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Abstract—This paper studies the exponential stability of
primal-dual gradient dynamics (PDGD) for solving convex
optimization problems where constraints are in the form of
Ax + By = d and the objective is minx,y f(x) + g(y) with
strongly convex smooth f but only convex smooth g. We show that
when g is a quadratic function or when g and matrix B together
satisfy an inequality condition, the PDGD can achieve global
exponential stability given that matrix A is of full row rank. These
results indicate that the PDGD is locally exponentially stable with
respect to any convex smooth g under a regularity condition. To
prove the exponential stability, two quadratic Lyapunov functions
are designed. Lastly, numerical experiments further complement
the theoretical analysis.

Index Terms—Primal-dual gradient dynamics, exponential sta-
bility, non-strong convexity, Lyapunov function

I. INTRODUCTION

Continuous-time primal-dual gradient dynamics (PDGD)
[1] is a prominent first-order method to solve constrained
convex optimization problems. Due to its simple structure
and scalability, PDGD has been widely used in many fields,
such as wireless communication [2], [3], power grid operation
[4]–[6], distributed resource allocation [7], [8], and imaging
processing [9]. Theoretic analysis of the performance of
PDGD, especially its convergence property, recently received
considerable attention. A number of studies [10]–[12] were
devoted to establish the asymptotic stability of PDGD using
local convexity-concavity of the saddle point function, while
this paper focuses on a stronger stability guarantee: the global
exponential stability of PDGD.

Global exponential stability is highly desired in practice.
On the one hand, it is necessary to have strong stability
guarantee on practical dynamic systems, especially for those in
critical infrastructures like power grids and telecommunication
networks. On the other hand, global exponential stability
implies many useful theoretic properties. For example, using
explicit Euler discretization with sufficiently small step size,
a continuous-time dynamics with global exponential stability
can be discretized as an iterative algorithm that achieves
linear convergence rate [13], [14]. In addition, for a perturbed
system with bounded perturbation, its solution is proved to
be ultimately bounded if the corresponding nominal system is
globally exponentially stable [15].

There have been a number of efforts [16]–[21] in studying
the exponential stability of PDGD. For equality constrained
convex optimization, [16], [17] show that PDGD is globally
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exponentially stable when the objective is strongly convex and
smooth. In [19], the theory of integral quadratic constraints is
applied to prove the global exponential stability of a proximal
primal-dual flow dynamics. Then [18] extends the global expo-
nential stability result to the strongly convex optimization with
affine inequality constraints using an augmented Lagrangian
function. Besides, the local exponential stability of PDGD
is established in [20], [21] by analyzing the spectral bounds
of saddle matrices. As for the discrete-time counterpart, the
primal-dual gradient descent algorithm solving a saddle point
problem is proved to achieve linear convergence when the ob-
jective is strongly convex in the primal variables and strongly
concave in the dual variables [22]. While recent work [23],
[24] shows that only one of the strong convexity (concavity)
condition is necessary if the primal-dual coupling is bilinear
and the coupling matrix is of full rank.

In all the literatures above, a strongly convex and smooth
objective is assumed for PDGD to achieve global exponential
stability. However, in many applications, the objective of
the optimization problem may not have strong convexity in
all variables, such as resource allocation [7] and optimal
network flow in power systems [5], [6]. Those problems can
be generalized as formulation (1)

min
x∈Rn,y∈Rm

f(x) + g(y) (1a)

s.t. Ax+By = d (1b)

where A ∈ Rk×n, B ∈ Rk×m,d ∈ Rk, f is strongly convex,
but g is only convex (e.g. affine function or missing).

Then a natural question to ask is whether PDGD can
maintain global exponential stability when the objective is
non-strongly convex; if not, what other conditions it requires
to ensure at least the exponential convergence of some critical
variables.

Contribution. This paper establishes the conditions under
which PDGD can still achieve global exponential stability
even though the objective is non-strongly convex. Specifically,
we employ PDGD to solve a class of convex optimization
problems in the form of (1), where f is strongly convex smooth
but g is only convex smooth. Given that matrix A is of full row
rank, it is proved that PDGD is globally exponentially stable
when g is a quadratic function or satisfies an inequality con-
dition together with matrix B. We further show that PDGD is
locally exponentially stable for any convex g under a regularity
condition. Two quadratic Lyapunov functions with non-zero
off-diagonal terms are designed to prove these results. Lastly,
we provide numerical studies to complement the analysis.

The remainder of this paper is organized as follows: Section
II introduces the detailed problem and some preliminaries.
In Section III, we present the main results of exponential
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stability, and Section IV provides the proof sketch for these
results. Numerical demonstration is carried out in Section V
and conclusions are drawn in Section VI.

Notations. Throughout this paper, we use capital letters to
denote matrices, lower case letters to denote scalars, and bold
lower case letters to denote column vectors, respectively. Let
〈·, ·〉 represent Euclidean inner product, and let || · || denote
Euclidean norm for vectors and spectrum norm for matrices.
Rn represents n-dimension real number space, and Sm×m
denotes m ×m symmetric matrix space. For two symmetric
matrices P1 and P2, notation P1 � P2 means P1 − P2 is
positive semi-definite.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this section, we apply PDGD to solve a convex opti-
mization problem (1), and present the necessary conditions
for the discrete-time counterpart of PDGD to achieve linear
convergence.

A. Problem Statement
This paper considers solving a class of convex optimization

problems in the form of (1).
Define the Lagrangian function of problem (1) as

L(x,y,λ) = f(x) + g(y) + λ> (Ax+By − d) (2)

with dual variables λ ∈ Rk. Then PDGD (3) is used to find
the saddle points of the Lagrangian function L(x,y,λ)

ẋ = −ηx · ∇xL(x,y,λ) = −ηx ·
(
∇f(x) +A>λ

)
(3a)

ẏ = −ηy · ∇yL(x,y,λ) = −ηy ·
(
∇g(y) +B>λ

)
(3b)

λ̇ = ηλ · ∇λL(x,y,λ) = ηλ · (Ax+By − d) (3c)

where ηx, ηy, ηλ > 0 are the corresponding time constants.
We consider the case when f(x) is strongly convex while

g(y) is not and restate this condition as assumption 1.

Assumption 1. Function f is twice differentiable, µ-strongly
convex and `-smooth (0 < µ ≤ `), i.e., for all x1,x2 ∈ Rn,

µ||x1 − x2||2 ≤ 〈∇f(x1)−∇f(x2),x1 − x2〉
≤ `||x1 − x2||2

(4)

And function g is twice differentiable, convex and ρ-smooth
(ρ ≥ 0), i.e., for all y1,y2 ∈ Rm,

0 ≤ 〈∇g(y1)−∇g(y2),y1 − y2〉 ≤ ρ||y1 − y2||2 (5)

We further make the following two assumptions.

Assumption 2. Problem (1) has a finite optimum.

Assumption 3. Matrix A is of full row rank and

κ1I � AA> � κ2I
for some 0 < κ1 ≤ κ2.

Note that assumption 3 is crucial for PDGD (3) to achieve
global exponential stability [24], since matrix A is the key
connection between x, λ and By. By checking the KKT
conditions of problem (1), we have the following proposition.

Proposition 1. Under assumption 1 and 2, any equilibrium
point (x∗,y∗,λ∗) of the primal-dual gradient dynamics (3) is
an optimal solution of problem (1).

B. Necessary Conditions

Suppose that x is the critical decision variables that we
focus on, and we aim to find out the conditions ensuring the
exponential convergence of x. To develop some intuitions for
this problem, we consider the discrete-time counterpart (6) of
PDGD (3) as follows

xi+1 = xi − νx · (∇f(xi) +A>λi) (6a)

yi+1 = yi − νy · (∇g(yi) +B>λi) (6b)
λi+1 = λi + νλ · (Axi +Byi − d) (6c)

where i denotes the iteration number, and νx, νy, νλ > 0 are
the corresponding step sizes.

Then the following proposition shows the convergence
synchronicity of different variables and implies the necessary
conditions for achieving linear convergence rate of x.

Proposition 2. For the primal-dual gradient algorithm (6),
suppose that {xi} achieves linear convergence rate, in the
sense that, there exists cx ≥ 0 and ϑ ∈ (0, 1) such that

||xi − x∗|| ≤ cx · ϑi (7)

Then {yi} and {λi} also achieve linear convergence rate, in
the sense that there exist constants cλ, cy, cg ≥ 0 such that

||λi − λ∗|| ≤ cλ · ϑi (8a)

||B(yi − y∗)|| ≤ cy · ϑi (8b)

||B (∇g(yi)−∇g(y∗)) || ≤ cg · ϑi (8c)

The proof of proposition 2 is provided in Appendix VI-H.
Proposition 2 indicates that the convergence of different vari-
ables is not separate but exhibits synchronicity, hence it is
suggested to analyze the the exponential stability of PDGD
(3) in all variables simultaneously.

III. MAIN RESULTS

In this section, we consider the quadratic case and the
general case of g(y), and present the global (local) exponential
stability results of PDGD (3).

For explicit expression, we stack x, y, λ into vector z :=[
x>,y>,λ>

]>
and define z∗ :=

[
x∗>,y∗>,λ∗>

]>
as one

of the equilibrium points of PGDG (3).

A. Quadratic Case of g(y)

Consider the quadratic case when g(y) is a quadratic
function given by

g(y) =
1

2
y>Gy + g>y + g0 (9)

with g0 ∈ R, g ∈ Rm, G ∈ Sm×m. By assumption 1, we have
0 � G � ρI .

For this case, the equilibrium point set Ψ of PDGD (3) is
specified by proposition 3, and its global exponential stability
is stated as theorem 1.

Proposition 3. Under assumption 1, 2 and 3, when g(y) is
a quadratic function in the form of (9), the equilibrium point
set Ψ of the primal-dual gradient dynamics (3) is given by

Ψ := {ẑ| x̂ = x∗, λ̂ = λ∗, Bŷ = By∗, Gŷ = Gy∗ } (10)
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See Appendix VI-G for the proof of proposition 3.
Proposition 3 implies that the components x∗ and λ∗ of

the equilibrium points are unique, while y∗ is non-unique and
ŷ − y∗ ∈ ker(B) ∩ ker(G) for any ẑ ∈ Ψ.

Theorem 1. Under assumption 1, 2 and 3, when g(y) is a
quadratic function in the form of (9), the prime-dual gradient
dynamics (3) is globally exponentially stable in the sense that,
there exist constants ax, aλ, ayB , ayG ≥ 0 and τ > 0 such that

||x(t)− x∗|| ≤ ax · e−τt (11a)
||λ(t)− λ∗|| ≤ aλ · e−τt (11b)

||B(y(t)− y∗)|| ≤ ayB · e−τt (11c)
||G(y(t)− y∗)|| ≤ ayG · e−τt (11d)

The proof of theorem 1 is provided in Section IV-A.
Equation (11) indicates that the distance between the solution
z(t) and Ψ converges to zero exponentially.

Remark 1: In theorem 1, we only take g(y) as quadratic
function, while f(x) can be any strongly convex function. In
this case, PDGD (3) is not necessarily a linear time-invariant
system, but always preserves global exponential stability.

B. General Case of g(y)

Now consider a general convex function g(y). Since it is
not easy to analyze the global exponential stability of PDGD
(3) with an unclear equilibrium point set of y∗, we supplement
assumption 4 to make optimal y∗ to be unique. An intuition for
assumption 4 is that if B is the all-zero matrix, assumption 4
reduces to the condition that g(y) is strongly convex. Actually,
assumption 4 “mimics” a strong convexity condition in y and
use matrix B to make up for the strong convexity deficit of
g(y).

Assumption 4. For any y1,y2 ∈ Rm, there exists constant
γ > 0 such that

(y1 − y2)>B>B(y1 − y2)

+ 〈∇g(y1)−∇g(y2),y1 − y2〉 ≥ γ · ||y1 − y2||2
(12)

Proposition 4. Under assumption 1, 2, 3, 4, the prime-dual
gradient dynamics (3) has a unique equilibrium point z∗.

See Appendix VI-G for the proof of proposition 4. Noted
that assumption 4 is a sufficient condition for the uniqueness
of z∗ but not necessary. For example, when B is the all-zero
matrix and g(y) :=

∑m
i=1 y

4
i , assumption 4 does not hold,

while z∗ is unique with y∗ = 0.
Accordingly, the global exponential stability of PDGD (3)

is established as the following theorem.

Theorem 2. Under assumption 1, 2, 3 and 4, the prime-dual
gradient dynamics (3) is globally exponentially stable, in the
sense that, there exist constants cz ≥ 0 and τ > 0 such that

||z(t)− z∗|| ≤ cz · e−τt (13)

The proof of theorem 2 is provided in Section IV-B.
One special case of assumption 4 is that B>B � γI for

some γ > 0, i.e., B>B is positive definite. This is equivalent

to the condition that matrix B is of full column rank. Thus
we have the following corollary.

Corollary 1. Under assumption 1, 2 and 3, if matrix B is
of full column rank, the prime-dual gradient dynamics (3) is
globally exponentially stable in the sense of (13).

C. Local Exponential Convergence

For a finite-dimension nonlinear system, it is well-known
that if the linearized system based on an equilibrium point
is exponentially stable, then the original system is locally
exponentially stable around this equilibrium point. Moreover,
under assumption 1 and 2, it proves that PDGD (3) globally
asymptotically converges to one of the equilibrium points in
Ψ [5], [10]. Inspired by those facts and the quadratic case, we
claim the local exponential convergence of PDGD (3) with the
following theorem.

Theorem 3. Under assumption 1, 2 and 3, suppose that the
trajectory z(t) following the prime-dual gradient dynamics (3)
globally asymptotically converges to the equilibrium point z∗,
if we have

B>B +∇2g(y∗) � 0 (14)

then there exist a time tδ ≥ 0 and constants τ > 0 such that
for any time t ≥ tδ ,

||z(t)− z∗|| ≤ ||z(tδ)− z∗|| · e−τ(t−tδ) (15)

See Appendix VI-D for the proof.

IV. EXPONENTIAL STABILITY ANALYSIS

In this section, we present the proofs for theorem 1 and
2. To begin with, we introduce the following lemma, whose
proof can be found in [18, Appendix D].

Lemma 1. Under assumption 1, for any x ∈ Rn, there exists
a symmetric matrix F (x) ∈ Sn×n that depends on x and
satisfies µI � F (x) � `I , such that

∇f(x)−∇f(x∗) = F (x)(x− x∗)

For any y ∈ Rm, there exists a symmetric matrix G(y) ∈
Sm×m that depends on y and satisfies 0 � G(y) � ρI , such
that

∇g(y)−∇g(y∗) = G(y)(y − y∗)

A. Proof of Theorem 1

For matrix G, pick up {σi,ui}i=1,2,··· ,m as its eigen-pairs
and satisfying the following three properties:
(1) {ui}i=1,2,··· ,m form an orthonormal basis of Rm.
(2) The first l eigenvalues are positive, i.e. σ1, σ2 · · · , σl > 0

and σl+1, σl+2, · · · , σm = 0.
(3) ker(G)∩ ker(B) = span(ul+r+1,ul+r+2, · · · ,um) for

a certain r ∈ {0, 1, · · · ,m− l}, where r = m− l means
ker(G) ∩ ker(B) = {0}.

It can be checked that such eigen-pairs {σi,ui} always exist.
Define matrix U ∈ Rm×(l+r) as

U := [u1,u2, · · · ,ul+r]
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which collects all the eigenvectors of G except those in the
space ker(G) ∩ ker(B). Then matrix G can be rewritten as
G = UΣU> with Σ := diag(σ1, σ2, · · · , σl+r). Since we
have row(B) ⊆ Col(U) by definition, there exists a matrix
T ∈ R(l+r)×k such that B> = UT , i.e., B = T>U>.

To prove theorem 1, we design the quadratic Lyapunov
function V1(z) as

V1(z) = (z − z∗)>P1(z − z∗) (16)

where P1 ∈ R(m+n+k)×(m+n+k) is defined by

P1 =


α
ηx
I 0 1

ηλ
A>

0 α
ηy
UU> − β

ηλ
B>

1
ηλ
A − β

ηλ
B α

ηλ
I

 (17)

Here, parameter α is a sufficiently large positive number, and
parameter β is a sufficiently small positive number.

Lemma 2. P1 is positive semidefinite. V1(z) = 0 if and only
if x = x∗, λ = λ∗, By = By∗ and Gy = Gy∗.

See Appendix VI-E for the proof of lemma 2.
If we can show that the time derivative of V1(z) along the

trajectory of PDGD (3) satisfies

dV1(z)

dt
≤ −τV1(z) (18)

for τ = β2

α > 0, then theorem 1 is proved. The following part
is devoted to prove the property (18).

With lemma 1, PDGD (3) can be equivalently rewritten as

dz

dt
=

−ηx (∇xL(x,y,λ)−∇xL(x∗,y∗,λ∗))
−ηy (∇yL(x,y,λ)−∇yL(x∗,y∗,λ∗))
ηλ (∇λL(x,y,λ)−∇λL(x∗,y∗,λ∗))


=

−ηxF (x) 0 −ηxA>
0 −ηyG(y) −ηyB>
ηλA ηλB 0


︸ ︷︷ ︸

:=W (z)

(z − z∗)
(19)

Here, since g(y) is a quadratic function in the form of (9), we
have G(y) ≡ G.

Then dV1(z)
dt can be formulated as

dV1(z)

dt
= ż>P1(z − z∗) + (z − z∗)>P1ż

= (z − z∗)>
[
W (z)>P1 + P1W (z)

]
(z − z∗)

(20)

Hence, it is sufficient to show property (18) by the following
lemma. See Appendix VI-A for the proof of lemma 3.

Lemma 3. For any z ∈ Rn+m+k, we have

W (z)>P1 + P1W (z) � −τP1 (21)

In this way, we prove theorem 1 using (18) and lemma 3.

B. Proof of Theorem 2

To prove theorem 2, we design the quadratic Lyapunov
function V2(z) as

V2(z) = (z − z∗)>P2(z − z∗) (22)

where P2 ∈ R(m+n+k)×(m+n+k) is defined by

P2 =


α
ηx
I 0 1

ηλ
A>

0 α
ηy
I − β

ηλ
B>

1
ηλ
A − β

ηλ
B α

ηλ
I

 (23)

Here, parameter α is a sufficiently large positive number, and
parameter β is a sufficiently small positive number.

Lemma 4. P2 is positive definite. V2(z) = 0 if and only if
z = z∗.

See Appendix VI-F for the proof of lemma 4.
Similar to (18), if we can prove that the time derivative of

V2(z) along the trajectory of PDGD (3) satisfies

dV2(z)

dt
≤ −τV2(z) (24)

for τ = β2

α > 0, then theorem 2 is proved. To show property
(24), it is sufficient to prove lemma 5. See Appendix VI-B for
its proof.

Lemma 5. For any z ∈ Rn+m+k, we have

W (z)>P2 + P2W (z) � −τP2 (25)

By lemma 5 and (24), we prove theorem 2.

V. NUMERICAL EXAMPLES

A. Quadratic Case of g(y)

For problem (1), let n = 60, m = 50 and k = 20. The time
constant is set as η = ηx = ηy = ηλ. Define f(x) = 1

2x
>Fx

where F := 5I + F>0 F0 and F0 is a n × n random matrix.
Define g(y) = 1

2y
>Gy where G := diag(0, G>0 G0) and G0

is a rG × (m − 1) random matrix with rG = 40; then G
is a positive semi-definite matrix with the rank at most rG.
Let B := [0, B0] and B0 is a k × (m − 1) random matrix.
Under this setting, we have e1 ∈ ker(G) ∩ ker(B) where
e1 = [1, 0, · · · , 0]>. A and b are also random matrix and
random vector respectively.

Fig. 1. Convergence results of PDGD with different time constants when
g(y) is a quadratic function.

We pick up an arbitrary equilibrium point in Ψ as z∗, then
the convergence results of PDGD are shown as figure 1. It
is observed that ||x − x∗||, ||λ − λ∗||, ||B(y − y∗)|| and
||G(y− y∗)|| converge exponentially to zero while ||y− y∗||
does not, which follows the statements in theorem 1.
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B. General Case of g(y)

In this case, let g(y) =
∑m
i=1 y

4
i and n = 60, m = 20.

F0, A,B, b are all random matrices or vector. We set k = 10
and k = 30 respectively, and run simulations for these two
cases. The convergence results of PDGD are presented as
figure 2. When k = 30, matrix B is of full column rank,
thus assumption 4 holds and PDGD is globally exponentially
stable. When k = 10, assumption 4 is not satisfied, so PDGD
exhibits asymptotic convergence at first, then (Time> 30)
exponentially converges to the equilibrium point due to the
local exponential stability.

Fig. 2. Convergence results of PDGD when g(y) =
∑m

i y4i .

VI. CONCLUSION

In this paper, we prove that the primal-dual gradient dy-
namics (3) can achieve global (local) exponential stability for
convex smooth optimization problems in the form of (1) with
non-strong convexity in their objectives. Our main results are
summarized as theorem 1, theorem 2 and theorem 3, which
are proved with two quadratic Lyapunov functions. Numerical
experiments are implemented and further validate these results.
Future work is to extend these results to convex optimization
problems with both equality and inequality constraints.
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APPENDIX

A. Proof of Lemma 3

Plugging P1 (17) into equation (21) with τ = β2

α , we obtain

Q1(z) := −W (z)>P1 − P1W (z)− τP1 = Qx (β − 1)A>B ηx
ηλ
FA> − β2

αηλ
A>

(β − 1)B>A Qy
β3

αηλ
B> − βηy

ηλ
GB>

ηx
ηλ
AF − β2

ηλα
A β3

αηλ
B − βηy

ηλ
BG Qλ


(26)

with

Qx := 2αF − 2A>A− β2

ηx
I (27a)

Qy := 2αG+ 2βB>B − β2

ηy
UU> (27b)

Qλ := 2
ηx
ηλ
AA> − 2

βηy
ηλ

BB> − β2

ηλ
I (27c)

Here, we denote F (x) and G(y) as F and G respectively
for notation simplification. In (26), we apply B = T>U>

(Section IV-A) and thus have

BUU> = T>U>UU> = T>U> = B

In (27b), we use GUU> + UU>G = 2UΣU> = 2G.
To prove Lemma 3, it is sufficient to show Q1(z) � 0

for any z ∈ Rn+m+k. In the follows, we will use the Schur
complement argument twice to prove it.
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Denote ω as the largest eigenvalue of B>B, then 0 �
BB> � ωI and 0 � B>B � ωI , and we have

Qλ �
(

2
ηx
ηλ
κ1 − 2

ηy
ηλ
βω − β2

ηλ

)
︸ ︷︷ ︸

:=c1(β)

·I (28)

Firstly, consider the Schur complement1 of the block Qλ in
Q1(z) (26), which is denoted as Q̄1(z). Using (28), we have

Q̄1(z) � Q̂1(z) :=

[
Qx −M1 M2

M>2 Qy −M3

]
(29)

where

M1 :=
1

c1η2λ
(ηxF −

β2

α
I)A>A(ηxF −

β2

α
I)

M2 := (β − 1)A>B − β

c1η2λ
(ηxF −

β2

α
I)A>B(

β2

α
I − ηyG)

M3 :=
β2

c1η2λ
(
β2

α
I − ηyG)B>B(

β2

α
I − ηyG)

Since µI � F � `I and A>A � κ2I , we have

Qx −M1 = 2αF − 2A>A− β2

ηx
I −M1

�
[
2αµ− 2κ2 −

β2

ηx
− κ2
c1η2λ

(ηx`+
β2

α
)2
]

︸ ︷︷ ︸
:=c2(α,β)

·I (30)

Secondly, consider the Schur complement of the block Qx−
M1 in Q̂1(z) (29), which is denoted as Q̃1(z). Using (30),
we have

Q̃1(z) � Q∗1(z) := Qy −M3 −
1

c2
M>2 M2 (31)

We claim the following lemma to show Q∗1(z) � 0, whose
proof is provided in Appendix VI-C.

Lemma 6. When α is large enough and β is positively small
enough, Q∗1(z) in (31) is positive semidefinite, i.e. Q∗1(z) � 0,
for any z ∈ Rn+m+k.

In addition, to make the above Schur complement argument
work, it requires that c1(β) > 0 and c2(α, β) > 0. This condi-
tion can be achieved if we set parameter α large enough and
β positively small enough. Because for α, β > 0, c2(α, β) is a
scalar function that is strictly increasing in α and c2 → +∞ as
α→ +∞ with fixed β; c1(β) is a strictly decreasing function
in β, and c1 → 2ηx

ηy
κ1 > 0 as β → 0.

According to the Schur complement theorem and lemma 6,
we obtain Q̃1(z) � 0, Q̂1(z) � 0, Q̄1(z) � 0 and eventually
Q1(z) � 0.

1 For matrix M =

[
A B
C D

]
, the Schur complement of the block D in

M is defined as M/D := A−BD−1C.

B. Proof of Lemma 5

Since the proof of lemma 5 is very similar to the proof
of lemma 3, without causing any confusion, we recycle the
notations and definitions used in Appendix VI-A.

Plugging P2 (23) into equation (25) with τ = β2

α , we denote

Q2(z) := −W (z)>P2 − P2W (z)− τP2 (32)

The detailed formulation of Q2(z) is exactly the same as
Q1(z) (26) except that the block Qy in Q2(z) is defined as

Q′y := 2αG+ 2βB>B − β2

ηy
I (33)

Here, we use notation Q′y to distinguish with the corresponding
block Qy in Q1(z) (26).

To prove Lemma 5, it is sufficient to show Q2(z) � 0 for
any z ∈ Rn+m+k, and we will use the Schur complement
argument twice to prove it.

Firstly, consider the Schur complement of the block Qλ in
Q2(z) (26), which is denoted as Q̄2(z). Using (28), we have

Q̄2(z) � Q̂2(z) :=

[
Qx −M1 M2

M>2 Q′y −M3

]
(34)

Here, Qx, M1, M2 and M3 have exactly the same definitions
as those in (29).

Secondly, consider the Schur complement of the block Qx−
M1 in Q̂2(z) (34), which is denoted as Q̃2(z). Using (30),
we have

Q̃2(z) � Q∗2(z) := Q′y −M3 −
1

c2
M>2 M2 (35)

By assumption 4, we have

2αG+ 2βB>B � 2β(G+B>B) � 2βγI

and thus

Q′y −M3 � β ·
[
2γ − β

ηy
− βω

c1η2λ
(
β2

α
+ ηyρ)2

]
︸ ︷︷ ︸

:=c3(α,β)

·I (36)

Similar to lemma 6, when set parameter α larger enough
and β positively small enough, we have Q∗2(z) � 0 for any
z ∈ Rn+m+k. The proof sketch is that for sufficiently large
α and sufficiently small β, ||M>2 M2|| is bounded. Since c2 is
dominated by α, we can set α large enough such that 1

c2
≤ β2

for any fixed β, then select β positively small enough such that
c3 − β||M>2 M2|| > 0. Thus we have Q∗2(z) � 0.

Consequently, by the Schur complement theorem, we have
Q̃2(z) � 0, Q̂2(z) � 0, Q̄2(z) � 0 and eventually Q2(z) � 0
for any z ∈ Rn+m+k.

C. Proof of Lemma 6

As shown in equation (31), Q∗1(z) is defined as

Q∗1(z) := Qy −M3 −
1

c2
M>2 M2

Consider the three items in Q∗1(z) one by one as follows.
For the first term, there exists a constant π > 0 such that

G+B>B = U
(
Σ + TT>

)
U> � π · UU>
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Because ker(G)∩ker(B) = span(ul+r+1, · · · ,um), we have
D := Σ + TT> � 0. Otherwise, if D is just positive semi-
definite, there exists w ∈ Rl+r 6= 0 such that Dw = 0. Then
we find a vector v := Uw 6= 0 such that

v>(G+B>B)v = v>UDU>v = w>Dw = 0

Since G and B>B are both positive semi-definite, we have
v ∈ ker(G) ∩ ker(B). However, by the definition v :=
Uw ∈ span(u1, · · · ,ul+r), which is contradictory. Thus D
is positive definite and D � πI where π is the smallest
eigenvalue of D. As a result, we have

Qy = 2αG+ 2βB>B − β2

ηy
UU> � β (2π − β/ηy)︸ ︷︷ ︸

:=h1(β)

UU>

For the second term, using B = T>U> and G = UΣU>,
we obtain

M3 =
β2

c1η2λ
U

[
β4

α2
TT> + η2yΣTT>Σ

−ηyβ
2

α
(ΣTT> + TT>Σ)

]
U>

� β · h2(α, β) · UU>

where

h2(α, β) :=
β

c1η2λ

(
β4

α2
||TT>||+ η2y||ΣTT>Σ||

+
ηyβ

2

α
||ΣTT> + TT>Σ||

)
For the third term, using B = T>U> and G = UΣU>, we

have

M2 = (β − 1)A>B − β

c1η2λ
(ηxF −

β2

α
I)A>B(

β2

α
I − ηyG)

= [(β − 1)A>T>

− β

c1η2λ
(ηxF −

β2

α
I)A>(

β2

α
T> − ηyBUΣ)]︸ ︷︷ ︸

:=H1(α,β)

·U>

and thus

M>2 M2 = U ·H>1 H1 · U> � h3(α, β) · UU>

where

h3(α, β) :=[
||TA||+ β

c1η2λ
||A||(ηx`+

β2

α
)(
β2

α
||T ||+ ηy||BUΣ||)

]2
Here, we use |β − 1| ≤ 1 since 0 < β < 1.

In summary, we obtain

Q∗1(z) = Qy −M3 −
1

c2
M>4 M4

�
[
β (h1(β)− h2(α, β))− h3(α, β)

c2

]
︸ ︷︷ ︸

:=h4(α,β)

·UU>

For sufficiently large α and sufficiently small β, h3 is
bounded. Since c2 is dominated by α, we can set α large

enough such that h3

c2
≤ β2 for any fixed β, then select β

positively small enough such that h1 − h2 − β > 0. Thus we
have h4(α, β) > 0 and Q∗1(z) � 0 for any z ∈ Rn+m+k.

D. Proof of theorem 3

Let H∗g = ∇2g(y∗) be the Hessian matrix of g(y) at y∗

and D(δ) = {z | ||z − z∗|| ≤ δ} be the δ-neighbor of z∗.
Using Taylor’s expansion, we have

θ(y) := ∇g(y)−
(
∇g(y∗) +H∗g ·∆y

)
∼ O(||∆y||2)

which means that there exist positive constants m0 and δ such
that we have ||θ(y)|| ≤ m0 · ||∆y||2 for any z ∈ D(δ). Since

dz

dt
=

−ηxF (x) 0 −ηxA>
0 −ηyH∗g −ηyB>
ηλA ηλB 0


︸ ︷︷ ︸

:=W0(x)

∆z − ηy

 0
θ(y)

0


︸ ︷︷ ︸
:=θ̂(y)

we have
dV2(z)

dt
=
[
W0(x)∆z − ηyθ̂(y)

]>
P2∆z

+ ∆z>P2

[
W0(x)∆z − ηyθ̂(y)

]
= ∆z>W0(x)>P2∆z + ∆z>P2W0(x)∆z

− 2α∆y>θ(y) + 2
ηy
ηλ
β∆λ>Bθ(y)

where V2(z) and P2 are defined as (22) and (23) respectively.
By the proof of theorem 2 and condition (14), there exists

τ0 > 0 such that for any z ∈ D(δ)

dV2(z)

dt
≤ −τ0∆z>P2∆z − 2

[
α∆y> − βηy

ηλ
∆λ>B

]
θ(y)

≤ −τ0∆z>P2∆z + 2m0

(
α+

βηy
ηλ
||B||

)
||∆z||3

≤ −τ0
2

∆z>P2∆z −
(τ0

2
σmin −m1||∆z||

)
||∆z||2

where m1 := 2m0

(
α+

βηy
ηλ
||B||

)
and σmin is the minimal

eigenvalue of P2.
Taking δ sufficiently small such that δ ≤ τ0

2m1
σmin, we have

dV2(z)

dt
≤ −τ0

2
∆z>P2∆z = −τ0

2
V2(z)

Since z(t) asymptotically converges to z∗, there exists a
time tδ ≥ 0 such that ||∆z|| ≤ δ for any t ≥ tδ . Hence,
theorem 3 is proved.

E. Proof of Lemma 2

We use the Schur complement argument twice to prove
lemma 2. Firstly, consider the Schur complement of the block
α
ηx
I in matrix P1 (17), which is denoted as P̂1

P̂1 =

[
α
ηy
UU> − β

ηλ
B>

− β
ηλ
B α

ηλ
I − ηx

αη2λ
AA>

]

�

[
α
ηy
UU> − β

ηλ
B>

− β
ηλ
B s1(α) · I

]
:= P̄1
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where s1(α) := α
ηλ
− ηx

αη2λ
κ2. Then consider the Schur

complement of the block s1(α) · I in matrix P̄1, which is

P̃1 =
α

ηy
UU> − 1

s1(α)
· β

2

η2λ
B>B

= U

[
α

ηy
I − 1

s1(α)
· β

2

η2λ
TT>

]
︸ ︷︷ ︸

:=S1(α,β)

U>

For α > 0, s1(α) is strictly increasing in α and s1(α)→ +∞
as α → +∞. Hence, S1(α, β) � 0 when we set parameter
α large enough and β positively small enough. By the Schur
complement theorem, we have P̃1 � 0, P̄1 � 0, P̂2 � 0 and
eventually P1 � 0.

Denote ∆x = x − x∗, ∆y = y − y∗ and ∆λ = λ − λ∗.
Then for the Lyapunov function V1(z) (16), we have

V1(z) =
α

ηx
||∆x||2 +

α

ηy
||U>∆y||2 +

α

ηλ
||∆λ||2

+
2

ηλ
∆x>A>∆λ− 2β

ηλ
∆y>B>∆λ

=|| 1

ηλ
A∆x+ ∆λ||2 + || β

ηλ
U>∆y − T∆λ||2

+ ∆x>
(
α

ηx
I − 1

η2λ
A>A

)
∆x

+

(
α

ηy
− β2

η2λ

)
||U>∆y||2

+ ∆λ>
(

(
α

ηy
− 1)I − T>T

)
∆λ

Set parameter α sufficiently large and β positively small
enough such that

α/ηx > κ2/η
2
λ, α/ηy > β2/η2λ, α/ηλ − 1 > ||T>T ||,

Then V1(z) = 0⇐⇒ ∆x = 0, ∆λ = 0, U>∆y = 0 and

U>∆y = 0⇐⇒ B∆y = 0, G∆y = 0

due to ker(G) ∩ ker(B) = span(ul+r+1, · · · ,um).

F. Proof of Lemma 4
Consider the Schur complement of the block α

ηx
I in matrix

P2 (23), which is

P̂2 =

[
α
ηy
I − β

ηλ
B>

− β
ηλ
B α

ηλ
I − ηx

αη2λ
AA>

]
Then consider the Schur complement of the block α

ηy
I in

matrix P̂2, which is

P̄2 =
α

ηλ
I − ηx

αη2λ
AA> − ηyβ

2

αη2λ
BB>

�
(
α

ηλ
− ηx
αη2λ

κ2 −
ηyβ

2

αη2λ
||BB>||

)
︸ ︷︷ ︸

p1(α,β)

·I

It is easy to check that p1(α, β) > 0 when we set parameter
α large enough and β positively small enough, thus P̄2 �
0. By the Schur complement theorem, we have P̂2 � 0 and
eventually P2 � 0.

Since P2 � 0, we have V2(z) = 0⇐⇒ z = z∗.

G. Proof of Proposition 3 and Proposition 4

Let ẑ :=
[
x̂>, ŷ>, λ̂>

]>
be another equilibrium point of

PDGD (3). By the definition, we have

∇f(x̂)−∇f(x∗) = −A>(λ̂− λ∗) (37a)

∇g(ŷ)−∇g(y∗) = −B>(λ̂− λ∗) (37b)
0 = A(x̂− x∗) +B(ŷ − y∗) (37c)

Multiply (x̂ − x∗)>, (ŷ − y∗)> and (λ̂ − λ∗)> to the both
sides of (37a), (37b) and (37c) respectively and sum them up,
we obtain

(∇f(x̂)−∇f(x∗))>(x̂− x∗)
+ (∇g(ŷ)−∇g(y∗))>(ŷ − y∗) = 0

Due to the strong convexity of f(x) and convexity of g(y),
we have

x̂ = x∗, (g(ŷ)−∇g(y∗))>(ŷ − y∗) = 0 (38)

Since A is of full row rank (assumption 3), we have λ̂ = λ∗

due to (37a) and (38). By (37c), we obtain Bŷ = By∗. By
(37b), we have ∇g(ŷ) = ∇g(y∗), which is Gŷ = Gy∗ in
(10). Hence, proposition 3 is proved.

For proposition 4, by assumption 4 we further have

||ŷ − y∗||2 ≤ 0 =⇒ ŷ = y∗

Hence, the equilibrium point (x∗,λ∗,y∗) is unique.

H. Proof of Proposition 2

From (6a), we have

xi+1 − x∗ = xi − x∗

− νx(∇f(xi)−∇f(x∗) +A>(λi − λ∗))
=⇒ ||A>(λi − λ∗)|| ≤ ||∇f(xi)−∇f(x∗)||

+
1

νx
(||xi − x∗||+ ||xi+1 − x∗||)

≤
(
`+

2

νx

)
||xi − x∗||

=⇒ ||λi − λ∗|| ≤
`+ 2/νx√

κ1
· ||xi − x∗|| ≤ cλ · ϑi

where cλ := cx√
κ1

(`+ 2
νx

).
Similarly, from (6c), we have

||B(yi − y∗)|| ≤ ||A(xi − x∗)||

+
1

νλ
(||λi+1 − λ∗||+ ||λi − λ∗||)

≤ ||A|| · ||xi − x∗||+
2

νλ
||λi − λ∗|| ≤ cy · ϑi

where cy := cx · ||A||+ 2cλ
νλ

.
From (6b), we have

||B (∇g(yi)−∇g(y∗)) || ≤ ||BB>|| · ||λi − λ∗||

+
2

νy
||B(yi − y∗)|| ≤ cg · ϑi

where cg := cλ · ||BB>||+ 2cy
νy

.
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