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Abstract— Nonlinear stabilization using control contraction
metric (CCM) method usually involves an online optimization
problem to compute a minimal geodesic (a shortest path)
between pair of states, which is not desirable for real-time
applications. This paper introduces a continuous-time dynamic
realization which distributes the computational cost of the
optimization problem over the time domain. The basic idea is to
force the internal state of the dynamic controller to converge to
a geodesic using covariant derivative information. A numerical
example illustrates the proposed approach.

I. INTRODUCTION

Stabilization of arbitrary trajectories of nonlinear dy-
namical systems is a challenging problem. One solution
is to linearize the dynamics around the equilibrium mani-
fold and apply the linear parameter-varying (LPV) control
design methods [1]. However, these approaches generally
lack global stability guarantees for the closed-loop nonlinear
system. Another approach is to apply nonlinear model pre-
dictive control (NMPC) [2], which solves an optimal control
problem (OCP) in a moving horizon way. Due to the complex
dynamic constraints, the computational cost often limits its
applications in real-time systems.

Contraction theory [3] is an attractive tool for the nonlin-
ear stabilization problem because it provides formal global
stability guarantees of the nonlinear system via simple local
linear analysis. The underlying idea is to integrate the local
stability results along a geodesic (a shortest path w.r.t. certain
Riemannian metric) connecting the measured and reference
states. Extensions to control design were developed in [4],
[5] by introducing the concept of control contraction metric
(CCM). Specifically, a CCM is a Riemannian metric for
which the Riemannian energy functional of the geodesic
between the measured and reference states can be made to
decrease exponentially by choosing proper control action.
Thus, the CCM can be understood as a differential version
of control Lyapunov function (CLF). Further extensions to
distributed control can be found in [6], [7]. Connections and
comparisons with LPV based control was discussed in [8].

A static state-feedback realization based on integration
along a geodesic was proposed in [4]. Implementation of this
controller involves solving an optimization problem to find
a geodesic. This online computation is similar to NMPC,
but is of lower dimension without dynamic constraints.
There exist some indirect methods for geodesic computation,
such as phase flow method [9], fast marching [10] and

This work was supported by the Australian Research Council.
The authors are with the Australian Centre for Field Robotics,

The University of Sydney, Sydney, NSW 2006, Australia (e-mail:
ian.manchester@sydney.edu.au).

graph cuts [11]. One drawback of these approaches is the
small convergence radii. Direct methods construct a finite-
dimensional approximation of the online OCP and solve
it via nonlinear programming (NLP). Typical discretization
methods include single/multiple shooting [12] and global
pseudospectral [13]. Recently, an efficient approach using the
Chebyshev pseudospectral was proposed in [14]. Although
the computational time is significantly reduced compared
with the shooting method, online optimization is still not
desirable for time-critical applications.

In this paper, we propose a continuous-time dynamic
realization approach to address this issue. Inspired by a
recent continuous-time MPC scheme [15], [16], the proposed
approach makes continuous improvements to the integral
path rather than solving a full optimization problem on-
line. Specifically, the dynamic controller use forward flows
generated by the plant model and gradient information of
Riemannian energy functional to force its internal state (a
path connecting the reference point to the measured state)
to converge to a geodesic. The control output uses the same
integration technique of [4] with integrals computed over the
dynamic controller’s internal state. We will consider state-
feedback realization for both nominal and perturbed systems.
It is shown that the nominal closed-loop system is globally
exponential stable and the path converges to a geodesic if
the controller dynamics are sufficiently fast with respect to
the plant dynamics. For the robust case where the system is
perturbed by bounded additive disturbances, one endpoint of
the path would deviate from the measured state, which may
lead to closed-loop instability. Robust stability is achieved
by adding state feedback to the path dynamics.

The structure of the paper is as follows. Section II gives
some preliminaries results on CCM-based control design. In
Section III we detail the proposed continuous-time dynamic
realization. A numerical example is presented in Section IV
to illustrative the effectiveness of this approach.

II. PRELIMINARIES

A. Notation

We use |x| to denote the standard Euclidean norm of a
real vector x. The nonnegative reals are denoted R+ :=
[0,∞). The space Le2 is the set of vector signals f on
R+ whose causal truncation to any finite interval [0, T ] has

finite squared norm, i.e.
√∫ T

0
|f(t)|2dt <∞. For symmetric

matrices A and B, the notation A ≺ B(A � B) means that
B −A is positive (semi)definite.
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A Riemannian metric on Rn is a symmetric positive-
definite matrix function M(x), smooth in x, which defines
a smooth inner product 〈δ1, δ2〉 := δ>1 M(x)δ2 for any
two tangent vectors δ1, δ2 at the point x, and the norm
‖δ‖M =

√
〈δ, δ〉. A metric is called uniformly bounded if

α1I �M(x) � α2I, ∀x, for some constants α2 ≥ α1 > 0.
Let Γ(x, y) be the set of smooth paths joining two points

x and y in Rn, where each c ∈ Γ(x, y) is a smooth map
c : [0, 1] → Rn and satisfying c(0) = x and c(1) = y.
We use the notation c(s), s ∈ [0, 1] and cs := ∂c

∂s . Given
a metric M(x), we can define the Riemannian length and
energy functional of c as follows

L(c) :=

∫ 1

0

‖cs‖Mds, E(c) :=

∫ 1

0

‖cs‖2Mds

respectively. The Riemannian distance d(x, y) between two
points is the length of the shortest path between them, i.e.,
d(x, y) := infc∈Γ(x,y) L(c). Under the conditions of the
Hopf-Rinow theorem, there exists a geodesic (minimum-
length curve) γ ∈ Γ(x, y) such that d(x, y) = L(γ). Fur-
thermore, we have E(γ) = L(γ)2 = 〈γs, γs〉 , ∀s ∈ [0, 1].

Let Γ(x, y, t) be the set of smooth time-varying paths c :
R × [0, 1] → Rn connecting smooth signals x(t) and y(t).
We also use c(t) := c(t, ·) and ċ := dc

dt . The formula for first
variation of energy [17, p. 195] gives the time derivative of
the energy functional E(t) := E(c(t)) as follows

1

2

dE

dt
= 〈ċ, cs〉

∣∣s=1

s=0
−
∫ 1

0

〈ċ,∇cscs〉 ds (1)

where∇ is the Riemannian connection induced by the metric
M(x), and ∇cscs is the covariant derivative. A smooth curve
c is a geodesic if and only if ∇cscs = 0.

B. Control Contraction Metrics

Consider nonlinear control-affine systems of the form

ẋ = F (x, u) := f(x) +B(x)u (2)

where x(t) ∈ Rn and u(t) ∈ Rm are state and control at
time t ∈ R+ := [0,∞), respectively. For simplicity, f and B
are assumed to be smooth and time-invariant. We denote the
ith column of B(x) by bi(x). For the system (2) we define
a reference trajectory to be any set of signals x∗, u∗ all in
Le2 and satisfying (2) on R+. A reference trajectory (x∗, u∗)
is said to be globally exponentially stabilized by a feedback
controller u = κ(x, x∗, u∗) if for any initial state x(0) ∈ Rn,
a unique closed-loop solution x(t) exists for all t ∈ R+ and
satisfies

|x(t)− x∗(t)| ≤ Re−λt|x(0)− x∗(0)| (3)

where R > 0 is the overshoot, and λ > 0 the rate. System (2)
is said to be universally exponentially stabilizable if every
forward-complete solution (x∗, u∗) is globally exponentially
stabilizable. Note that universal stabilizablity is a strong
condition than global stabilizablity of a particular solution.

Nonlinear stabilization using control contraction metric
(CCM) ([4]) is a constructive approach to achieve universal
stability. For the offline design stage, it applies linear system

theory to the control synthesis of the local linearized system
– differential dynamics:

δ̇x = A(x, u)δx +B(x)δu (4)

where A = ∂f
∂x +

∑m
i=1

∂bi
∂x ui. Specifically, we construct a

differential feedback law:

δu = K(x)δx (5)

where K = YW−1 with W (x) ∈ Rn×n and Y (x) ∈ Rm×n
obtained from the following parameter-dependent linear ma-
trix inequality (LMI):

− Ẇ +AW +WA> −BY − Y >B> + 2λW � 0. (6)

From the above inequality, the controller (5) achieves expo-
nential stability for (4):

d

dt
‖δx‖2M = δ>x Ṁδx + 2δ>xM(A+BK)δx ≤ −2λ‖δx‖2M

(7)
where M(x) = W−1(x) is called a CCM.

A static (memoryless) realization of the controller was
proposed in [4], which includes three steps:

1) Compute a minimal geodesic

γ(t) := argmin
c∈Γ(x∗(t),x(t))

E(c). (8)

2) Integrate (5) over γ, i.e.,

κγ(t, s) := u∗(t) +

∫ s

0

K(γ(t, s))γs(t, s)ds. (9)

3) Implement the state-feedback control

u = κ(x, x∗, u∗) := κγ(t, 1). (10)

This static realization achieves universally exponential sta-
bility with overshoot R =

√
α2

α1
and rate λ. If there exists

a smooth coordinate transformation z = h(x) satisfying
δ>z δz = δ>xM(x)δx, we can compute the geodesics directly
via γ(s) = h−1(z∗(1 − s) + zs) where z∗ = h(x∗) and
z = h(x). However, for general cases, the computation of
geodesics involves an optimization problem (8), which is not
desired for time-critical applications.

III. CONTINUOUS-TIME DYNAMIC REALIZATION

In this section, we introduce a continuous dynamic control
realization which keeps Step 2) and 3) unchanged but replace
Step 1) with a dynamical system whose internal state is
a path joining x∗(t) to x(t). This path dynamics solves
a geodesic computation problem in parallel with the plant
system. As shown in Fig. 1, we will consider two scenarios:
nominal and robust state feedback. In particular, for the
robust case, we assume that the system (2) is perturbed by
bounded additive disturbances, i.e.,

ẋ = F (x, u) + d (11)

with ‖d(t)‖ ≤ ∆ for all t ∈ R+.
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(a) Nominal case (b) Robust case

Fig. 1. Geometric illustrations of the continuous-time dynamic realization:
red – path c(t, ·), blue – flows c(·, s), dash – geodesic γ(t).

A. Nominal State Feedback

First, we consider the continuous-time dynamic realization
via the forward flow defined by (2):

ċ = f(t, s) := F (c(t, s), κc(t, s))

u = κc(t, 1)
(12)

where the initial state is c(0, s) = sx(0)+(1−s)x∗(0). Then
the endpoint dynamics can be represented by

ċ(t, 0) = F (x∗, u∗), (13a)
ċ(t, 1) = f(x, u). (13b)

It is easy to verify that c(t, 0) = x∗(t) and c(t, 1) = x(t)
for all t ∈ R+ since c(0, 0) = x∗(0) and c(0, 1) = x(0).
Moreover, integration of (7) over c(t) gives

1

2
Ė = 〈f(t, s), cs〉

∣∣s=1

s=0
−
∫ 1

0

〈f(t, s),∇cscs〉 ds ≤ −λE.
(14)

Globally exponential stability is achieved but perhaps with
larger overshoot since c(t) generally does not converge to a
geodesic γ(t).

Now we consider an alternative path dynamics:

ċ = f(t, s) + α(s)∇cscs (15)

where α : [0, 1]→ R+ is a smooth weighting function satis-
fying α(0) = α(1) = 0. Here the covariant derivative ∇cscs
can be taken as the gradient information of the geodesic op-
timization problem (8). We define the normalized weighting
function as η(s) = α(s)/α with α = maxs∈[0,1] α(s). Then,
the nominal stability is given as follows.

Theorem 1. For any weighting function α(s), the system (2)
subject to the control law (15) is universally exponentially
stable. If the parameter α is chosen to be sufficiently large,
then the controller internal state c(t, ·) converges to a
geodesic γ(t, ·) ∈ Γ(x∗, x, t) before x(t) converges to x∗(t).

Proof. From (14), we have

1

2
Ė ≤ −λE − α

∫ 1

0

η(s)‖∇cscs‖2Mds ≤ −λE. (16)

Universal stability of the nominal system (2) follows as the
length of c(t) shrinks exponentially.

Choose a constant τ ∈ (0, 1), from Lemma 3 we can
online adjust the weighting function η such that the following
inequality holds:

1

2
Ė ≤ −λE − ατ

∫ 1

0

‖∇cscs‖2Mds. (17)

With a sufficiently large α, the closed-loop system can be
decomposed into two time-scale subsystems: slow dynamics
(2) and fast dynamics (15). The covariant derivative ∇cscs
will be forced to converge to 0 (i.e., the path c(t, ·) converges
to a geodesic γ(t, ·) ∈ Γ(x∗, x, t)) before the convergence of
the state x(t) to x∗(t).

Remark 1. As shown in Section III-C, the online implemen-
tation only computes a finite number of flows c(t, sj), j =
0, 1, . . . , N digitally using forward-Euler or Runge-Kutta
methods with a sufficiently small sampling time τs. Thus,
α cannot be chosen to be arbitrary large due to numerical
stability consideration and the parameters (s0, s1) for the
weighting function η(s) in (30) cannot be chosen to be
arbitrary close to (0, 1). Although the path c(t, ·) may
not follow γ(t, ·) exactly, it can still converge to a small
neighborhood of γ(t, ·).

B. Robust State Feedback

When system (2) is perturbed by external disturbances,
the state trajectory x(·) generally does not coincide with the
endpoint trajectory c(·, 1) generated by the path dynamics
(15). Let x̂(t) = c(t, 1) and x̃(t) = x(t)−x̂(t). To reduce the
disturbance effect on x̃, we use the following path dynamics

ċ = f(t, s) + α(s)∇cscs + β(s)x̃(t) (18)

where β(s) = βζ(s) with ζ : [0, 1]→ [0, 1] as a nondecreas-
ing function satisfying ζ(0) = 0 and ζ(1) = 1. Note that,
for the nominal case, the above system is equivalent to the
path dynamics (15).

If the disturbance bound ∆ is sufficiently small, the
dynamics of x̃(·) can be approximated by

˙̃x = (Acl(x̂, û)− βI)x̃+ d (19)

where Acl(x̂, û) = A(x̂, û) + B(x̂)K(x̂) with û = κc(t, 1).
From (7) we have that the maximum eigenvalue of Acl(x̂, û)
is no larger than −λ. Therefore, the error bound for x̃ is

|x̃(t)| ≤ ∆

β + λ
, ∀t ∈ R+. (20)

The time derivative of the energy functional satisfies

1

2
Ė ≤− λE +

〈
βx̃, cs(t, 1)

〉
−
∫ 1

0

〈
βx̃, ζ∇cscs

〉
ds

− ατ
∫ 1

0

‖∇cscs‖Mds

≤− λE +
〈
βx̃, cs(t, 1)

〉
+
ε2

4
‖βx̃‖2M

− ατ

2

∫ 1

0

‖∇cscs‖Mds

(21)
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Fig. 2. Illustration of discretization of path c(t) using Chebyshev
polynomials.

where ε ≥
√

2/ατ . The closed-loop robust stability is given
as follows.

Theorem 2. Consider the perturbed system (11) and the
continuous-time dynamic control realization (18). If the
parameter α, β are sufficiently large, the closed-loop system
is robust stable with respect to the set

Ω(x∗) = {x ∈ Rn : |x− x∗| ≤ R∆/λ} (22)

where R = (1+
√

1+λε2)β

2(β+λ)
R+ λ

β+λ
.

Proof. If α is sufficiently large, we can conclude from (21)
that c(t) converges to γ(t) for t ≥ T where T is sufficiently
large. This leads to

1

2
Ė ≤ −λE +

〈
βx̃, γs(t, 1)

〉
+
ε

4
‖βx̃‖2M . (23)

With the facts that E(γ) = 〈γs, γs〉 ,∀s ∈ [0, 1] and |x̃| ≤
∆
β+λ

, there exists a T ′ > T such that the following inequality
holds for t ≥ T ′:

|x̂(t)− x∗(t)| ≤ (1 +
√

1 + λε2)β

2(β + λ)
R∆ (24)

which leads to

|x(t)− x∗(t)| ≤ |x̂(t)− x∗(t)|+ |x̃| ≤ R∆/λ. (25)

Remark 2. The parameter α represents the convergence
speed of c(t) to a geodesic γ(t) connecting x∗(t) to x̂(t)
while the parameter β controls the convergence speed of
x̂(t) to x(t). The parameter ε affects the size of invariant
set. When α, β → ∞ and ε → 0, we have R → R which
implies that dynamic realization achieves the same invariant
set as the geodesic based static realization (10).

C. Implementation

The path dynamics is an infinite-dimensional system as
its internal state c(t) is a smooth function over [0, 1]. For
online implementation, we approximate c(t) with Chebyshev
polynomial expansion at time t. This is a finite-dimensional
approximation based on the samples of the path at Chebyshev
nodes. In this way, the path dynamics is discretized into

a finite set of dynamical systems whose state dimension
is same as the original nonlinear plant. Those systems are
solved in parallel with the nonlinear plant and the solutions
are used to construct an approximate path at the next time
step. As time involves, this path converges to a geodesic due
to the forward and gradient descent flows. This approach
is different from [14] which uses Chebyshev polynomials
to discretize the geodesic computation problem (8) at each
time point. A finite-dimensional NLP is iteratively solved
online, and the optimal solution is then used to construct a
geodesic. Thus, the online computation time of the proposed
approach is expected to be much smaller, compared with the
optimization based approach [14].

Firstly, we recall some standard results of approximation
theory using Chebyshev polynomials (see [18] for details).
The first-kind Chebyshev polynomials Tk(x) over the inter-
val [−1, 1] are defined recursively by

Tk+1(x) = 2xTk(x)− Tk−1(x), k = 1, 2, 3, . . . (26)

with starting values T0(x) = 1 and T1(x) = x. Under
the coordinate transform x = cos(θ), θ ∈ [0, π], we have
Tk(cos θ) = cos(kθ). A continuous function f(x) over the
interval [−1, 1] can be approximated by

f̃(cos θ) =
a0

2
+

N∑
k=1

ak cos(kθ) (27)

where the coefficients {ak}0≤k≤N can be obtained by ap-
ply discrete cosine transform to the samples of f at the
Chebyshev nodes xj = cos(jπ/N), j = 0, 1, . . . , N . Other
operations on f such as integration and differentiation can
also be efficiently approximated by Chebyshev polynomials.

Since the CCM-based control design is invariant under
coordinate transformations [4], we can reparameterize the
path c(t, ·) from [0, 1] to [−1, 1]. For the online implemen-
tation of dynamic controllers (12), (15) and (22), instead
of computing the infinite-dimensional state c(t, ·), we only
compute the flows at sj = cos(jπ/N), j = 0, 1, . . . , N , as
shown in Fig. 2. Base on the values of c(t, sj), the state
c(t, ·) is reconstructed as c(t, s) = c(t)T (s) where c(t) ∈
Rn×(N+1) and T (s) = [T0(s), T1(s), . . . , TN (s)]>. With
this, we can compute smooth representations of the derivative
∂c
∂s , covariant derivative ∇cscs, differential control δu and its
integration κc. By taking samples of these functions at the
Chebyshev nodes, we can obtain the right hand side of the
dynamic controllers (12), (15) and (22).

Remark 3. Note that the above computation only involves a
series of simple online operations such as additions, multipli-
cations, differentiation and integration over a smooth func-
tion c(t, ·). Due to the absence of complex operations (e.g.
solutions of optimization problems) the online computational
time can be estimated a priori. This information can be used
to choose a sufficiently small sampling time τs such that the
flows c(·, sj), j = 0, 1, . . . , N can be computed digitally by
using forward-Euler or Runge-Kutta approximation methods.
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IV. ILLUSTRATIVE EXAMPLE

We consider the following nonlinear systemẋ1

ẋ2

ẋ3

 =

 −x1 + x3

x2
1 − x2 − 2x1x2 + x3

−x2

+

0
0
1

u. (28)

This system is not feedback linearizable and highly unstable.
The control synthesis problem (6) was solved by SOS
programming with LMI toolbox - Yalmip [19]. A control
contraction metric with λ = 1 was found to be

W (x) = W0 +W1x1 +W2x
2
1

where

W0 =

 2.686 0.237 −1.816
0.237 16.265 2.006
−1.816 2.006 6.395


W1 =

 0 −5.373 0
−5.373 −0.948 3.631

0 3.631 0

 ,W2 =

0 0 0
0 10.747 0
0 0 0


and Y (x) = − 1

2ρ(x)B> with ρ(x) = 19.614 + 1.386x1 +
9.616x2

1. From [4, Lemma 1], this metric is complete and
thus a minimal geodesic exists for every pair of points. For
online implementation, we use Chebyshev basis functions
with maximal order N = 4 to reconstruct the path c(t, ·). The
toolbox for Chebyshev polynomials manipulation is called
chebfun [20], which is an open source software.

For the nominal case, we compare the results of three
different realizations: forward flow based dynamic con-
troller (12), gradient flow based dynamic controller (15) and
geodesic based static controller (10). The initial condition
and setpoint are chosen as x(0) = [9, 9, 9]> and x∗ =
[0, 0, 0]>, respectively. From Fig. 3, the Riemannian energy
functional of the integral path c decays exponentially with
rate of 2λ for these three controllers. The proposed approach
converges to a geodesic within time of 0.05 by feeding the
covariant derivative to the path dynamics. Without this term,
the path in forward flow based approach does not converge
to a geodesic, which leads to a larger overshoot estimation

for exponential stability. Fig. 4 depicts the time evolution
of integral paths c(t, ·) and geodesics γ(t) for different
controllers. Compared with the forward flow approach, given
the same initial condition (a straight line), the state c(t, ·) of
the proposed approach converges to the neighborhood of a
geodesic γ(t).

For the robust case where the dynamics of x1 is perturbed
by a persistent external disturbance d(t) = 2, we test those
three controllers using the same initial state and setpoint.
Fig. 5 shows that the forward flow approach is unstable due
to the lack of feedback, although the state prediction x̂(t)
converges to the setpoint. For the proposed approach, the
state prediction x̂(t) remains in a neighborhood of x(t) due
to the feedback term in (22). And the closed-loop system has
a similar response compared to the geodesic based approach.

V. CONCLUSION

In this paper we proposed a continuous-time dynamic
realization for control contraction metrics based nonlinear
stabilization. It distributes the online geodesic computation
across the time domain. Both universal stability for the nom-
inal system and robust stability for the perturbed system are
guaranteed. Simulation results demonstrated the effectiveness
of the proposed approach.

APPENDIX

Lemma 3. For any c ∈ Γ(x∗, x) and any τ ∈ (0, 1), there
exists a weighting function η : [0, 1]→ [0, 1] such that∫ 1

0

η(s)‖∇cscs‖2Mds ≥ τ
∫ 1

0

‖∇cscs‖2Mds. (29)

Proof. We define µc(s) :=
∫ s

0
‖∇cscs‖2Mds. Since M(x) is

a uniformly bounded metric and c is a smooth curve, the
covariant derivative ∇cscs is smooth and bounded for any
s ∈ [0, 1]. Thus, µc is a nondecreasing function with µc(0) =
0 and µc(1) = C <∞. If c is a geodesic (i.e., C = 0), the
weighting function η(s) = 0 satisfies (29). Otherwise, for
any τ ∈ (0, 1), we can find s0 = arg inf µ−1

c ((1 − τ)C/2)
and s1 = arg supµ−1

c ((1 + τ)C/2). It is easy to check that
0 < s0 < s1 < 1 and µc(s1) − µc(s0) ≥ τC since µc is
nondecreasing. Now we choose the weighting function to be

η(s) = πs00 (s)
[
1− π1

s1(s)
]

(30)

where πba : R → [0, 1] is a smooth and nondecreasing such
that πba(s) = 0,∀s ≤ a and πba(s) = 1,∀s ≥ b. This
weighting function satisfies (29) as∫ 1

0

η(s)‖∇cscs‖2Mds ≥
∫ s1

s0

‖∇cscs‖2Mds ≥ τC.
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