
  

  

Abstract— Fault diagnosis is extremely important to the safe 

operation of Lithium-ion batteries. To avoid severe safety issues 

(e.g., thermal runaway), initial faults should be timely detected 

and resolved. In this paper, we consider parallel-connected 

battery cells with only one voltage and one current sensor. The 

lack of independent current sensors makes it difficult to detect 

individual cell degradation. To this end, based on the 

high-frequency response of the battery, a simplified fault 

detection-oriented model is derived and validated by a 

physics-informed battery model. The resistance of the battery 

string, which is significantly influenced by the faulty cell, is 

estimated and used as the health indicator. The statistical 

resistance distribution of battery strings is first analyzed 

considering the distribution of fresh and aged cells. A fault 

diagnosis algorithm is proposed and the thresholds (i.e., 2 

standard deviation interval) are obtained through statistical 

analysis. Monte Carlo simulation results show that the proposed 

fault diagnosis algorithm can balance false alarms and missed 

detections well. In addition, it is verified that the proposed 

algorithm is robust to the uniform parameter changes of 

individual battery cells. 

I. INTRODUCTION 

With the fast development of electrified vehicles and 
renewable energy systems, the lithium-ion battery has been 
widely used and intensively investigated [1]. Safety of 
Lithium-ion battery remains a critical concern, and is 
increasingly vital due to the continuous and significant 
improvement in battery energy density [2]. Fault diagnosis 
algorithms, especially ones which can timely detect initial 
faults to prevent severe damage, are extremely important to 
the safe and reliable operation of lithium-ion batteries [3]. The 
typical faults of the battery pack include, but are not limited to, 
significant degradation [4], internal/external short circuit [5], 
overdischarge/overcharge [6], and thermal runaway [7]. 
Compared to other fault types, the significant degradation of 
one individual cell has less influence on the battery string. It is 
essential to detect this kind of fault before it precipitates a 
severe failure. 

Most studies on battery fault diagnosis mainly focus on 
series-connected battery cells. For example, Kong et al. [8] 
proposed a quantitative diagnosis method for the micro-short 
circuit fault of batteries. Gao et al. [9] used the 
mean-difference model to deal with the same fault. Ma et al. 
[10] conducted statistical analysis to determine abnormal 
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voltages, and used the voltage as the health indicator for fault 
diagnosis. Note that the fault diagnosis for the 
series-connected battery string can be conducted based on the 
cell-level methods, since both the voltage and the current 
measurements of a cell are available. 

In comparison, fault diagnosis for parallel-connected 
battery cells is difficult because generally only one voltage 
sensor and one current sensor are used for a string of parallel 
cells. The lack of current sensors for individual cells causes 
low observability, and therefore makes it difficult to detect an 
individual cell fault. Bruen and Marco [11] evaluated the 
imbalance of parallel-connected cells, and their experimental 
results showed a 30% difference in impedance results, a 
difference of 60% in peak cell current, and a difference of over 
6% in charge throughput during cycling. Zhang et al. [12] first 
pointed out that the resistance of parallel-connected battery 
cells can be used as the health indicator for fault diagnosis. 
However, cell-to-cell variations were not considered hence the 
resistance thresholds, which are important to fault diagnosis, 
cannot be accurately quantified. 

In this paper, a fault diagnosis algorithm for 
parallel-connected battery cells with one faulty cell, which has 
significant degradation when compared to the other cells, is 
proposed. The fault may be caused by manufacturing 
inconsistency, or uneven temperature distribution, which 
significantly influences battery degradation, or other factors. 
The resistance of the parallel battery string is selected as the 
health indicator, as the resistance is highly associated with 
battery degradation [13]. The statistical resistance 
distributions of both fresh and aged cells, which were obtained 
by characterizing 484 new and 1908 aged lithium-ion cells 
[14], are used to establish the statistical model for the battery 
string. Based on the statistical analysis, the thresholds in the 
fault diagnosis algorithm are carefully designed to balance 
false alarms and missed detections.  

The rest of the paper is organized as follows. In Section II, 
the resistance of the battery strings is analyzed. In Section III, 
the resistance distribution of the battery string is presented and 
the thresholds for fault diagnosis are quantified. Conclusions 
are given in Section IV. 

II. RESISTANCE OF BATTERY STRINGS 

Consider a battery string which consists of N cells 
connected in parallel with one significantly degraded cell, as 
shown in Fig. 1. The voltages of all cells are equal and 
measured by the voltage sensor, assuming that the contact 
resistance is consistent and negligible. However, only the total 
current of the battery string is measured by the current sensor, 
and the current information for the individual cells is 
unknown. 
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Figure 1. Parallel-connected battery cells with one faulty cell. 

 

The ohmic resistance of a battery cell significantly 
increases with degradation. For example, the ohmic resistance 
of a Lithium-ion battery cell can increase by more than 200% 
when the cell capacity degrades to 85% of the initial value at 
25°C [15]. We first investigate how the string resistance and 
other responses are impacted by the faulty cell. The first-order 
equivalent circuit model (ECM), as shown in Fig. 2, is adopted 
in the analysis. Note that the first-order ECM has been widely 
used due to its simplicity and sufficient accuracy [16]. The 
ECM dynamics can be described as: 
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where vOC is the open circuit voltage (OCV), vC is the voltage 
of the RC pair, vb is the terminal voltage, ib is the battery 
current (positive for discharge and negative for charge), Rs is 
the ohmic resistance, Rt is the diffusion resistance, and τ is the 
time constant of RC pair. The OCV is determined by the 
battery SoC, and the SoC dynamic can be represented as: 
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where z is the SoC, z0 is the initial SoC, η is the 
discharging/charging efficiency, Qb is the battery capacity, 
and t is time (s). A linearized OCV-SoC relationship is used to 
simplify the analysis [17], which is described as: 

OCv az b= + ,                               (3)  

where a and b are the constant coefficients. The relationship 
between ib and vb can therefore be given as [18]: 
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Figure 2. First-order equivalent circuit model for battery cell. 

 

where s is the complex Laplace variable. This shows that the 
terminal voltage dynamic includes four components 
associated with the initial SoC, the SoC variation, the ohmic 
resistance, and the RC pair, respectively. For lithium-ion 
batteries, it has been verified that these four components have 
significantly different responses in the frequency domain [19]. 
When the current frequency is relatively high (e.g., > 
500mHz), the battery terminal voltage is dominated by the 
ohmic resistance. As a result, as long as the current profile 
contains enough high-frequency components, we can apply a 
high-pass filter to both the battery terminal voltage and the 
battery current and get the following equation. 

( ) ( )b s bv s R i s= − ,                              (5) 

where 
bv  and bi  are the filtered battery voltage and current. 

Based on the ECM for the battery cell, the model of the 
parallel connected cells is investigated. All cells in the battery 
strings have similar dynamics, as indicated in Eq. (4). 
Therefore, by incorporating the high-pass filter, the filtered 
voltage and the total current of the battery string (denoted as 

bsv  and bsi ), which only consists of two cells, have the 

following relationship: 
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where Rs1 and Rs2 are the ohmic resistance corresponding to 
two cells. Furthermore, the relationship shown in Eq. (6) can 
be generalized to a battery string including N parallel cells, 
which can be given as: 
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Therefore, the resistance change due to the faulty cell can 
be seen in the high-frequency response after processing the 
signals using a high-pass filter. Consequently, the resistance of 
the battery string can be estimated and used as the health 
indicator for fault diagnosis. Before designing the fault 
diagnosis algorithm, the validity of the simplified model for 
the high-frequency response of the battery string, which is 
obtained based on the first-order ECM, should be further 
verified through experiments or high-fidelity model. In this 
study, a physics-informed parameterized model for 



  

lithium-ion batteries, created by Yu et al. [20], is adopted as a 
virtual testbed. As shown in Fig. 3, this model is based on 
electrochemical theory, and every circuit element represents 
an actual physical phenomenon. The main elements include 
the resistance components associated with electrolyte (Rele), 
current collector (Rcc), particle-to-current collector contact 
(Rp2cc), particle-to-particle contact (Rp2p), diffusion (Rdiff), 
charge transfer (Rct), solid electrolyte interphase (SEI) layer 
(Rsei), the capacitance components associated with double 
layer (Cdl), SEI layer (Csei), and various particle-layer voltage 
sources (E). This model is scalable from a single particle 
model to a multi-particle model, and the particle layer number 
can also be customized. Due to space limitations, the model is 
not further described; detailed information about modeling 
and parameterization can be found in [20]. When compared to 
other high-fidelity models, the adopted cell model can be 
directly connected in parallel in Matlab/Simulink and 
therefore the battery string model can be established and 
studied.  

To verify the relationship shown in Eq. (7), fresh and aged 
cells, which have significantly different parameters, are 
considered in one battery string. It is worth noticing that if Eq. 
(6) is verified, Eq. (7) can be deduced through mathematical 
induction. Four cells (5Ah lithium-polymer pouch cells [20]) 
with different degradation levels are used to form 6 different 
two-cell strings to verify Eq. (6). Typical parameters related to 
the degradation level of four selected cells are listed in Table I.  

 

 
(a) 

 
(b) 

Figure 3. The physics-informed model for lithium-ion batteries. (a) 

Multi-particle model. (b) Anode particle subsystem. (With permission from 

Elsevier) [20] 

 

TABLE I 

Four cells with various degradation levels 

Cell 

number 

Degradation 
in capacity 

(%)  

Rsei 
increase 

(%) 

Rele 

increase 

(%) 

Rct 

increase 

(%) 

Ohmic 
resistance 

(mΩ) 

Cell #1 0 0 0 0 5.8 

Cell #2 1.55 11 10 10 7 
Cell #3 3.25 23 20 10 7.2 

Cell #4 7.48 112 60 30 10.5 

 

We point out that the fresh cell (i.e., Cell #1) is 
experimentally calibrated in [20] and the parameters of the 
most aged cell (i.e., Cell #4) are roughly set based on the 
estimation results in [20]. In addition, the parameters of Cell 
#2 and Cell #3 are artificially chosen for validation purposes, 
and it is assumed that all other parameters in the battery model 
do not change with degradation.  

The current profiles used for resistance estimation are 
sinusoidal curves (with frequency of 0.5Hz and amplitude of 
0.5C) combined with a DC component (with amplitude of 
0.5C) to continuously discharge the battery from the initial 
SoC (i.e., 100%). A Butterworth high-pass filter with a 
3dB bandwidth of 0.05Hz is adopted to extract the 
high-frequency dynamics, and a Kalman filter is used to 
estimate the resistance based on Eqs. (5) and (6).  

First, the ohmic resistances of the single cells are 
characterized, as listed in Table I, and these values can be used 
to calculate the theoretical resistance of the battery strings 
based on Eq. (6). Furthermore, the sinusoidal current profiles 
are also used for the battery strings to estimate resistance, as 
listed in Table II. When comparing estimated and theoretical 
results, we find that the errors are small and therefore the 
relationship shown in Eq. (7) is proven to be accurate. Note 
that the resistance of the battery string specifically denotes the 
high-frequency resistance in this paper and it does not apply to 
the general response of the unfiltered signals ib and vb. 
Detailed information about sequentially estimating battery 
parameters by separating its dynamics in the frequency 
domain is provided in [19]. In this paper, only the ohmic 
resistance is needed and therefore only the high-frequency 
response is used. The estimated ohmic resistance can converge 
to the actual value within 100s [19], and it is fast enough for 
the fault diagnosis. Note that the desired high-frequency 
signals can be injected in the charging process without 
perturbing the power supply. 

III. FAULT DIAGNOSIS FOR BATTERY STRINGS 

A.  Cell Resistance Distribution 

Based on the aforementioned analysis, the resistance of 
parallel battery strings can be used as the health indicator for 
the fault diagnosis. Given that the resistance increase of the 
battery string can be caused either by a cell fault or cell-to-cell 
variation, the resistance thresholds between normal and 
abnormal behavior in the fault diagnosis algorithm should be 
carefully designed to accurately detect the cell fault from 
normal cell-to-cell variations.  

For fresh cells, variation is caused by manufacturing 
inconsistency, and this variation can enlarge as the battery 
cells age non-uniformly during operation. If the thresholds are 
set too tight, the normal variation may be detected as the fault, 
leading to a false alarm. On the other hand, if the thresholds 
are relaxed, the missed detection rate will be high. To balance 
the needs to avoid false alarms and missed detections, the 
optimal thresholds are necessary and can be obtained based on 
the statistical analysis. The offline design for the threshold 
selection and online implementation of the proposed fault 
diagnosis algorithm is shown in Fig. 4.  

Schuster et al. [14] conducted extensive experiments on 
484 fresh and 1908 aged lithium-ion cells, and characterized 



  

the capacity and impedance to quantify the cell-to-cell 
variation. It is verified that a normal distribution can be used 
for the cell parameters. Therefore, we assume the ohmic 
resistance of the individual battery cells is normal distribution 
N(μ, σ2), where μ is the average resistance and σ2 is the 
resistance variation. See Fig. 5 (a) and Fig. 6 (a) for a fresh and 
aged cell with μ=6 mΩ and σ=0.12 mΩ for the new cell and 
μ=11 mΩ and σ=0.385 mΩ for the aged one. It is found that 
the cell-to-cell variation, which can be quantified by the 
relative coefficient of variation κ=σ/μ, increases with battery 
degradation [14]. Increasing variation inside the battery pack 
may be caused by uneven current distribution, which is 
directly caused by the resistance variation, and uneven 
temperature distributions, which may be caused by the 
resistance variation and the uneven cooling. The root causes 
for cell degradation and fault are beyond the scope of this 
paper. 

B. Battery String Resistance Distribution 

To investigate the resistance distributions of fresh and 
aged battery strings, we first focus on small battery strings 
with 5 cells. The resistance distributions of the battery strings 
are obtained through Monte Carlo simulations including 
10000 samples. As shown in Fig. 5 (b), the resistance of the 
fresh battery strings can be approximately characterized by a 
normal distribution with a mean value μ=1.2 mΩ and the 
coefficient of variation κ=0.89%, showing that the resistance 
distribution of battery strings becomes narrow when compared 
to that of individual fresh cells (where κ=2%).  

Similarly, as shown in Fig. 6 (b), the mean value μ=2.2 mΩ 
and the coefficient of variation κ=1.6% also decrease 
compared to aged cells, where κ=3.5%. Note that the selection 
of cell parameters is based on the experimental results 
provided in [14]. In addition, if the cell resistance is a normal 
distribution, theoretically the resistance of battery strings is 
not normal due to the nonlinear relationship shown in Eq. (7). 
However, a normal distribution is still assumed to simplify the 
analysis. Based on the distributions shown in Figs. 5 and 6, the 
thresholds for fault diagnosis can be chosen.  
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Figure 4. Schematic of the proposed fault diagnosis algorithm. 

 

 
 

(a) (b) 
Figure 5. Resistance distribution of new cells. (a) Battery cells. (b) Battery 

strings (5 cells). 

 

 
 

(a) (b) 
Figure 6. Resistance distribution of aged cells. (a) Battery cells. (b) Battery 

strings (5 cells). 

 

TABLE II 

Validation results for the estimated resistance 

Battery strings 
Estimated 
results (mΩ)  

Theoretical 
results (mΩ) 

Errors (%) 

Cells #1 and #2 3.15 3.17 0.6 

Cells #1 and #3 3.2 3.21 0.3 
Cells #1 and #4 3.7 3.74 1.1 

Cells #2 and #3 3.55 3.55 0 

Cells #2 and #4 4.2 4.2 0 
Cells #3 and #4 4.25 4.27 0.5 

 

For the studied fault (i.e., one faulty cell with a significant 
degradation), the upper threshold is for cell degradation 
related fault, and the lower threshold can be used to detect 
other faults such as the external/internal short circuits. As 
shown in Figs. 5 and 6, different intervals correspond to 
different confidence ratios and therefore directly determine 
the false alarm rates, which can be represented by the outliers 
(i.e., the red columns outside the green lines). If 2σ interval 
bounds are used as the thresholds, the possibility for a false 
alarm is 4.6%. Even though the larger interval (e.g., the 3σ 
interval) can reduce the false alarm rate, it will also increase 
the missed detection rate, as will be shown in the following.  

C. Performance of the Designed Fault Diagnosis Algorithm 

In this subsection we evaluate the fault diagnosis 
performance for threshold of 2σ. We first fix the battery string 
size (i.e., 5 cells) and evaluate the proposed algorithm for 
different fault levels (i.e., different resistance increases in the 
faulty cell). A fault means that there is at least a 60% increase 
in the cell resistance, as the battery fault in vehicle 
applications is defined to have at least 20% reduction in 
capacity or 60% increase in resistance [21]. Note that the 
proposed algorithm can be potentially used for health 
monitoring when the resistance increase of battery cell is less 
than 60%. As shown in Fig. 7, for fresh cells, all the faults can 



  

be detected because the resistances are all outside the 2σ 
region. The same simulation is conducted for aged battery 
strings, as shown in Fig. 8. Similarly, all faults can be detected, 
meaning that the missed detection rate is 0%. However, it can 
be seen that the resistance of the fault battery strings 
approaches the upper threshold when compared to the results 
of the fresh battery strings, as shown in Fig. 7. Note that the 
degradation related to the fault in this paper indicates the 
additional degradation of one specific cell when compared to 
the other cells, even though all cells may have the uniform 
degradation. 

 

 
Figure 7. Resistance distribution of new battery strings (5 cells in parallel 

including one fault cell).  

 

 
Figure 8. Resistance distribution of aged battery strings (5 cells in parallel 

including one faulty cell). 

 

 
Figure 9. Resistance distribution of aged battery strings (10 cells in parallel 

including one faulty cell). 

The size of the battery string (i.e., the cell number) also 
significantly influences the fault diagnosis performance. It is 
intuitive that, when the battery string is large, the fault is less 
obvious no matter what diagnosis algorithm is used. Focusing 
on aged battery cells, larger battery strings, including 10 cells, 
are investigated. As shown in Fig. 9, there are missed 
detections for both fault levels. When the faulty cell has the 
resistance increases of 60% and 100%, the missed detection 
rates are 7.25% and 0.4%, respectively. For example, for a 
battery string including 80 cells in total and one faulty cell 
with a 60% resistance increase, the missed detection rate is 
above 40%. When the battery string includes fewer than 20 
cells, the resistance can be used as the health indicator and the 
fault diagnosis performance is satisfactory, given that the 
missed detection rate is low. 

IV. CONCLUSION 

This paper proposes a fault diagnosis algorithm for 
parallel-connected battery cells, which includes one faulty cell 
with a significant degradation when compared to the other 
cells. The studied problem is challenging, since generally only 
one voltage sensor and one current sensor are used in one 
battery string. The lack of independent current sensors results 
in low detectability for the fault. The resistance of the battery 
string is selected as the health indicator, since the ohmic 
resistance of a battery cell significantly increases with 
degradation. Based on the high-frequency response of the 
battery string, a simplified fault detection-oriented model is 
derived and validated by a physics-informed battery model. 
The resistance distribution of battery strings is then 
characterized considering the resistance distribution of fresh 
and aged cells, which have different coefficients of variation. 
To balance false alarm and the missed detection rates, 2σ 
interval bounds are selected as the thresholds for fault 
diagnosis, resulting 4.6% false alarm rate. Simulation results 
show that the fault diagnosis for aged battery strings is more 
difficult given the larger coefficient of variation of the cell 
resistance distribution (e.g., aged cells). In addition, fault 
diagnosis for larger battery strings (i.e., more battery cells) is 
also difficult, as the resistance of the faulty cell will be 
compensated by other cells in the battery string. 
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