unfalsification-based approaches [8], which typically

require infinitely long data for closed-loop guarantees. In

general, providing non-conservative end-to-end guarantees for

the closed loop using noisy data of finite length is an open

problem, even if the data is generated by a linear time-invariant

(LTI) system.

A promising approach towards this goal relies on behavioral

systems theory. In [9], it was proven that the vector space of all

input-output trajectories of an LTI system is spanned by time-

shifts of a single measured trajectory, given that the respective

input signal is persistently exciting. Thus, a single data trajec-

tory can be used to characterize an LTI system, without any

prior identification steps. Recently, there have been various
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contributions which consider this result in the context of data-

driven system analysis and control, including dissipativity

verification from measured data [10] or an extension of [9]

to certain classes of nonlinear systems [11]. Moreover, the

recent work [12] derives a simple data-dependent closed-loop

parametrization of LTI systems under state-feedback. This

parametrization is used to solve various control problems from

data, including stabilization and linear-quadratic regulation.

However, no meaningful guarantees were given in the presence

of noisy data.

It is the goal of this paper to provide non-conservative

end-to-end guarantees for data-driven control. To be more

precise, we employ a single noisy input-state trajectory of

finite length to design controllers which guarantee closed-loop

stability and performance for all systems which are consistent

with the measured data and the assumed noise bound. This

is achieved by extending the approach of [12] to account for

noise and applying robust control techniques to the resulting

uncertain system class. Another recent paper [13] considers

data-driven analysis and control with not persistently exciting

data. In particular, it is shown for noise-free data that certain

control problems can be solved from data, even if the system

cannot be uniquely identified, thus illustrating advantages of

direct data-driven control. Similarly, the results of this paper

do not require persistence of excitation explicitly. Moreover,

our results lead to simple design procedures for direct data-

driven control with desirable closed-loop guarantees, and are

thus a promising alternative to identification-based control.

The paper is structured as follows. After stating the problem

formulation in Section II, we use noisy data to describe the

uncertain closed loop under state-feedback, and we apply

known robust control methods to design controllers with

stability and performance guarantees in Section III. Moreover,

we extend the proposed, purely data-driven approach to sys-

tems with mixed data-driven and model-based components.

In Section IV, we apply the robust state-feedback design

techniques successfully to an unstable example system. The

paper is concluded in Section V.

II. PRELIMINARIES

We denote the n×n identity matrix by In, where the index

is omitted if the dimension is clear from the context. Further,

A⊥ denotes a matrix containing a basis of the kernel of A.

We write ℓ2 for the space of square-summable sequences. In

a linear matrix inequality (LMI), ∗ represents blocks, which

can be inferred from symmetry.
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from AACC must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

http://arxiv.org/abs/1909.04314v3


2

Moreover, we define, for elements {xk}
i+L+N−2

k=i of a

sequence x, the Hankel matrix

XN
i,L :=











xi xi+1 . . . xi+N−1

xi+1 xi+2 . . . xi+N

...
...

. . .
...

xi+L−1 xi+L . . . xi+L+N−2











.

That is, the matrix XN
i,L starts with the element xi and has L

rows and N columns. As a shorthand notation, we abbreviate

N -windows of x, starting at i = 0 and i = 1, by

X = XN
0,1 =

[

x0 x1 . . . xN−1

]

,

X+ = XN
1,1 =

[

x1 x2 . . . xN

]

,

respectively. In the present paper, we consider LTI systems of

the form

[

xk+1

zk

]

=

[

Atr Bw Btr

C Dw D

]





xk

wk

uk



, (1)

where xk ∈ R
n is the state, wk ∈ R

mw is the disturbance,

uk ∈ R
m is the control input, and zk ∈ R

pz is the performance

output. We design state-feedback controllers uk = Kxk to

control the system (1). Our design procedures are purely

data-driven and do not require knowledge of the true system

matrices Atr, Btr. We do, however, assume that the matrices

Bw, C,Dw, D are known. For our purposes, Bw is essentially

a parameter to model the influence of the disturbance, whereas

C,Dw, D constitute a user choice for performance. In this pa-

per, we use the following definition of persistence of excitation

of the data under consideration.

Definition 1. The sequence {xk, uk}
N−1

k=0
is called persistently

exciting if the matrix

[

X

U

]

has full row rank.

According to [9], controllability and a certain rank property

of the input are sufficient for persistence of excitation.

Theorem 2 ([9, Corollary 2]). If
(

Atr,
[

Btr Bw

])

is con-

trollable and the matrix
[

WN−n
0,n+1

UN−n
0,n+1

]

has full row rank, then {xk, uk}
N−1

k=0
is persistently exciting.

Definition 1 differs from the notion of persistence of excita-

tion considered in [9], which concerns only the input data, and

is preferred in the present paper for convenience. In [12], it is

shown how a single, persistently exciting open-loop trajectory

can be employed to recover the system matrices of an LTI

system. Furthermore, a linear parametrization of the closed

loop under state-feedback is derived, depending also only on

a single open-loop data trajectory. It is the contribution of

the present paper to extend the framework of [12] in order

to provide robust stability and performance guarantees in the

presence of noise. In contrast to [12], persistence of excitation

will generally not be required for our results.

Throughout this paper, we consider the following scenario:

From simulation or an experiment, a single open-loop input-

state sequence {xk, uk}
N
k=0 is obtained as a trajectory of (1)

for some unknown disturbance {ŵk}
N−1

k=0
. This trajectory is

used directly for robust controller design, without prior system

identification. The only available information on the distur-

bance realization is the following bound on the matrix

Ŵ =
[

ŵ0 ŵ1 . . . ŵN−1

]

.

Assumption 3. The matrix Ŵ is an element of

W =
{

W ∈ R
mw×N

∣

∣

∣

[

W

I

]⊤ [

Qw Sw

S⊤
w Rw

] [

W

I

]

� 0
}

,

for some known matrices Qw ∈ R
mw×mw , Sw ∈ R

mw×N ,

Rw ∈ R
N×N with Rw ≻ 0.

Through Assumption 3 it is assumed that the unknown

disturbance realization, which affects the measured data, lies

in some known set which is described by a quadratic matrix

inequality. Implicitly, Ŵ ∈ W implies a quadratic bound

on the sequence {ŵk}
N−1

k=0
and encompasses many practical

bounds as special cases. For instance, if the maximal singular

value of Ŵ is bounded as σmax(Ŵ ) ≤ w̄, then Ŵ ∈ W
holds with Qw = −I , Sw = 0, Rw = w̄2I . More generally,

a description of the form Ŵ ∈ W provides a flexible

framework to model general noise signals, in particular when

multiple quadratic matrix inequalities are combined. It is an

interesting aspect for future research to derive suitable matrices

Qw, Sw, Rw for different, practically relevant scenarios such

as norm bounds on the sequence {ŵk}
N−1

k=0
.

III. DATA-DRIVEN STATE-FEEDBACK

In this section, we consider the design of state-feedback

gains, based directly on measured data which is perturbed by

a disturbance satisfying Assumption 3. First, we derive a data-

driven characterization of the uncertain closed loop, using a

single open-loop data trajectory. Thereafter, we apply known

robust control methods to this parametrization in order to

design state-feedback controllers which guarantee stability and

performance for all closed-loop matrices that are consistent

with the measured data. Finally, we extend the proposed

framework to systems with mixed data-driven and model-

based components.

A. Uncertain closed-loop parametrization

In the following, we extend [12] by characterizing the

closed-loop dynamics of (1) under state-feedback, using noisy

measurements. Let {xk, uk}
N
k=0

be a measured trajectory

of (1), corresponding to an unknown disturbance realization

Ŵ . We define ΣX,U as the set of all pairs (A,B) that are

consistent with the data {xk, uk}
N
k=0

for some noise instance

W ∈ W , i.e.,

ΣX,U = {(A,B) | X+ = AX + BU +BwW, W ∈ W}.

Using fixed data matrices X and U , ΣX,U parametrizes the

unknown system matrices A and B via W . By assumption, the

true disturbance realization Ŵ satisfies X+ = AtrX+BtrU+
BwŴ and Ŵ ∈ W ; therefore, the true pair (Atr, Btr) is an

element of ΣX,U . Furthermore, for some state-feedback gain
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K , we define the set of closed-loop matrices that are consistent

with the data as

ΣK
X,U = {AK | AK = A+BK, (A,B) ∈ ΣX,U}.

In the following, we show that an exact parametrization of

ΣK
X,U can be constructed directly from open-loop data. To

this end, for some matrix G ∈ R
N×n, we define AG as the

set of matrices AG ∈ R
n×n such that

AG = (X+ −BwW )G, (2)

for some W ∈ W satisfying

(X+ −BwW )

[

X

U

]⊥

= 0. (3)

Theorem 4. If G ∈ R
N×n and K ∈ R

m×n satisfy
[

X

U

]

G =

[

I

K

]

, (4)

then ΣK
X,U = AG.

Proof. First, we note that the constraint (3) is equivalent to

the implication
[

X

U

]

Ṽ = 0 ⇒ (X+ −BwW )Ṽ = 0,

for any matrix Ṽ with N rows. By the Fredholm alternative,

this is in turn equivalent to the existence of a solution V to

the system of linear equations

V

[

X

U

]

= X+ −BwW. (5)

Proof of Σ
K

X,U ⊆ AG: Let AK ∈ ΣK
X,U , i.e., there exist

matrices A,B as well as W ∈ W such that

AK = A+BK, (6)

X+ = AX +BU +BwW. (7)

Then, it follows that

AK
(6)
= A+BK =

[

A B
]

[

I

K

]

(4)
=

[

A B
]

[

X

U

]

G

(7)
= (X+ −BwW )G.

It remains to show that W satisfies (3) or, equivalently, there

exists V such that (5) holds. It follows directly from (7) that

V =
[

A B
]

solves (5), which thus proves AK ∈ AG.

Proof of AG ⊆ Σ
K

X,U: Let AG ∈ AG, i.e., there exists W ∈
W such that (2) and (3) hold. We need to show the existence

of matrices A,B as well as W̃ ∈ W such that

A+BK = (X+ −BwW )G,

X+ = AX +BU +BwW̃ .

If we choose W̃ = W , these equations are equivalent to

[

A B
]

[

X I

U K

]

= (X+ −BwW )
[

I G
]

.

Using (4), this is in turn equivalent to

[

A B
]

[

X

U

]

[

I G
]

= (X+ −BwW )
[

I G
]

. (8)

Since AG ∈ AG, there exists a solution V to (5). Hence,

the choice
[

A B
]

= V satisfies (8), which implies AG ∈
ΣK

X,U .

Theorem 4 provides an exact parametrization of the uncer-

tain closed loop under a fixed state-feedback K , using a single

open-loop trajectory of the unknown system. In particular,

no closed-loop measurements and no model knowledge are

required to construct the set AG, which parametrizes the

uncertain closed loop. This set relies on fixed data matrices X

and U , which are obtained offline, and is parametrized via the

disturbance W ∈ W satisfying (3). The equation (3) ensures

that the matrices in AG contain only those W ∈ W for which

there exist matrices A,B satisfying the system dynamics.

In general, the condition (4) only requires that X has full

row rank, but not necessarily that the data are persistently

exciting. Nevertheless, if {xk, uk}
N−1

k=0
is persistently exciting,

then, for any state-feedback K , (4) can be solved for G, i.e.,

any possible closed-loop matrix can be constructed. Equiv-

alently, the set of all AG ∈ AG with G ∈ R
N×n satisfying

XG = I is equal to the set of all possible closed-loop matrices

under state-feedback.

Corollary 5. If {xk, uk}
N−1

k=0
is persistently exciting, then it

holds that

{AG ∈ AG | G ∈ R
N×n, XG = I}

={AK ∈ ΣK
X,U | K ∈ R

m×n}.
(9)

Proof. This follows directly from Theorem 4.

Corollary 5 suggests that the set AG can be employed to

design controllers with robustness guarantees for all closed-

loop matrices in ΣK
X,U , by optimizing over the parameter

G instead of the gain K . If the data are not persistently

exciting, then (9) holds with ”⊆” instead of ”=”, since AG

contains only closed-loop matrices resulting from feedback

gains K of the form K = UG (compare (4)). In this case,

Theorem 4 can still be used for robust controller design

since, for any fixed K = UG, AG captures the full closed-

loop uncertainty induced by the noise, i.e., AG = ΣK
X,U .

However, the conservatism of robust controller design based

on Theorem 4 increases if the data are not persistently exciting

since there may exist a controller K which, e.g., renders all

matrices in ΣK
X,U stable, but for which there exists no G

satisfying (4).

The disturbance W parametrizing AG is not only restricted

by W ∈ W but also via the affine constraint (3) and therefore,

the construction of AG requires the computation of the kernel

of
[

X⊤ U⊤
]⊤

, which may be undesirable from a numerical

viewpoint. In Sections III-B and III-C, we employ a superset

of AG to derive simple robust controller design procedures for

closed-loop stability and performance, respectively.

B. Robust state-feedback for stability

In this section, we apply known robust control methods to

render all matrices in AG stable. To facilitate the design, we

consider

As
G = {AG | AG = (X+ −BwW )G, W ∈ W}, (10)
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which is a superset of the uncertain closed loop AG, i.e., AG ⊆
As

G. The difference between As
G and AG is that the latter

considers only those disturbances W ∈ W , which satisfy the n

constraints defined by (3). Hence, As
G is in general larger than

AG and, therefore, controller design based on As
G is generally

more conservative than a design based on AG. Nevertheless,

As
G admits a simpler parametrization and can be translated

directly into a standard robust control format. Further, as we

will see in Section IV, considering As
G instead of AG leads

to meaningful robust controllers also for practical examples.

Providing an exact quantification of the conservatism induced

by this replacement will be the subject of future research.

In the following, we exploit that the parametrization As
G is

equivalent to a particular lower linear fractional transformation

(LFT) (compare [14, Chapter 10]). To be more precise, the

matrices in As
G can be described as a lower LFT of a nominal

closed-loop system depending on G with the disturbance W ,

i.e.,
[

xk+1

z̃k

]

=

[

X+G Bw

−G 0

] [

xk

w̃k

]

,

w̃k = Wz̃k,

(11)

where W ∈ W . It follows from Theorem 4 that, if G satisfies

XG = I , the above LFT contains all potential closed-loop

systems under control with state-feedback K = UG. The

following result exploits this fact by using robust control

methods to design a stabilizing controller parameter G for the

LFT (11), which hence stabilizes all elements of ΣK
X,U .

Corollary 6. If there exist X ≻ 0, G ∈ R
N×n such that

XG = I (12)

as well as









∗ ∗
∗ ∗
∗ ∗
∗ ∗









⊤







−X 0 0 0
0 X 0 0
0 0 Qw Sw

0 0 S⊤
w Rw

















I 0
X+G Bw

0 I

−G 0









≺ 0,

(13)

then A+BK with K = UG is stable for all (A,B) ∈ ΣX,U .

Proof. This follows from an application of known robust

control methods to the system (11) (cf. [15], [16]).

Corollary 6 applies known robust control methods to design

state-feedback controllers which robustly stabilize all elements

of As
G. If K is designed according to Corollary 6, then (4)

holds and hence, Theorem 4 leads to ΣK
X,U = AG which

thus implies ΣK
X,U = AG ⊆ As

G. This guarantees stability

of all closed-loop matrices ΣK
X,U that are consistent with the

measured data. Similar to Theorem 4, Corollary 6 does not

require persistently exciting data explicitly. Thus, it may be

possible to find a controller K which stabilizes all elements

of ΣK
X,U , even if persistence of excitation does not hold, i.e.,

if the data is not sufficiently rich for system identification.

Similar phenomena were analyzed for system analysis and

control from noise-free data in [13], where also full row rank

of X was sufficient to design stabilizing controllers from data.

Nevertheless, persistence of excitation is required for equal-

ity in (9), i.e., to construct any closed-loop system (cf. Corol-

lary 5), and thus, it enhances feasibility of (13). In particular,

if the data are persistently exciting and there exists a controller

which stabilizes all matrices in As
G with a common Lyapunov

function, then (12) and (13) are feasible. Hence, Corollary 6

contains two main sources of conservatism: a) the difference

between As
G and ΣK

X,U and b) the fact that a common Lya-

punov function is employed for stabilization, similar to simple

model-based robust controller design methods. Nevertheless,

Corollary 6 provides computationally tractable conditions,

based directly on open-loop data, to design controllers with

stability guarantees.

Remark 7. Although (13) is not an LMI, it is routine to

transform it into one following the same steps as in model-

based robust state-feedback design (compare [15], [16]). To be

more precise, after performing a congruence transformation

on (13) with diag(X−1, I) and applying the Schur complement

twice, the nonlinear matrix inequality (13) leads to the LMI









−Y −M⊤S⊤
w M⊤X⊤

+ M⊤

−SwM Qw B⊤
w 0

X+M Bw −Y 0
M 0 0 −R−1

w









≺ 0 (14)

in the variables Y = X−1,M = GX−1. Further, multi-

plying (12) by Y from the right yields the linear equality

constraint XM = Y . Together with the LMI (14), this leads to

a semidefinite program whose feasibility can be checked using

standard solvers. The stabilizing state-feedback gain can then

be recovered as K = UMY−1.

Corollary 6 suggests a valuable alternative to sequential

system identification and stabilizing robust control. In par-

ticular, in the presence of deterministic noise, identification-

based methods are usually either computationally intractable,

overly conservative, or they admit no guarantees from finite

data. Essentially, Corollary 6 is a computationally tractable

alternative to robust controller design based on set membership

estimation, which relies on an explicit construction of the set

ΣX,U [7]. Further alternatives include unfalsification-based

control, which typically requires infinitely long data and a

prescribed controller structure for closed-loop guarantees [8],

[17], or a stochastic setting, where recent work has addressed

finite-time guarantees on system identification with sequential

robust control [3], [4], [5], [6]. The latter results are based

on sophisticated statistical analysis and many of them rely

on restrictive assumptions, such as the availability of multiple

independent data trajectories, each of which only supplies one

data tuple to the estimator. On the contrary, our approach relies

on simple matrix manipulations combined with existing robust

control methods and requires only a single data trajectory of

finite length. Despite these advantages, the presented approach

requires state measurements which may be restrictive in prac-

tice. Extending the results in this paper to input-output data is

an important aspect for future research.

Remark 8. For the state-feedback stabilization problem under

additive state measurement noise, [12] provides sufficient
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conditions for closed-loop stability. However, this result relies

on assumptions that cannot be verified from measured data.

Moreover, in contrast to the approach of [12], an extension

of Corollary 6 to more general (robust) control objectives is

straightforward.

C. Robust state-feedback for performance

Next, we consider the system (1) including the performance

channel w 7→ z. The goal is to use data {xk, uk}
N
k=0 of (1), af-

fected by noise satisfying Assumption 3, in order to design K

such that the closed-loop matrix AK is stable and the following

quadratic performance specification on (1) is guaranteed for all

AK ∈ ΣK
X,U .

Definition 9. We say that the closed-loop system (1) with

state feedback uk = Kxk satisfies quadratic performance with

index P =

[

Q S

S⊤ R

]

, where R � 0, if there exists an ε > 0

such that
∞
∑

k=0

[

wk

zk

]⊤ [

Q S

S⊤ R

] [

wk

zk

]

≤ −ε

∞
∑

k=0

w⊤

k wk (15)

for all w ∈ ℓ2.

Important special cases of Definition 9 are Q = −γ2I, S =
0, R = I for the H∞-control problem and Q = 0, S =
−I, R = 0 for closed-loop strict passivity. Note that the

disturbance w enters the present problem setting in two differ-

ent ways. First, it perturbs the measured input-state trajectory

during the initial data generation for which w is bounded as

W ∈ W . Second, it enters the control objective of achieving

quadratic performance of the channel w 7→ z. For instance,

a desired H∞-performance of this channel corresponds to a

robustness objective for the closed loop with respect to noise.

Similar to Section III-B, the uncertain closed loop of (1),

including the performance channel w 7→ z, can be written as a

lower LFT. To be more precise, for a state-feedback gain K =
UG, where G satisfies I = XG, a superset of the uncertain

closed loop from w to z can be parametrized as




xk+1

zk
z̃k



 =





X+G Bw Bw

C +DUG Dw 0
−G 0 0









xk

wk

w̃k



,

w̃k = Wz̃k, (16)

for W ∈ W . The above system contains two disturbance in-

puts: w to model the performance channel w 7→ z, representing

the control objective of closed-loop quadratic performance,

and w̃ to model the uncertainty originating from the noisy

data, similar to the LFT (11). The following result derives

state-feedback controllers with robust performance for (16).

Corollary 10. If there exist X ≻ 0, G ∈ R
N×n, λ > 0, such

that (17) and

XG = I (18)

hold, then, for any (A,B) ∈ ΣX,U ,

i) A+BK with K = UG is stable,

ii) (1) with uk = Kxk satisfies quadratic performance with

index P .

Proof. The result follows from known robust control methods

(cf. [15], [16]).

Corollary 10 applies robust control methods to design

controllers which guarantee robust closed-loop performance

for all matrices in As
G and hence, according to Theorem 4,

for all closed-loop matrices ΣK
X,U consistent with the data

(compare the discussion after Corollary 6). This implies that

the closed-loop channel w 7→ z satisfies quadratic performance

over an infinite time-horizon for arbitrary disturbance inputs

which are not required to satisfy a bound of the form W ∈ W ,

compare Definition 9. In order to achieve this goal, a data

trajectory of finite length and the (finite-horizon) assumption

Ŵ ∈ W on the disturbance generating the data are sufficient. It

is straightforward to extend Corollary 10 to design controllers

with performance guarantees for the channel wp 7→ z, where

wp is an exogenous input different from the noise perturbing

the initial data trajectory, i.e., wp 6= w. Further, following the

same steps as in Remark 7, the nonlinear matrix inequality (17)

can be transformed into (19), which is an LMI in the variables

Y = X−1,M = GX−1 for a fixed multiplier λ. Thus, the

proposed feasibility problem can be solved via a line-search

over λ.

D. Systems with partial model knowledge

We conclude the section by presenting an extension of the

proposed framework to systems with mixed data-driven and

model-based components. To this end, we consider systems

of the form





xk+1

x̃k+1

zk



 =





A1 A2 Bw1 B1

A3 A4 Bw2 B2

C1 C2 Dw D













xk

x̃k

wk

uk









, (20)

where the matrices A1 and B1 are unknown, but all other

matrices occurring in (20) are known. Further, a single open-

loop data trajectory {xk, x̃k, uk}
N−1

k=0
, which is perturbed by

some unknown disturbance realization Ŵ ∈ W , is available.

In the following, we consider the closed loop of (20) under

control with state-feedback uk = K1xk+K2x̃k. Suppose there

exist matrices G1 ∈ R
N×n, G2 ∈ R

N×ñ, where n and ñ are

the dimensions of xk and x̃k, respectively, such that
[

I 0
K1 K2

]

=

[

X

U

]

[

G1 G2

]

. (21)

Multiplying (21) from the left by
[

A1 B1

]

, we obtain

A1 +B1K1 = (X+ −A2X̃ −Bw1Ŵ )G1,

B1K2 = (X+ −A2X̃ −Bw1Ŵ )G2.

These relations allow us to replace all occurrences of the

unknown matrices A1 and B1 in the closed-loop dynamics.

Thus, following the same steps as in the previous sections,

we obtain the LFT (22) with W ∈ W , which parametrizes

a superset of the uncertain closed loop dynamics of (20)

under the above state-feedback. Note that this LFT depends

only on known matrices and the open-loop data trajectory

{xk, x̃k, uk}
N−1

k=0
. The structure of (22) resembles that of
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the LFT (16) and therefore, robust controllers for the mixed

system (20) can be derived by proceeding as in Section III-C.

In contrast to the previous sections, the condition (21)

requires not only that X has full row rank but also that

N ≥ n+ ñ. Moreover, if
[

X⊤ U⊤
]⊤

has full row rank, i.e.,

the data-driven component of (20) is persistently exciting, and

N ≥ n + ñ, then, for any matrices K1 and K2, there exist

matrices G1 and G2 satisfying (21), i.e., any controller can be

constructed.

Remark 11. Our original motivation for considering the

above mixed data-driven and model-based configuration

comes from H∞-loop-shaping: The H∞-control problem is

usually not solved for the performance channel w 7→ z

directly, but rather for the channel w 7→ zf , where zf is

the output of a filter with input z. In this scenario, the known

components of (20) are mainly that of the filter, whereas the

unknown matrices (A1, B1) are equal to (Atr , Btr) from (1).

Notably, A2 = 0 holds in this case and hence, it can be

seen from (22) that measured data of the filter state x̃ is

not required. To conclude, by iteratively refining the filter

dynamics and solving the robust performance design problem

for the LFT (22), we can systematically perform loop-shaping

for the system (1), without knowledge of (Atr, Btr).

IV. EXAMPLE

In this section, we apply the results of Section III to the

robust H∞-control problem for an unstable example system.

We consider System (1) with

Atr =





−0.5 1.4 0.4
−0.9 0.3 −1.5
1.1 1 −0.4



 , Btr =





0.1 −0.3
−0.1 −0.7
0.7 −1



 ,

Bw = I3, C = I3, D = 0, Dw = 0,

where it is assumed that Atr and Btr are not available. We

generate data {xk, uk}
N
k=0

of length N = 20 by sampling

the input uk uniformly from [−1, 1]2 and the disturbance

ŵ uniformly from the ball ‖ŵ‖2 ≤ w̄, where w̄ = 0.02.

This implies the disturbance bound Ŵ ∈ W for Qw =
−I, Sw = 0, Rw = w̄2I . In the following, we compute a

state-feedback gain via Corollary 10 to achieve robust closed-

loop quadratic performance with index P =

[

−γ2I 0
0 I

]

for

a possibly small γ > 0, i.e., a small H∞-norm of w 7→ z.

Following the procedure described in Remark 7, we verify

that (17) and (18) are feasible for γ = 2.4 and we obtain a

corresponding controller as K =

[

−2.45 −1.29 −2.4
−0.61 −0.03 −2.18

]

,

which leads to a closed-loop H∞-norm of 2.3. In contrast, the

minimal achievable H∞-norm using a nominal (model-based)

state-feedback is 2.2. Thus, the proposed approach yields a

controller with guaranteed performance close to the ideal case

with full model knowledge, despite noisy measurements. For

larger noise levels w̄ ≥ 0.04, the design problem is infeasible

since it addresses performance guarantees for all matrices in

the set ΣK
A,B, which grows with w̄.

In the following, we analyze the influence of the data length

N on the feasibility of (17) and (18) for the above design

problem. To keep the signal-to-noise ratio (approximately)

constant, we modify the bound w̄ of the noise generating the

data linearly with N , i.e., w̄ = 0.02
20

N . For each data horizon

4 ≤ N ≤ 20, we perform 100 experiments to generate data

for the controller design, each with different (random) inputs

u and disturbances ŵ as described above. Figure 1 shows

the number of successful designs depending on N . It can be

observed that the feasibility of (17) and (18) is enhanced if

N increases, and N ≥ 15 suffices to successfully design a

controller from 100 out of 100 experiments. Intuitively, this

can be explained by noting that, with an increasing number

of data points, the size of ΣX,U decreases, and Corollary 10

provides robust performance guarantees for (a superset of) the

uncertain closed loop matrices ΣK
X,U consistent with the data.

Moreover, even for N as low as 4, in which case the data are

not persistently exciting, the design is successful in more than

50% of the scenarios.

















I 0 0
X+G Bw Bw

0 I 0
C +DUG Dw 0

0 0 I

−G 0 0

















⊤















−X 0 0 0 0 0
0 X 0 0 0 0
0 0 Q S 0 0
0 0 S⊤ R 0 0
0 0 0 0 λQw λSw

0 0 0 0 λS⊤
w λRw

































I 0 0
X+G Bw Bw

0 I 0
C +DUG Dw 0

0 0 I

−G 0 0

















≺ 0 (17)

















−Y (CY +DUM)⊤(RDw + S⊤) −λM⊤S⊤
w M⊤X⊤

+ (CY +DUM)⊤ M⊤

∗ Q+ SDw +D⊤
wS

⊤ +D⊤
wRDw 0 B⊤

w 0 0
∗ ∗ λQw B⊤

w 0 0
∗ ∗ ∗ −Y 0 0
∗ ∗ ∗ ∗ −R−1 0
∗ ∗ ∗ ∗ ∗ −(λRw)

−1

















≺ 0 (19)
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Fig. 1. Number of successful designs for which (17) and (18) are feasible for
the present example, depending on the data length N . For each horizon N ,
100 experiments are carried out with varying random inputs and disturbances
to generate data for controller design according to Corollary 10.

Finally, we comment on the computational complexity of

the feasibility problem stated in Corollary 10. After its refor-

mulation (cf. Remark 7), the problem contains an LMI with

2(n+mw) + pz +N rows, i.e., it is of size 35× 35 for the

above example with N = 20, as well as an equality constraint

of size n× n = 9. Moreover, the matrix variables1 Y and M

are of size n×n = 3×3 and N×n = 20×3, respectively. The

complexity of standard LMI solvers scales cubically with the

number of decision variables. Thus, the proposed controller

design method scales cubically with the data length N and

proportionally to n6 if n is the system dimension, similar as

in model-based robust controller design.

V. CONCLUSION

The present paper provides direct, data-driven design pro-

cedures for state-feedback gains, which achieve guaranteed

closed-loop stability and performance, using noisy input-state

data. Based on a data-driven parametrization of the closed-loop

matrices that are consistent with the data, known robust control

methods can be applied. The parametrization is extended

to a setting with partial model knowledge, and the design

procedures are applied successfully to an unstable example

system. The proposed approach leads to end-to-end guarantees

for the closed loop, using a single noisy open-loop data

trajectory of finite length, and is thus a promising alternative

to sequential system identification and robust control. Future

1Note that Y is symmetric and has therefore only
n(n+1)

2
free decision

variables.

research should extend the results of this paper to robust data-

driven output-feedback control.

REFERENCES

[1] Z.-S. Hou and Z. Wang, “From model-based control to data-driven
control: Survey, classification and perspective,” Information Sciences,
vol. 235, pp. 3–35, 2013,

[2] B. Recht, “A tour of reinforcement learning: The view from continuous
control,” Annual Review of Control, Robotics, and Autonomous Systems,
2018.

[3] N. Matni and S. Tu, “A tutorial on concentration bounds for system
identification,” arXiv preprint arXiv:1906.11395, 2019.

[4] N. Matni, A. Proutiere, A. Rantzer, and S. Tu, “From self-tuning
regulators to reinforcement learning and back again,” arXiv preprint

arXiv:1906.11392, 2019.
[5] R. Boczar, N. Matni, and B. Recht, “Finite-data performance guarantees

for the output-feedback control of an unknown system,” in Proc. 57th

IEEE Conf. on Decision and Control, 2018, pp. 2994–2999.
[6] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “On the sample com-

plexity of the linear quadratic regulator,” Foundations of Computational

Mathematics, 2019, https://doi.org/10.1007/s10208-019-09426-y.
[7] M. Milanese and A. Vicino, “Optimal estimation theory for dynamic

systems with set membership uncertainty: an overview,” Automatica,
vol. 27, no. 6, pp. 997–1009, 1991.

[8] R. L. Kosut, “Uncertainty model unfalsification for robust adaptive
control,” Annual Reviews in Control, vol. 25, pp. 65–76, 2001.

[9] J. C. Willems, P. Rapisarda, I. Markovsky, and B. De Moor, “A note
on persistency of excitation,” Systems & Control Letters, vol. 54, pp.
325–329, 2005.
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xk+1

x̃k+1

zk
z̃k









=









(X+ −A2X̃)G1 A2 + (X+ −A2X̃)G2 Bw1 Bw1

A3 +B2UG1 A4 +B2UG2 Bw2 0
C1 +DUG1 C2 +DUG2 Dw 0

−G1 −G2 0 0

















xk

x̃k

wk

w̃k









w̃k = Wz̃k

(22)


	I Introduction
	II Preliminaries
	III Data-driven state-feedback
	III-A Uncertain closed-loop parametrization
	III-B Robust state-feedback for stability
	III-C Robust state-feedback for performance
	III-D Systems with partial model knowledge

	IV Example
	V Conclusion
	References

