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Abstract— In this paper we study the problem of learning
minimum-energy controls for linear systems from heteroge-
neous data. Specifically, we consider datasets comprising input,
initial and final state measurements collected using experiments
with different time horizons and arbitrary initial conditions.
In this setting, we first establish a general representation of
input and sampled state trajectories of the system based on the
available data. Then, we leverage this data-based representation
to derive closed-form data-driven expressions of minimum-
energy controls for a wide range of control horizons. Further, we
characterize the minimum number of data required to recon-
struct the minimum-energy inputs, and discuss the numerical
properties of our expressions. Finally, we investigate the effect of
noise on our data-driven formulas, and, in the case of noise with
known second-order statistics, we provide corrected expressions
that converge asymptotically to the true optimal control inputs.

I. INTRODUCTION

The availability of large volumes of freely accessible data
and the recent advances in machine learning and artificial
intelligence are revolutionizing many areas of science and
engineering. These include control and system theory, in
which direct data-driven control design has recently been
recognized as an appealing (and sometimes preferable) al-
ternative to the classic model-based paradigm [1]–[6]. In
particular, learning controls directly from data turns out to be
beneficial when an accurate model of the system is difficult
or expensive to obtain from first principles, or when system
identification leads to significant errors or excessive compu-
tational costs in the reconstruction of the desired control.

Several direct data-driven control design approaches have
been proposed and analyzed in the literature (see [7] for
an overview of recent results). These differ in the class
of dynamics, control objective, and data collection, and
include, among others, (model-free) reinforcement learning
[8], iterative learning control [9], adaptive control [10], and
behavior- or subspace-based methods [1], [5], [11].

In this paper, we focus on learning the minimum-energy
control input driving a linear system from an initial state to
a desired target one. We show that this control input can
be exactly reconstructed from data consisting of heteroge-
neous and, in certain cases, noisy measurements of system
trajectories. In particular, we establish closed-form data-
driven expressions of minimum-energy controls for noiseless
and noisy data. Besides further supporting the intriguing
idea that data-driven control represents a viable alternative
to model-based control, our framework and results offer a
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different, attractive perspective on many problems in network
analysis and control. In fact, (model-based) minimum-energy
controls have been extensively employed for controlling,
and characterizing the control performance of, large-scale
networks governed by linear dynamics, e.g., see [12]–[14].
Related work. The data-driven framework employed in this
paper is similar to the one of [1], [3], [4], which can, in
turn, be viewed as a state-space adaptation of the behavioral
setting described in, e.g., [2], [11], [15]. These works exploit
a data-based representation of the system in terms of data
that typically consist of uninterrupted samples of a single,
noiseless, and sufficiently long input-output trajectory. Here,
instead, we consider data collected from system trajectories
with possibly different time horizons and initial conditions.
Further, under some assumptions on the noise model, we es-
tablish asymptotic results for case of data corrupted by noise.
Finally, besides our earlier work [6], we are not aware of
data-driven approaches tailored to minimum-energy controls.
Contribution. The contributions of this paper are threefold.
First, we provide a data-based representation of sampled
system trajectories based on data comprising input, initial
and final state measurements collected via control experi-
ments with different time horizons, arbitrary inputs and initial
conditions. Second, based on these data, we establish two
equivalent closed-form expressions of the minimum-energy
control input to reach a desired target state. Differently from
[6], our expressions can be used to compute minimum-energy
controls for a wide range of control times, and, in particular,
for times that are determined only by the experimental data
and that can exceed the largest time horizon of the collected
experiments. Further, we discuss the numerical properties of
our data-driven expressions, and the minimum number of
data required to correctly reconstruct the minimum-energy
control inputs. Third and finally, in the case of data corrupted
by noise with known second-order statistics, we propose cor-
rected data-driven control expressions, and show that these
converge to the true control inputs in the limit of infinite data.
Organization. The rest of the paper is organized as follows.
In Section II, we illustrate the class of systems and data
collection setting considered in this paper. In Section III, we
establish a data-based parameterization of sampled system
trajectories. In Section IV and V, we present and discuss
data-driven expressions of minimum-energy controls for the
case of noiseless and noisy data, respectively. Finally, Section
VI contains some concluding remarks and future directions.
Notation. Given a matrix A ∈ Rp×q , we let Ker(A) and
A† denote the kernel and Moore–Penrose pseudoinverse of
A, respectively. We let 0n,m and In denote the n×m zero
matrix (we simply write 0n if m = n) and n × n identity
matrix, respectively. We will omit the subscripts when the
dimensions are clear from the context. Further, we denote
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with KA the matrix whose columns form a basis of Ker(A).

II. SYSTEM DYNAMICS AND AVAILABLE DATA

Consider a discrete-time linear time-invariant system

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn, (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and input
of the system at time t, and A ∈ Rn×n and B ∈ Rn×m
are the state and input matrices, respectively. Let CT =
[B AB · · · AT−1B

]
denote the T -steps controllability

matrix of the system (1). We assume that A and B are
unknown, and that a set of control experiments with the
system (1) has been conducted for control purposes. Each
control experiment consists of (i) generating a T -steps input
sequence uT = [u(T − 1)T, . . . , u(0)T]T ∈ RmT , and (ii)
measuring the state of the system with input uT at time
t = 0, namely x(0), and at time t = T , namely,

x(T ) = ATx(0) + CTuT . (2)

We assume that the control experiments have been performed
using M distinct time horizons Ti ∈ N, i ∈ {1, . . . ,M},
and we divide the available data in sets (Ui, X0,i, Xi), i ∈
{1, . . . ,M}, where the i-th set contains Ni experiments, and
Ui ∈ RmTi×Ni , X0,i ∈ Rn×Ni , and Xi ∈ Rn×Ni denote the
matrices whose columns contain, respectively, the input se-
quences with horizon Ti, the initial states of the experiments,
and the final state measurements recorded at time Ti. We let
D = {(Ui, X0,i, Xi)}Mi=1 denote the set of all available data.

We stress that, equivalently, D may comprise measure-
ments that have (intermittently) been recorded from a suffi-
ciently long experiment or from several short and indepen-
dent ones (possibly performed using different initializations).
The first scenario is quite standard for system identification
[16] and behavior-based control [1], where data typically
consist of a single system trajectory (the case of missing
observations has been analyzed in a limited number of works,
e.g., see [17]). The second experimental scenario has recently
been considered in [6], [18], under the more restrictive as-
sumption that the initial state is the same for all experiments.

III. DATA-BASED REPRESENTATION OF SAMPLED
SYSTEM TRAJECTORIES

Consider a sequence of (possibly repeated) indices
k1, . . . , k` ∈ {1, . . . ,M}, and let T =

∑`
i=1 Tki . Further, let

xk1,...,k` =
[
x(0)T, x(Tk1)T, x(Tk1 + Tk2)T, . . . , x (T )

T
]T

denote the state trajectory of (1) generated by the control in-
put uT ∈ RmT and sampled at times 0, Tk1 , Tk1+Tk2 , . . . , T .
For notational convenience, we write x0:T when Tki = 1
for all i. The next result provides a parameterization of all
admissible pairs (uT , xk1,...,k`) in terms of the data D.

Theorem 3.1: (Data-based representation of input and
sampled state pairs) If [XT

0,ki
UT
ki

]T is full row rank for all
i ∈ {1, . . . , `}, then any pair (uT , xk1,...,k`) of input and
sampled state trajectories of the system (1) satisfies[

uT
xk1,...,k`

]
=

[
G
H

]
α, α ∈ Rqk`

+...qk1
+n, (3)

where qki = dim Ker(X0,ki), and

G =


Ũ` 0 · · · 0 0n

0 Ũ`−1

. . .
...

...
...

. . . . . . 0 0n

0 · · · 0 Ũ1 0n

 , (4)

H =



0 · · · 0 0 I

0 · · · 0 X̃1 Q1

...
... X̃2 Q2X̃1 Q2Q1

0
...

...
...

...
X̃` · · ·

`−3∏
i=0

Q`−iX̃2

`−2∏
i=0

Q`−iX̃1

`−1∏
i=0

Q`−i


, (5)

with Ũi = UkiKX0,ki
, X̃i = XkiKX0,ki

, and Qi =

XkiKUki
(X0,kiKUki

)†, for all i ∈ {1, . . . , `}.
Proof: Note that, since [XT

0,ki
UT
ki

]T is full row rank
for all i ∈ {1, . . . , `}, Ũi = UkiKX0,ki

is full row rank for
all i ∈ {1, . . . , `}.1 From (4), this implies that G is full row
rank, and, therefore, for every T -steps input sequence uT
there exists a real vector α such that uT = Gα. We next
show that the sampled state xk1,...,k` corresponding to the
input uT = Gα can be expressed as Hα, with H as in (5).
To this aim, let CTi

denote the Ti-steps controllability matrix
of (1), and observe that, for all j ∈ {1, . . . , `},

x(Tk1 + · · ·+ Tkj ) = ATk1
+···+Tkj x0+

+ATk2
+···+TkjCTk1

Ũ1α1 + · · ·+ CTkj
Ũjαj , (6)

where we partitioned α as α = [αT
` , α

T
`−1, . . . , α

T
1 , α

T
0 ]T,

with αi ∈ Rqki , and α0 ∈ Rn. Set α0 = x0. From

X̃i = XkiKX0,ki = (ATkiX0,ki + CTki
Uki)KX0,ki

= CTki
UkiKX0,ki = CTki

Ũi,

it follows that (6) can be rewritten as

x(Tk1 + · · ·+ Tkj ) = ATk1
+···+Tkjα0 +

+ATk2
+···+Tkj X̃1α1 + · · ·+ X̃jαj . (7)

Additionally, because [XT
0,ki

UT
ki

]T is full row rank,
X0,kiKUki

is full row rank, and from

XkiKUki
= (ATkiX0,ki + CTki

Uki)KUki

= ATkiX0,kiKUki
,

it follows that

Qi = XkiKUki
(X0,kiKUki

)† = ATki . (8)

Finally, by substituting (8) into (7) and rewriting the latter in
vector form, we obtain xk1,...,k` = Hα, with H as in (5).

The previous result states that any T -steps input se-
quence and corresponding state trajectory sampled at times
0, Tk1 , Tk1 +Tk2 , . . . , T of the system (1) can be written as a
linear combination of the columns of a matrix that depends

1Indeed, since [XT
0,ki

UT
ki
]T is full row rank, for all u ∈ RmT

there exists γ ∈ Ker(X0,ki
) such that [0 uT]T = [XT

0,ki
UT
ki
]Tγ, which

implies that Uki
KX0,ki

must be of full row rank.



on the dataset D only. Intuitively, this sampled data-based
representation is obtained by suitably “gluing” together the
data-based representations of system trajectories of lengths
Tk1 , Tk2 , . . . , Tk` . One of the advantages of our parameteri-
zation is that it provides a data-based description of a linear
system that does not rely on the identification of the system
matrices A and B. Further, when the full state of the system
is accessible, the data-based representation of Theorem 3.1
generalizes those employed in a number of recent works
(e.g., [1], [2], [5]), which rely on measurements of a single,
uninterrupted, and sufficiently long input-output trajectory.2

To clarify the notation and implications of Theorem 3.1, we
next illustrate our result by means of a simple example.

Example 1: (Illustration of Theorem 3.1) Consider the
scalar system

x(t+ 1) = ax(t) + u(t), a ∈ R, (9)

and assume that M = 1, N1 = 3, T1 = 2, that is, data have
been generated from three control experiments performed
using a single time horizon of length two. Further, consider
the following dataset D = {(U1, X0,1, X1)}, where

U1 =

[
0 1 0
0 0 1

]
, X0,1 =

[
1 0 0

]
, X1 =

[
a2 1 a

]
.

Notice that [XT
0,1 U

T
1 ]T has full row rank, and that

KU1 =

1
0
0

 , KX0,1 =

0 0
1 0
0 1

 , Q1 = a2.

Thus, by choosing ` = 2 and k1 = k2 = 1, by Theorem
(3.1), any input uT and resulting state sampled at time 0,
T1 = 2, T = 2T1 = 4, x0,2,4, of (9) satisfy (3), where

G =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

, H =

 0 0 0 0 1
0 0 1 a a2

1 a a2 a3 a4

.
We note, in particular, that to compute the matrices G and
H , we did not reconstruct the system parameter a. �

When the dataset D contains trajectories recorded using a
unit-length time horizon3, we have the following immediate
corollary of Theorem 3.1, which provides a complete data-
based parameterization of all input sequences and corre-
sponding state trajectories of the system (1).

Corollary 3.2: (Complete data-based representation of
input and state pairs) Assume that there exists an index
j ∈ {1, . . . ,M} such that Tj = 1. If [XT

0,j U
T
j ]T is full

row rank, then, for any T ≥ 1, any pair of input uT and
corresponding state trajectory x0:T of the system (1) satisfies[

uT
x0:T

]
=

[
G
H

]
α, α ∈ RTqj+n, (10)

where G and H are defined as in (4) and (5), respectively,
with ` = T and ki = j for all i ∈ {1, . . . , `}.

2A partial extension of this setting to multiple measured trajectories has
been proposed in [4], [19], under the rather restrictive assumption that these
trajectories align over a sufficiently long window at their intersection.

3We remark that a unit-length dataset can be constructed from measure-
ments of a single trajectory by dividing the latter into unit-length segments.

IV. CLOSED-FORM DATA-DRIVEN EXPRESSIONS OF
MINIMUM-ENERGY CONTROLS

A. Problem formulation

For a control horizon T ≥ 1 and desired initial and final
states x0 ∈ Rn and xf ∈ Rn, respectively, the minimum-
energy control problem asks for the input sequence uT ∈
RmT with minimum norm that steers the state of the system
(1) from x0 to xf in T steps. Mathematically, this is encoded
in the solution of the following minimization problem:

min
uT

‖uT ‖22,

s.t. x(t+ 1) = Ax(t) +Bu(t),

x(0) = x0, x(T ) = xf.

(11)

As a classic result [20], the minimization problem (11) is
feasible if and only if xf is reachable in T -steps from x0, or,
equivalently, if and only if (xf − ATx0) ∈ Im(CT ), where
CT is the T -steps controllability matrix of the system. In this
case, the solution to (11) is unique and can be computed as

u∗T = C†T (xf −ATx0). (12)

In the remaining of this section, we will derive closed-form
expressions of u∗T based on the dataset D without relying on
the identification of the system matrices A and B. To this
end, we will make use of the following assumptions:
(A1) The state xf is reachable in T -steps from the state x0.
(A2) The dataset D contains (possibly repeated) indices

k1, . . . , k` ∈ {1, . . . ,M} such that
∑`
i=1Tki = T .

B. Data-driven expressions of minimum energy controls

Let k1, . . . , k` ∈ {1, . . . ,M} be such that
∑`
i=1 Tki = T ,

and consider the following minimization problem:

min
α

‖Gα‖22

s.t.
[
x0

xf

]
= H̄α,

(13)

where α ∈ Rqk`
+···+qk1

+n is the optimization variable,
qki = dim Ker(X0,ki), G is as in (4), and H̄ is the matrix
comprising the first and last (row) block of H in (5), namely:

H̄ =

[
0 · · · 0 0 I

X̃` · · ·
`−3∏
i=0

Q`−iX̃2

`−2∏
i=0

Q`−iX̃1

`−1∏
i=0

Q`−i

]
. (14)

The next theorem shows that the solution to (13) leads to
a data-driven expression of the T -steps minimum-energy
control input from x0 to xf for the system (1).

Theorem 4.1: (Data-driven minimum-energy controls)
Assume that [XT

0,ki
UT
ki

]T is full row rank for all i ∈
{1, . . . , `}. The T -steps minimum-energy control input to
drive the system (1) from x0 to xf can be expressed as

u∗T = (I −GKH̄(GKH̄)†)GH̄†
[
x0

xf

]
. (15)

Proof: Since [XT
0,ki

UT
ki

]T has full row rank for all
i ∈ {1, . . . , `} and xf is reachable in T steps from x0 by



assumption, Theorem 3.1 ensures that there exists a real
vector α∗ satisfying

u∗T = Gα∗ and
[
x0

xf

]
= H̄α∗.

Because the T -steps minimum-energy control input u∗T =
Gα∗ is unique, α∗ is also a solution to problem (13), and
its computation is equivalent to computing u∗T . By direct
calculation, any solution to problem (13) has the form

α∗ = (H̄† −KH̄(GKH̄)†GH̄†)

[
x0

xf

]
+ g,

where g is an arbitrary vector belonging to the kernel of G.
Finally, by substituting the above expression of α∗ in u∗T =
Gα∗, the data-driven expression (15) directly follows.

Theorem 4.1 exploits the solution to the optimization
problem (13) and the data-based representation of sampled
system trajectories established in Theorem 3.1 to compute a
closed-form data-driven expression of the minimum-energy
input u∗T based on the dataset D. Alternatively, a data-based
expression of u∗T can be derived via estimation of the T -steps
controllability matrix CT and matrix AT , as we show next.

Theorem 4.2: (Alternative expression of data-driven
minimum-energy controls) Assume that [XT

0,ki
UT
ki

]T is full
row rank for all i ∈ {1, . . . , `}. The T -steps minimum-
energy input to drive (1) from x0 to xf can be expressed as

u∗T = Ĉ†T

[
−
`−1∏
i=0

Q`−i I

] [
x0

xf

]
, (16)

where, for all i ∈ {1, . . . , `},

ĈT =

[
L` Q`L`−1 · · ·

`−2∏
i=0

Q`−iL1

]
,

Qi = XkiKUki
(X0,kiKUki

)†, and

Li = XkiKX0,ki
(UkiKX0,ki

)†.

(17)

Proof: Notice that

XkiKUki
= (ATkiX0,ki + CTki

Uki)KUki

= ATkiX0,kiKUki
.

Because [XT
0,ki

UT
ki

]T has full row rank for all i, X0,kiKUki

has also full row rank for all i, so that it holds

Qi = XkiKUki
(X0,kiKUki

)† = ATki . (18)

Similarly, notice that

XkiKX0,ki = (ATkiX0,ki + CTki
Uki)KX0,ki ,

= CTki
UkiKX0,ki ,

and, because UkiKX0,ki
has full row rank for all i, we have

Li = XkiKX0,ki
(UkiKX0,ki

)† = CTi . (19)

From (18) and (19), it follows that ĈT = CT and∏`−1
i=0 Q`−i = AT . Finally, since, by assumption, xf is

reachable in T steps from x0, the data-driven expression (16)
directly follows from the model-based expression (12).

In Fig. 1 we compare the numerical performance of the
model-based input (12) and our data-driven expressions (15)

(a) (b)

1 50 100
100

101

102

103

104

N

‖û
T
‖ 2

Model-based Eq. (15) Eq. (16)

1 50 100

10−12

10−6

100

105

N

‖x̂
f
−

x
f‖

2

Fig. 1. In this figure we compare the numerical performance of the
model-based minimum-energy input (12) and the data-driven minimum-
energy inputs (15) and (16). We choose a system of dimension n = 20
with m = 2 inputs. The system matrices A and B have been generated
randomly with i.i.d. normal entries. Data have been divided into M = 4
datasets with time horizons Ti = 2 + i, i = 1, . . . ,M . The i-th dataset,
i = 1, . . . ,M , contains Ni = N measurements. We choose a control
horizon T =

∑M
i=1 Ti = 18. The entries of the data matrices X0,i and

Ui, initial state x0, and final state xf have been independently drawn from
of a normal distribution. The plots show the norm of the minimum-energy
input (panel (a)) and the corresponding error in the final state (panel (b)) for
the model-based expression (12) and the data-driven expressions (15) and
(16) as a function of the size of the datasets N . For the data-driven input (15)
we replace (GKH̄)† with (GKH̄)†ε where ε = 10−8 (cf. Remark 2). All
curves concerning the data-driven strategies represent the average over 500
random realizations of the data matrices. In the gray regions the data-driven
inputs are zero since the kernel of every matrix X0,i and Ui is empty.

and (16) for a system of dimension n = 20, a number
of inputs m = 2, and randomly generated data consisting
of M = 4 datasets featuring different time horizons. Each
dataset contains an identical number of data N . For values of
N in the gray region, the kernel of every data matrix X0,i and
Ui is empty and, therefore, the data-driven inputs (15) and
(16) are zero. As soon as N equals the number of rows of the
largest matrix [XT

0,ki
UT
ki

]T (N = 32 in the figure), the norm
of the data-driven inputs reaches the optimal one (Fig. 1(a)),
and the corresponding error in the final state rapidly decays
to zero (Fig. 1(b)), in agreement with Theorems 4.1 and 4.2.

Remark 1: (Minimum number of required experiments)
Theorems 4.1 and 4.2 provide exact data-driven expressions
of the T -steps minimum-energy control input from x0 to
xf, under the assumption that the data matrix [XT

0,ki
UT
ki

]T

is full row rank for all i ∈ {1, . . . , `}. For this condition
to be satisfied, at least Ni = Tkim + n experiments must
be collected for each control time Tki . If there exists j ∈
{1, . . . ,M} such that Tkj = 1 (unit-length data), m + n
measurements suffice to reconstruct the T -steps minimum-
energy control input, for every horizon T . In this case, our
expressions implicitly estimate the system matrices A and B.
Specifically, in (15) and (16), Qj = A, and, in (16), Lj = B.
Hence, in this case, using our data-driven expressions or a
sequential system identification and control design approach
seem to be equivalent from a computational viewpoint. �

Remark 2: (Numerical properties of (15) and (16))
While the data-driven expression (16) appears to be nu-
merically stable (i.e., small numerical errors yield small
deviations from the minimum-energy control), (15) suffers



from numerical instabilities. Precisely, in the case of small
numerical errors, the (row) rank of matrix GKH̄ could
become full, yielding u∗T = 0 in (15) regardless of the value
of x0 and xf. To remedy this situation, it is numerically
convenient to replace (GKH̄)† in (15) with (GKH̄)†ε, where
(A)†ε denotes the Moore–Penrose pseudoinverse of A that
treats as zero the singular values of A that are smaller than
ε > 0. As a rule of thumb, ε should be set to a value slightly
larger than the expected magnitude of the numerical errors.�

V. DATA-DRIVEN MINIMUM-ENERGY CONTROLS
WITH NOISY DATA

In this section, we assume that the dataset D is corrupted
by additive i.i.d. noise with known second-order statistics.
Specifically, for all i ∈ {1, . . . ,M}, we consider corrupted
data matrices of the form

Ui = Ūi +WUi , X0,i = X̄0,i +WX0,i
, Xi = X̄i +WXi

,
(20)

where Ūi, X̄0,i, and X̄i denote the true data matrices,
and the entries of WUi

, WX0,i
, and WXi

are i.i.d. random
variables with zero mean and variance σ2

Ui
, σ2

X0,i
, and σ2

Xi
,

respectively. In this case, the data-driven expressions (15) and
(16) are typically biased (see [6, Remark 3] for an explicit
example in a simplified scenario), yielding incorrect control
inputs even when the number of data grows unbounded. In
this section, we will show that the effect of noise can be
cancelled, in the limit of infinite data, by suitably “correct-
ing” these expressions. Specifically, inspired by [21], we will
introduce correction terms that compensate for the variance-
dependent terms generated by the pseudoinverse and kernel
operations in (15) and (16), leading to asymptotically correct
(or, equivalently, consistent) data-driven expressions.4

We consider first the data-driven expression (16), and
rewrite the terms Qi, Li in (17), respectively, as

Qi = XkiΠUki
XT

0,ki(X0,kiΠUki
XT

0,ki)
†,

Li = XkiΠX0
UT
ki(UkiΠX0

UT
ki)
†,

where we used the identity A† = AT(AAT)†, and we
replaced, without loss of generality, every term KAK

T
A with

the orthogonal projections onto Ker(A), ΠA = I − A†A.
Next, we define the “corrected” versions of Qi and Li as

Qi,c = XkiΠUki
,cX

T
0,ki(X0,kiΠUki

,cX
T
0,ki −Nσ

2
X0
I)†,

Li,c = XkiΠX0,cU
T
ki(UkiΠX0,cU

T
ki −Nσ

2
UI)†,

where ΠX0,ki
,c = I −XT

0,ki
(X0,kiX

T
0,ki
−Nσ2

X0
I)†X0,ki

and ΠUki
,c = I − UT

ki
(UkiU

T
ki
−Nσ2

UI)†Uki . With these
definitions in place, we introduce the following “corrected”
expression of the data-driven control input (16):

u′′T,c = Ĉ†T,c

[
−
`−1∏
i=0

Q`−i,c I

] [
x0

xf

]
, (21)

where ĈT,c is defined as in (17), after replacing all instances
of Qi and Li with Qi,c and Li,c, respectively. It is worth

4To simplify the treatment without compromising the generality of
the approach, in what follows we will assume Ni = N , σ2

U = σ2
Ui

,
σ2
X0

= σ2
X0,i

, and σ2
X = σ2

Xi
for all i ∈ {1, . . . ,M}.

noting that, if only the matrices Xi are affected by noise,
then (21) coincides with (16), and no correction is needed.

Theorem 5.1: (Consistency of u′′T,c) Assume that the
dataset D is corrupted by noise as in (20), and that
[X̄T

0,ki
ŪT
ki

]T is full row rank for all i ∈ {1, . . . , `}. The
data-driven control u′′T,c in (21) converges almost surely to
the minimum-energy control input u∗T as N →∞.

Proof: By the Strong Law of Large Numbers [22, p. 6]
and the assumption on the noise, as N →∞, we have

∆i,1 =
1

N
X0,kiX

T
0,ki

a.s.−−→ 1

N
X̄0,kiX̄

T
0,ki +σ2

X0
I = ∆̄i,1,

∆i,2 =
1

N
UkiU

T
ki

a.s.−−→ 1

N
ŪkiŪ

T
ki + σ2

UI = ∆̄i,2,

∆i,3 =
1

N
XkiX

T
0,ki

a.s.−−→ 1

N
X̄kiX̄

T
0,ki = ∆̄i,3,

∆i,4 =
1

N
XkiU

T
ki

a.s.−−→ 1

N
X̄kiŪ

T
ki = ∆̄i,4,

(22)

where a.s.−−→ denotes almost sure convergence. Each matrix
Qi,c can be written as a function of ∆i,j , j = 1, 2, 3, namely,

Qi,c = (∆i,3 −∆i,3(∆i,2 − σ2
Uki

I)†∆i,3)·

· (∆i,1 − σ2
X0,ki

I + ∆i,1(∆i,2 − σ2
Uki

I)†∆i,1)†.

Further, notice that Qi,c is continuous at ∆i,j = ∆̄i,j , j =
1, 2, 3, since [X̄T

0,ki
ŪT
ki

]T is full row rank by assumption.
Thus, by (22) and the Continuous Mapping Theorem [22,
Theorem 2.3], as N →∞,

Qi,c
a.s.−−→ Q̄i, (23)

where Q̄i = X̄kiKŪki
(X̄0,kiKŪki

)†. Analogously, each Li,c
can be written as

Li,c = (∆i,4 −∆i,4(∆i,1 − σ2
X0,ki

I)†∆i,4)·

· (∆i,2 − σ2
Uki

I + ∆i,2(∆i,1 − σ2
X0,ki

I)†∆i,2)†,

and the same argument as before shows that, as N →∞,

Li,c
a.s.−−→ L̄i, (24)

where L̄i = X̄kiKX̄0,ki
(ŪkiKX̄0,ki

)†. Finally, by applying
(23), (24), and, once again, the Continuous Mapping Theo-
rem, we conclude that u′′T,c

a.s.−−→ u∗T as N →∞.
Consider now the data-driven control (15). After some

algebraic manipulations, it can be rewritten as

u∗T =(I −GΠH̄G
T(GΠH̄G

T)†)GH̄T(H̄H̄T)†
[
x0

xf

]
. (25)

We introduce the following “corrected” version of (25):

u′T,c=(I−(GcΠH̄,cG
T
c −Nσ2

UI)(GcΠH̄,cG
T
c −Nσ2

UI)†ε)·

·GcH̄T
c (H̄cH̄

T
c −∆H̄)†

[
x0

xf

]
, (26)

where Gc and H̄c are defined as G and H̄ , after replacing
all instances of Qi and KX0,ki

with Qi,c and ΠX0,ki
,c,
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Fig. 2. In this figure we compare the behavior of the data-driven minimum-
energy inputs (15) and (16) and their corrected versions (26) and (21),
respectively. We choose a system of dimension n = 4 with m = 2
inputs. The system matrices A and B have been generated randomly with
i.i.d. normal entries. Data have been divided into M = 2 datasets with time
horizons T1 = 3 and T2 = 4 and N1 = N2 = N measurements. We
choose a control horizon T = T1 +T2 = 7. The entries of every X0,i and
Ui are independently and uniformly distributed in [0, 1]. The entries of the
initial state x0 and final state xf have been independently drawn from of a
normal distribution. The plots show the norm of the minimum-energy input
(panel (a)) and the corresponding error in the final state (panel (b)) for all the
data-driven expressions as a function of the number of data N . For the data-
driven inputs (15) (cf. Remark 2) and (26) we choose a tolerance ε = 10−8.
The entries of all data matrices are corrupted by i.i.d. Gaussian noise as in
(20) with variance σ2

X = σ2
X0

= σ2
U = 0.1. The solid and dashed curves

represent the average over 100 realizations of the noise, whereas the light-
colored regions denote the 95% confidence intervals around the mean.

respectively, the operation (·)†ε is defined in Remark 2, and

ΠH̄,c = I − H̄T
c (H̄cH̄

T
c −∆H̄)†H̄c, ∆H̄ =

[
0n 0n
0n ∆H̄,2

]
,

∆H̄,2 = Nσ2
X

∑̀
j=0

j−1∏
i=0

Q`−i,c

(
j−1∏
i=0

Q`−i,c

)T

, Q0,c = I.

Theorem 5.2: (Consistency of u′T,c) Assume that D is
corrupted by noise as in (20), and that [X̄T

0,ki
ŪT
ki

]T is full
row rank for all i ∈ {1, . . . , `}. For ε > 0 sufficiently small,
the data-driven control u′T,c in (26) converges almost surely
to the minimum-energy control input u∗T as N →∞.

The proof of Theorem 5.2 follows closely the one of
Theorem 5.1 and is therefore omitted. In Fig. 2, we illustrate
the behavior of the data-driven expressions (15) and (16),
and their corrected versions (26) and (21), respectively, as
a function of the data size N . Each dataset is corrupted by
i.i.d. Gaussian noise as in (20) with σ2

X = σ2
X0

= σ2
U = 0.01.

As the number of data N increases, the corrected data-driven
expressions (26) and (21) approach the minimum-energy cost
(Fig. 2(a)) and the corresponding errors in the final state
decrease (Fig. 2(b)), as predicted by Theorems 5.1 and 5.2.

VI. CONCLUSION

In this paper we address the problem of computing
minimum-energy controls for linear systems using heteroge-
neous data. Specifically, we consider data consisting of input-
state trajectories featuring different time horizons and initial
conditions. We derive two different data-driven expressions
of minimum-energy controls for a wide range of control

horizons, possibly different from those in the experiments.
When data are affected by i.i.d. noise with zero mean and
known variance, we modify our expressions so to ensure con-
vergence to the correct controls in the limit of infinite data.

Directions for future work include the application of
our approach and data collection setting to other control
problems, such as LQR and MPC, the sensitivity analysis of
the corrected data-driven control inputs to uncertainty in the
noise variances, and the derivation of non-asymptotic bounds
on the reconstruction error in the case of finite noisy data.
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