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Asymmetric Cell Transmission Model-Based, Ramp-Connected
Robust Traffic Density Estimation under Bounded Disturbances
Suyash C. Vishnoi†, Sebastian A. Nugroho‡, Ahmad F. Taha‡, Christian Claudel†, and Taposh Banerjee‡

Abstract—In modern transportation systems, traffic congestion
is inevitable. To minimize the loss caused by congestion, various
control strategies have been developed most of which rely on
observing real-time traffic conditions. As vintage traffic sensors
are limited, traffic density estimation is very helpful for gaining
network-wide observability. This paper deals with this problem
by first, presenting a traffic model for stretched highway having
multiple ramps built based on asymmetric cell transmission
model (ACTM). Second, based on the assumption that the encom-
passed nonlinearity of the ACTM is Lipschitz, a robust dynamic
observer framework for performing traffic density estimation is
proposed. Numerical test results show that the observer yields a
sufficient performance in estimating traffic densities having noisy
measurements, while being computationally faster the Unscented
Kalman Filter in performing real-time estimation.

Index Terms—Traffic state estimation, asymmetric cell trans-
mission model, Lipschitz continuous, robust dynamic state esti-
mation, robust L∞ observer.

I. INTRODUCTION

To perform real-time state-estimation and control of traffic
networks, robust mathematical models of traffic flow are de-
sirable that can efficiently describe real world traffic phenom-
ena. For this purpose, physics-based traffic flow models from
traffic engineering literature are popular. These models can be
broadly classified into two classes: macroscopic models [1],
which compute the evolution of traffic density, and microscopic
models [2], which model the interaction between individual
vehicles. Macroscopic flow models are more suited for traffic
state estimation as they can be easily scaled to large networks
due to their lower computational cost which, unlike microscopic
models, is independent of the number of vehicles in the network.

Here in this paper, we focus on the state estimation problem
for traffic density on a stretched highway by considering the
classical macroscopic Lighthill-Whitham-Richards (LWR) flow
model [3], [4], which is a first order hyperbolic conservation
law. In this model, the relationship between the traffic-flux
and traffic-density is encoded in the form of a diagram that
is called the fundamental diagram. In this work we utilize
the triangular fundamental diagram which uses distinct linear
equations to describe the flow-density relationship in the free-
flow and congestion regimes of traffic flow.
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The cell transmission model (CTM) [5], [6] is a first-order
Godunov [7] approximation of the LWR partial differential
equation used to simulate the evolution of traffic on road-
ways and networks. The asymmetric cell transmission model
(ACTM) [8]–[10] is a variant of the CTM that departs from the
CTM in its treatment of asymmetric merge junctions such as
the on-ramp-highway junctions. Unlike the CTM, it assumes
separate allocations of the available space on the highway for
traffic from each merging branch, which allows for simpler flow
conservation equations at such merges.

The ACTM finds its place in the traffic state estimation
literature in few studies pertaining to density estimation on
freeways. In [11] and [12], for instance, the authors propose a
moving-horizon approach for sensor-fault-tolerant traffic state
estimation using the ACTM. Besides these, there are several
other studies related to traffic state estimation using other
variants of the CTM, references to which can be found in [13].
The above studies utilize a queue model for the on-ramps which
does not take into account the density of those ramps, and hence
the state of those ramps. In this paper, in order to also estimate
the state of the ramps along with the highway, we use density
conservation equations to represent the ramp dynamics in a
similar manner as the highway sections. In addition to this, these
studies use a mode switching scheme to deal with the piecewise
linear structure of the model. While such linearized models offer
simplicity in contrast with nonlinear dynamic models, they are
representative of the dynamics only when the traffic density lies
in the vicinity of that point. Consequently, this paper seeks to
explicitly study the nonlinear nature of traffic flow model for
density estimation under uncertainty.

To that end, herein we introduce a control-theoretic method
to address the traffic density estimation problem on stretched
highways connected to multiple ramps under constrained and
noisy measurements. The paper contributions and organizations
are summarized as follows. In Section II, we formulate the
dynamics of traffic model on highways connected to on- and off-
ramps using ACTM and modified them accordingly so that the
densities on both highways and ramps are all covered. Next in
Section III, we present a robust observer framework developed
using the concept of L∞ stability for discrete-time Lipschitz
nonlinear systems. This observer extends our prior work [14],
which presents a similar observer for continuous-time Lipschitz
nonlinear systems. In Section IV, we demonstrate the perfor-
mance of our observer for performing density estimation on a
simple highway and compare it with Unscented Kalman Filter
(UKF). Finally, the paper is summarized in Section V.
Paper’s Notation: Notations Rn and Rp×q denote the set
of real-valued row vectors with size of n and p-by-q real
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Table I
PAPER NOMENCLATURE: PARAMETER, VARIABLE, AND SET DEFINITIONS.

Notation Description

Ω the set of highway sections on the stretched highway
Ω = {1, 2, . . . , N} , N , |Ω|

ΩI the set of highway sections with on-ramps
ΩI = {1, 2, . . . , NI} , NI , |ΩI |

ΩO the set of highway sections with off-ramps
ΩO = {1, 2, . . . , NO}, NO , |ΩO|

Ω̂ the set of on-ramps, Ω̂ = {1, 2, . . . , NI} , NI = |Ω̂|
Ω̌ the set of off-ramps, Ω̌ = {1, 2, . . . , NO} , NO = |Ω̌|
T duration of each time step

l length of each section, on-ramp, and off-ramp

ρi[k] traffic density on section i ∈ Ω at time kT , k ∈ N
qi[k] traffic flow from section i ∈ Ω into the next section

δi[k], σi[k] demand and supply functions for section i ∈ Ω

ρ̂i[k] traffic density on the on-ramp of section i ∈ ΩI

ri[k] traffic flow into section i ∈ ΩI from the on-ramp

r̂i[k] traffic flow into the on-ramp of section i ∈ ΩI

δ̂i[k], σ̂i[k] demand and supply functions for the on-ramp i ∈ ΩI

ρ̌i[k] traffic density on the off-ramp of section i ∈ ΩO

si[k] traffic flow from section i ∈ ΩO into the off-ramp

δ̌i[k], σ̌i[k] demand and supply functions for the off-ramp i ∈ ΩO

ši[k] traffic flow from the off-ramp of section i ∈ ΩO

fin[k] traffic wanting to enter section 1 of the highway

fout[k] traffic that can leave section N of the highway

f̂i[k] traffic wanting to enter the the on-ramp of section i ∈ ΩI

f̌i[k] traffic that can leave the off-ramp of section i ∈ ΩO

βi[k] split ratio for the off-ramp of section i ∈ ΩO ,
where βi[k] ∈ [0, 1]

ξi[k] occupancy parameter for the on-ramp of section i ∈ ΩI

where ξi[k] ∈ [0, wc]

ψ(ρ) function that maps traffic density into traffic flow

vf free-flow speed

wc congestion wave speed

ρm maximum density

ρc critical density

matrices, while Sm denotes the set of symmetric matrices
with the dimension of m. Specifically, Sm+ and Sm++ denotes
the set of positive semi-definite and positive definite matrices.
For any vector z ∈ Rn, ‖z‖2 denotes its Euclidean norm,
i.e. ‖z‖2 =

√
z>z, where z> is the transpose of z. For

simplicity, the notation ′∗′ denotes terms induced by symmetry
in symmetric block matrices. Table I provides the nomenclature
utilized in the ensuing sections.

II. ACTM-BASED RAMP-CONNECTED HIGHWAY TRAFFIC
DYNAMICS MODEL

This section presents the dynamic, discrete-time modeling of
traffic dynamics on a stretched highway with arbitrary number
and location of ramps.

In this paper, we utilize the Lighthill-Whitman-Richards
(LWR) Model [3], [4] for traffic flow which is expressed by a
partial differential equation given as

∂ρ(t, d)

∂t
+
∂q(t, d)

∂d
= 0, (1)

where t and d denote the time and distance; ρ(t, d) denotes the
traffic density (vehicles/distance) and q(t, d) denotes the traffic
flux (vehicles/time). The characteristics of traffic networks
model depend on the function that defines the relation between
ρ(t, d) and q(t, d), which can be obtained from observing the
dynamic behavior of real traffic networks on highways. For
this purpose, let ψ(·) be a function that maps traffic density
into traffic flow. Such a function is commonly referred to as the
Fundamental Diagram (FD) and in general has a concave shape
and bounded domain. Here, we consider a triangular-shaped FD
constructed as

ψ (ρ(t, d))=

{
vfρ(t, d), if 0 ≤ ρ(t, d) ≤ ρc
wc (ρm − ρ(t, d)) , if ρc ≤ ρ(t, d) ≤ ρm,

(2)

From the above relationship, ψ(ρ(t, d)) satisfies ψ(0) =
ψ(ρm) = 0. To ensure continuity, we assume that ψ(ρ(t, d))
must also satisfy vfρc = wc (ρm − ρc); see [10].

To represent the traffic dynamics as a series of difference,
state-space equations—a useful bookkeeping for the ensuing
discussions—we discretize the LWR Model (1) with respect to
both space and time (this is also referred to as the Godunov
discretization). This approach allows the highway of length L
to be divided into sections (cells) of equal length l and the traffic
networks model to be represented by discrete-time equations.

To ensure computation stability, the Courant-Friedrichs-
Lewy condition (CFL) given as vfT l−1 ≤ 1 has to be satisfied.
Since each section is of the same length l, then we have
ρ(t, d) = ρ(kT, l), where k ∈ N represents the discrete-time
index. For simplicity of notation, from now on ρ(kT, l) will be
simply written as ρ[k].

The discrete-time flow conservation equation based on
ACTM [8]–[10] can be written as

ρi[k + 1] = ρi[k] +
T

l

(
qi−1[k] + ri[k]− qi[k]− si[k]

)
. (3)

for 0 < i ≤ N , where N is the number of sections that the
highway is divided into. To simplify the ensuing expressions, we
define two new functions referred to as the demand function δi[·]
and the supply function σi[·]. The demand function equals the
traffic flux leaving section i through the highway assuming that
the next section has infinite storage. The supply function equals
the traffic flux that can enter section i through the highway
assuming that the previous section has infinite storage. These
functions are constructed from the triangular FD given in (2).
The demand function δi[·], with and without off-ramp, can be
written as

δi[k]=

{
min

(
β̄i[k]vfρi[k], β̄i[k]vfρc,

β̄i[k]
βi[k] σ̌i[k]

)
, if i ∈ ΩO

min
(
vfρi[k], vfρc

)
, if i ∈ Ω \ ΩO.

(4)
Here σ̌i[k] can be given as

σ̌i[k] = min
(
wc(ρm − ρ̌i[k]), vfρc

)
. (5)

In (4), the split-ratio βi[k] relates the traffic flow from section
i into its off-ramp with the traffic flow from section i into the
next section such that

si[k] = βi[k](si[k] + qi[k]) =⇒ si[k] =
βi[k]

β̄i[k]
qi[k]. (6)

where we define β̄i[k]
∆
= 1 − βi[k] to simplify the equations.
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Similarly, the supply function σi[k], with and without on-ramp,
can be represented as

σi[k]=

{
min

(
wc(ρm−ρi[k])−ri[k], vfρc−ri[k]

)
, if i ∈ ΩI

min
(
wc(ρm−ρi[k]), vfρc), if i ∈ Ω \ ΩI ,

(7)
where ri[k] is described by the following equation

ri[k] = min
(
vf ρ̂i[k], ξi(ρm − ρi[k]),

ξi
wc
vfρc

)
. (8)

Here vf ρ̂i[k] is the demand of the on-ramp in free-flow, and
ξi[k]
wc

is the fraction of the flow that section i can receive from
its on-ramp. Note that (8) is a deviation from the original ACTM
which uses a queue model for the on-ramps. We can write
the upstream and downstream flows for section i through the
highway respectively as

qi−1[k] = min
(
δi−1[k], σi[k]

)
(9a)

qi[k] = min
(
δi[k], σi+1[k]

)
, (9b)

The flow conservation equations for the on-ramp and off-ramp
can be written as

ρ̂i[k + 1] = ρ̂i[k] +
T

l
(r̂i[k]− ri[k]) (10a)

ρ̌i[k + 1] = ρ̌i[k] +
T

l
(si[k]− ši[k]), (10b)

where r̂i[k] and ši[k] are given as

r̂i[k] = min
(
wc(ρm − ρ̂i[k]), vfρc, f̂i

)
(11a)

ši[k] = min
(
vf ρ̌i[k], vfρc, f̌i

)
, (11b)

Substituting (6), (8), and (9) to (3) yields

ρi[k + 1] = ρi[k] +
T

l

(
min

(
δi−1[k], σi[k]

)
− 1

β̄i[k]
min

(
δi[k], σi+1[k]

)
+ min

(
vf ρ̂i[k], ξi(ρm − ρi[k]),

ξi
wc
vfρc

))
.

The above equation represents the traffic dynamics for highway
sections connected to both on-ramp and off-ramp. Similar
equations can easily be derived for other cases when high-
way sections are connected to single or no ramp, which are
not shown here due to space constraint. In this paper we
assume that the upstream flow at section 1 and downstream
flow at section N are known, denoted by fin[k] and fout[k]
respectively. The state vector can be defined as x[k] ,
[ρi[k] . . . ρ̂j [k] . . . ρ̌l[k] . . .]> for which i ∈ Ω, j ∈ ΩI
and l ∈ ΩO. In general, the nonlinear dynamic system can
be modelled with the following equations

• i ∈ Ω \ ΩI ∪ ΩO

xi[k + 1] = xi[k] +
T

l

(
min

(
δi−1[k], σi[k]

)
−min

(
δi[k], σi+1[k]

))
• i ∈ ΩI \ ΩI ∩ ΩO, j = N + j̄, j̄ ∈ Ω̂

xi[k + 1] = xi[k] +
T

l

(
min

(
δi−1[k], σi[k]

)
−min

(
δi[k], σi+1[k]

)
+ min

(
vfxj [k], ξi[k](ρm − xi[k]),

ξi[k]

wc
vfρc

))

• i ∈ ΩO \ ΩI ∩ ΩO, j = N +NI + j̄, j̄ ∈ Ω̌

xi[k + 1] = xi[k] +
T

l

(
min

(
δi−1[k], σi[k])

)
− 1

β̄i[k]
min

(
δi[k], σi+1[k]

))
• i ∈ ΩI ∩ ΩO, j = N + j̄, l = N +NI + l̄, j̄ ∈ Ω̂, l̄ ∈ Ω̌

xi[k + 1] = xi[k] +
T

l

(
min

(
δi−1[k], σi[k]

)
− 1

β̄i[k]
min

(
δi[k], σi+1[k]

)
+ min

(
vfxj [k], ξi[k](ρm − xi[k]),

ξi[k]

wc
vfρc

))
• i ∈ ΩI , j = N + j̄, j̄ ∈ Ω̂

xj [k + 1] = xj [k] +
T

l

(
r̂i[k]

−min
(
vfxj [k], ξi[k](ρm − xi[k]),

ξi[k]

wc
vfρc

))
• i ∈ ΩO, j = N +NI + j̄, j̄ ∈ Ω̌

xj [k + 1] = xj [k] +
T

l

(βi[k]

β̄i[k]
min

(
δi[k], σi+1[k]

)
− ši[k]

)
For i = 1, in the above equations, we can simply replace
δi−1[k] with the known inflow fin[k], and similarly for i = N ,
we can replace σi+1[k] with the known outflow fout[k]. The
above dynamics can be expressed into a state-space, difference
equation of the form

x[k + 1] = Ax[k] + f(x,u), (12)

where u[k] = [fin[k] fout[k] . . . f̂j [k] . . . f̌l[k] . . .]> ∈ Rm
for which j ∈ ΩI and l ∈ ΩO with m = 2 + NI + NO,
A ∈ Rn×n is an identity matrix of dimension n = N +NI +
NO, and f : Rn × Rm → Rn is a mapping that lumps all
the nonlinearities, mostly comprised of min functions, in traffic
density dynamics given above. The next section presents our
strategy to perform traffic density estimation under assuming
noisy measurements and model.

III. A ROBUST OBSERVER FRAMEWORK

In the previous section, we show that highway traffic dy-
namics with multiple ramp flows can be modeled by a set of
difference equations, which is then represented by a nonlinear
state-space difference equation (12). Since we focus on traffic
density estimation, the objective of this work is to robustly
estimate the densities of all highway sections, including the
ramps, under a limited number of traffic sensors or mea-
surements. The robustness here is defined in the sense that
the estimator/observer is resilient to disturbances which could
be caused by unmodeled dynamics, unknown inputs, model
uncertainty, process noise, and measurement noise—all of these
exist in real-world applications. To that end, the traffic dynamics
model with measurements and disturbance can be posed as

x[k + 1] = Ax[k] + f(x,u) + Bww[k] (13a)
y[k] = Cx[k] + Dww[k], (13b)

where (13a) represents traffic dynamics with unknown inputs,
(13b) is the linear measurement model with measurement noise,
y ∈ Rp is the measurement vector, and C ∈ Rp×n is a matrix
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representing the configuration and location of the traffic sensors.
The disturbance vector w ∈ Rq lumps all unknown inputs into
a single vector, with the corresponding matrices Bw and Dw

are of appropriate dimensions.
Since we utilize an observer to estimate a nonlinear dynamics

(13), then it is important to study the nonlinearities appearing
in (13). It is presumed that f(·) is locally Lipschitz continuous,
which definition is given below.

Definition 1 (Lipschitz Continuity). Let f : Rn ×Rm → Rn.
Then, f is Lipschitz continuous in (X ,U) ⊂ Rn×Rm if there
exists a constant γ ∈ R+ such that

‖f(x,u)− f(x̂,u)‖2 ≤ γ‖x− x̂‖2, (14)

for all x, x̂ ∈ X and u ∈ U .

In the context of traffic dynamics model (12), X represents
the operating region of the states x. Since x represents the
densities, then X , [0, ρm]n. Likewise, we can deduce that
U , [0, vfρc]

m. This Lipschitz constant γ plays a role in the
proposed robust observer framework, which design is discussed
as follows.

First, let x̂[k] be the estimation vector and ŷ[k] be the
estimation measurement vector. The observer dynamics follow
a similar form to the classic Luenberger observer given as

x̂[k + 1] = Ax̂[k + 1] + f(x̂,u) + L(y[k]− ŷ[k]) (15a)
ŷ[k] = Cx̂[k], (15b)

where L(y − ŷ) is the Luenberger-type correction term with
L ∈ Rn×p. In order to ensure the existence of such observer,
it is assumed that the traffic sensors have been placed in such a
way that they yield the pair (A,C) detectable. By defining the
estimation error as e[k] , x[k]− x̂[k], the error dynamics can
be computed as

e[k + 1] = (A−LC) e[k] + ∆f [k] + (Bw −LDw)w[k], (16)

where ∆f [k] , f(x,u)− f(x̂,u).
Our goal is to achieve asymptotic estimation error for esti-

mation error dynamics given above. In our prior work [14], we
present a robust observer using the concept of L∞ stability for
traffic density estimation assuming nonlinear continuous-time
traffic dynamics model. The L∞ stability theory is previously
developed in [15] for feedback control purpose, which is then
used in [16] to develop a robust observer for nonlinear discrete-
time systems which nonlinearities satisfy incremental quadratic
constraint. Here we also use the L∞ stability concept to design
a robust observer for traffic density estimation. Nonetheless in
this paper, the observer is designed specifically for Lipschitz
nonlinearity instead of incremental quadratic nonlinearity. Al-
beit incremental quadratic nonlinearity comprises a large class
of nonlinear functions including Lipschitz nonlinearity, the use
of condition (14) will return much simpler matrix inequality
formulations—for example, see [14]. To that end, we utilize the
definition of L∞ stability presented in [15], [16]. It is assumed
here that w ∈ L∞ to ensure that the disturbance acting on the
system is bounded, which is realistic in practical situations. The
following result presents a numerical procedure to compute the
observer gain L that, if solved, ensures the estimation error
dynamics (16) is L∞ stable with performance level µ.

Theorem 1. Consider the nonlinear dynamics (13) and ob-

0 1000 2000 3000
0

2

4

6

8
10-3

500 1000 1500 2000 2500 3000
1

2

3
10-3

Figure 1. Comparison between the norm of performance output ‖z(t)‖2 and
disturbance where ζ , µ‖w(t)‖L∞ .

server (15) in which w ∈ L∞ and f : Rn × Rm → Rn is
locally Lipschitz in (X ,U) with Lipschitz constant γ. If there
exist P ∈ Sn++, Y ∈ Rn×p, ε, µ0, µ1, µ2 ∈ R+, and α ∈ R++

so that the following optimization problem is solved

minimize
P ,Y ,ε,α,µ0,1,2

µ0µ1 + µ2 (17a)

subject to
(α− 1)P + εγ2I ∗ ∗ ∗

PA− Y C P − εI ∗ ∗
O Φ> −αµ0I ∗

PA− Y C O Φ −P

 � 0 (17b)

−P ∗ ∗
O −µ2I ∗
Z O −µ1I

 � 0, (17c)

where Φ , PBw − Y Dw, then the error dynamics given in
(16) is L∞ stable with performance level µ =

√
µ0µ1 + µ2

for performance output given as z = Ze, where Z ∈ Rz×n,
and observer gain L computed as L = P−1Y .

We now note that the optimization problem described in (17)
is nonconvex due to bilinearity appearing in the form of (α −
1)P , αµ0, and µ0µ1. To get a convex one, we simply set α and
µ0 or µ1 a priori. and solve for the other variables using any
semidefinite programming (SDP) solver.

IV. NUMERICAL STUDY

A. Evaluation of L∞ Observer for Traffic Density Estimation

This section demonstrates the effectiveness of the proposed
L∞ observer framework to estimate traffic density under distur-
bances in the measurement model. All simulations are carried
out using MATLAB R2019a running on a 64-bit Windows 10
with 3.4GHz IntelR CoreTM i7-6700 CPU and 16 GB of RAM
with YALMIP [17] as the interface to solve all convex SDPs.
In this numerical test we consider a simple highway consisting
characterized by the following quantities.

• Network parameters: vf = 28.8889 m/s (65 mph), wc =
6.6667 m/s (10 mph), ρc = 0.0249 vehicles/m (40 vehi-
cles/mile), ρm = 0.1333 vehicles/m, L = 2000 m, and
l = 200 m. With time step T = 1 s, the CFL condition
is found to be satisfied.

• A total of n = 30 states, with N = 10 highway sections
where each section is connected to both on- and off-ramps.
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Figure 2. Comparison between real (x[k]) and estimated (x̂[k]) traffic densities on (a) highway sections, (b) on-ramps, and (c) off-ramps.

• There are p = 13 number of traffic sensors installed in total
and distributed on the highway sections, on-ramps, and off-
ramps, where 3 sensors on the 2nd, 5th, 10th section, 5 sensors
on the 2nd, 4th, 5th, 7th, 9th on-ramps, and 5 sensors on the 1st,
3rd, 6th, 8th, 10th off-ramps such that C ∈ R13×30. Notice that
the highway is under-sensed, in the sense that less than half of
the total highway sections are equipped with traffic sensors.
We also note that to ensure robustness against uncertainty, it
is conceivable to require more sense measurements, thereby
hedging uncertainty.

• The upstream, downstream, on-ramps inflows, and out-ramp
outflows are constructed in a particular way to make it varying
and random throughout the entire simulation window. The
spit ratio for out-ramps is set to be 10%.

We aim to estimate the traffic density on all highway sections
that are not equipped with traffic sensors. The corresponding
Lipschitz constant for this case is chosen to be γ = 0.5. To
obtain a convex problem, we set α = 0.05 and µ1 = 104.
We use SDPNAL+ [18] to solve the resulting convex problem.
The performance matrix is chosen to be Z = 0.1I . Herein,
we consider the case when there exists Gaussian noise on the
measurements having covariance matrix equal to R = rI with
r = 10−3.

After successfully solving optimization problem described
in Theorem 1, we obtain the observer gain matrix L with the
corresponding performance index µ = 2.5092. The computed
L∞ norm of the disturbance for this case is ‖w‖L∞

= 2.875×
10−3. The upper bound on the norm of performance vector z
can then be computed as ζ , µ‖w‖L∞

= 7.214× 10−3. From
Fig. 1 it can be seen that the L∞ stability for the estimation
error dynamics (16) is satisfied, that is, ‖z‖2 converges to a
value below ζ. Fig. 2 illustrates the evolution of the real and
estimated density for all highway sections, including the ramps.
This empirically shows that the proposed robust L∞ observer
framework is able to perform traffic density estimation for the
given model with a satisfactory performance.

0 1000 2000 3000
0

0.05

0.1

Figure 3. Trajectories of estimation error norm for L∞ observer and UKF.

Table II
RMSE AND SIMULATION RUNNING TIME FOR L∞

OBSERVER AND UKF.

State Estimator RMSE Simulation Running Time

L∞ Observer† 0.0868 3.422 seconds

UKF 0.1589 70.635 seconds
† It took 0.0993 seconds to obtain the observer gain matrix.

B. Comparison with Unscented Kalman Filter (UKF)

In this section we compare the L∞ observer with Unscented
Kalman Filter (UKF) in estimating traffic density. UKF is
considered here because (a) UKF has been widely used for
traffic density estimation in the literature, e.g. [19], and (b)
unlike Extended Kalman Filter (EKF) that relies on the lin-
earization and Jacobian matrix of the nonlinear dynamics, UKF
is a derivative free estimator which is suitable for the non-
continuously differentiable traffic dynamics model developed
in this paper. The process and measurement noise covariance
matrices for UKF are determined to be Q = qI with q = 10−3

andR = rI with r = 10−3, in which the initial error covariance
is set to be Pcov,0 = 10−4I . The constants to determine sigma
points for UKF, which is needed in unscented transformation
[20], are set to be α = 0.01, β = 2, and κ = −4.

The result of this comparison is depicted in Fig. 3, which
shows the corresponding error norm for L∞ observer and UKF.
We see that the performance of L∞ observer and UKF are very
similar, albeit UKF exhibits a slightly larger estimation error.
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To obtain quantitative comparisons, we numerically measure
their respective Root Mean Square Error (RMSE), defined in
the following formulation

RMSE =

n∑
i=1

√√√√ 1

kf

kf∑
k=1

(ei[k])2,

where kf = 3000, and their simulation running time, which
results are summarized in Tab. II. From this table we see that
UKF yields a slightly larger RMSE compared to L∞ observer.
This corroborates the smaller L∞ observer’s estimation error
trajectory illustrated in Fig. 3. Despite of this, our numerical
test results indicate that L∞ observer actually shows a much
faster simulation running time. This is due to the fact that in
observer framework, a constant estimator gain matrix is used,
which is in contrast with UKF as its estimator gain matrix
has to be computed in every iteration. This renders the L∞
observer to be computationally attractive and in turn, makes it
much more suitable for practical implementation compared to
UKF for large-scale simulations. Moreover, unlike UKF, L∞
observer provides a theoretical guarantee on the deviation of the
performance vector z (which is nothing but a linear combination
of the estimation error e) with respect to disturbance w. This
can be beneficial for the system operator who wants a certain
performance guarantee on how far off are the state estimates
from actual states.

V. PAPER’S LIMITATIONS AND FUTURE WORK

This paper presents a control-theoretic approach to perform
traffic density estimation on ramp-connected, stretched high-
ways using the asymmetric cell transmission model under pro-
cess and measurement uncertainty. The estimator dynamics are
akin to the vintage Luenberger observer, making the presented
estimator amenable to real-time simulations for large-scale
traffic networks.

The paper’s limitation are two-fold. First, parametric un-
certainty in the observer design and SDP formulation are not
considered and second, it is certainty conceivable to further
optimize the performance level µ rather than fixing some
constants by solving the nonconvex problem (17). That is,
tight convex approximations for (17) can return an improved
performance level—and hence an improved state estimation.
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