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Abstract— The internal states of Lithium-ion batteries, no-
tably state of charge (SOC), need to be carefully monitored
during battery operation to manage energy and safety. In this
paper, we propose an interval observer for SOC estimation
in an electrically and thermally coupled parallel connection
of cells. This is a particularly challenging problem because
mathematically cells in parallel yield a system of differential-
algebraic equations (DAE), which are more difficult to handle
than ordinary differential equations (e.g. a series string of cells).
For a large battery pack with thousands of cells, applying
an estimation algorithm on each and every cell would be
mathematically and computationally intractable. These issues
are tackled using an interval observer based on a coupled equiv-
alent circuit-thermal model. The key novelty lies in considering
cell heterogeneity as well as state-dependent parameters as
unknown, but with bounded uncertainty. The resulting interval
observer maps bounded uncertainties to a feasible set of state
estimation, and is independent of the number of cells in parallel.
Stability and inclusion of the interval observer are proven and
validated through numerical studies.

I. INTRODUCTION

Lithium-ion (Li-ion) batteries play a key role in achieving
energy sustainability and reduction in emissions. Li-ion bat-
teries benefit from high energy density, which has motivated
their wide use in a variety of applications including electric
vehicles and grid energy storage. In recent years, a substan-
tial body of research on real-time control and estimation
algorithms for batteries has emerged. However, safe and
efficient operation of batteries remains a challenge, especially
as the performance requirements of these devices increase.

Large-scale energy storage systems require hundreds to
thousands of cells connected in series and parallel to achieve
demanded power and voltage [1]. A battery pack’s instanta-
neous power capability is crucial for on-board management
and safe operation [2]. However, real-time SOC estimation
for a pack is a very intricate task due to (i) limited mea-
surements, (ii) complex electrochemical-thermal-mechanical
physics, and (iii) high computational cost [3].

Different battery models for a state observer design have
been proposed in the literature, which can be classified into
electrochemical white box models [4], [5], equivalent-circuit
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gray box models [6], [7] and data-driven black box models
[8], [9], sorted from high to low physical interpretability.
Although each modeling framework has its merits and draw-
backs, equivalent circuit models (ECM) provide a reasonable
trade-off between complexity and accuracy [6]. ECMs can
be made more accurate by increasing the system order to
account for additional electrochemical phenomena [10].

An important fact often ignored during battery modeling
is the time-varying electrical parameters. In practice, internal
parameters, e.g. resistances and capacitance, are non-linearly
dependent on the cell’s temperature and SOC. High-fidelity
temperature models have more accurate predictions, but
suffer from high computational cost, rendering them of little
use for on-board thermal management [11]. First principles-
based two-state thermal model for the cell’s core and surface
temperatures provide a balanced trade-off between computa-
tional efficiency and fidelity [12]. Coupled equivalent circuit-
thermal models with temperature dependent parameters have
been studied and used for state estimation via an adaptive
observer in [13]. Existing techniques for battery pack state
estimation includes Luenberger observers [14], Kalman fil-
ters [15], unscented Kalman filters [16], and sliding mode
observers [17], among others. However, all the previously
mentioned techniques require a state observer for each cell,
making them computationally intractable for large packs.

In the stochastic estimation/filtering framework, the pro-
cess and measurement noises are often assumed to be Gaus-
sian. The system characteristics, e.g. mean and variance, are
required by filtering algorithms. Nonetheless, the statistical
and calibration procedures to obtain these characteristics are
often tedious [18]. In contrast, interval estimation [18], [19],
[20] assumes that the measurement and process noises are
unknown but bounded. In a battery pack with thousands of
cells, executing state estimation algorithms based on highly
nonlinear and coupled dynamics for every single cell in
real time becomes intractable. The interval observer benefits
from its scalability by deriving only upper and lower bounds
that enclose all unmeasured internal states for all cells in
a pack. Previously, only Perez et al. designed a sensitivity-
based interval observer for single cell SOC estimation from
an electrochemical perspective [21], but without provable
observer stability and inclusion properties.

Given the aforementioned literature, this paper contributes:
• An analysis of heterogeneous cells connected in parallel,

which yields DAEs. Existing studies for cells in series
yield ODEs.

• A novel interval observer is designed, given uncertain
model parameters, initial conditions, and measurements.
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The remainder of this paper is organized as follows. The
coupled electrical-thermal model is developed in Section
II, for battery cells connected in parallel. Next, a brief
motivation of the problem is presented in Section III. For
the reader’s convenience, interval observer preliminaries are
given in Section IV. The observer design for batteries is pur-
sued in Section V, and followed by an numerical assessment
of its performance in Section VI.

Notation. Throughout the manuscript, the symbols Idn
denotes the identity matrix with dimension n×n. For a ma-
trix A∈Rn×n, ‖A‖max =maxi, j=1,2,··· ,n

∣∣Ai, j
∣∣ (the elementwise

maximum norm). The relation Q� 0 (Q≺ 0) means that the
matrix Q ∈ Rn×n is positive (negative) definite. The inner
product between x,y ∈ Rn is given by 〈x,y〉= ∑

n
i=1 xiyi.

II. MODEL DEVELOPMENT

This section reviews an equivalent-circuit model coupled
with a two-state thermal model for a single battery cell,
which is then electrically and thermally interconnected with
other cell models to form a parallel arrangement of cells.

A. Single Battery Cell

The ECM for a single cell k, consisting of an open circuit
voltage (OCV) in series connection with an ohmic resistance
and an R−C pair in parallel, is described by

żk(t) =
1

Qk
Ik(t), (1)

V̇c,k(t) =−
1

R2,k(zk,Tk)Ck(zk,Tk)
Vc,k(t)+

1
Ck(zk,Tk)

Ik(t), (2)

Vk(t) = OCV (zk(t))+Vc,k(t)+R1,k(zk,Tk)Ik(t), (3)

where zk(t) represents the SOC for the k-th cell, and Vc,k(t)
denotes the voltage across the R2,k −Ck pair. Symbol R1,k
is the ohmic resistance, and Tk is the cell temperature
given by (7). The electrical model parameters, namely R1,k,
R2,k, and Ck, are dependent on SOC and cell temperature,
and such dependence can be explicitly characterized via an
offline experimental procedure for a cell of interest (see [22]
for an example for a LiFePO4/Graphite cell). The output
equation (3) for the k-th cell provides the voltage response
characterized by a nonlinear open circuit voltage (OCV) as
a function of SOC, voltage from the R-C pair, and voltage
associated with an ohmic resistance R1,k. We specify positive
current for charging and negative current for discharging.

A two-state thermal model for a cylindrical cell describes
the dynamics of core and surface temperatures [22]:

CcṪc,k(t) =Q̇k(t)+
Ts,k(t)−Tc,k(t)

Rc
, (4)

CsṪs,k(t) =
Tf ,k(t)−Ts,k(t)

Ru
−

Ts,k(t)−Tc,k(t)
Rc

, (5)

Q̇k(t) =
∣∣Ik(t)

[
Vk(t)−OCV (zk(t))

]∣∣ , (6)

Tk(t) =
1
2
(
Ts,k(t)+Tc,k(t)

)
, (7)

where Tc,k and Ts,k are the core and surface temperatures
for the k-th cell. Symbols Rc, Ru, Cc, and Cs represent heat
conduction resistance between core and surface, convection

+

−
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Fig. 1. Parallel connection of five battery cells.

resistance between ambient and surface, core heat capacity,
and surface heat capacity, respectively. Symbol Q̇k(t)≥ 0 is
the internal heat generation from resistive dissipation. Note
that the electrical model (1)-(3) and the thermal model (4)-
(7) are coupled via Q̇k(t) in a nonlinear fashion.

The measured quantities for the coupled electrical-thermal
model (1)-(7) are the cell voltage and surface temperature:

yk(t) =
[
Vk(t), Ts,k(t)

]
. (8)

B. Parallel Arrangement of Battery Cells

For a block of m cells in parallel, in order to reduce sensing
effort, we assume only the voltage and total current for the
block are measured, which is the most realistic scenario.
Fig. 1 depicts a parallel connection of m = 5 cells. Electri-
cally, Kirchhoff’s voltage law constraints terminal voltages
to the same value for all cells, which can be mathematically
represented by the following nonlinear algebraic constraints

OCV (zi)+Vc,i +R1,iIi =OCV (z j)+Vc, j +R1, jI j,

∀ i, j ∈ {1,2, · · · ,m}, i 6= j. (9)

Kirchhoff’s current law provides the following linear alge-
braic constraint,

m

∑
k=1

Ik(t) = I(t), (10)

where I(t) is the measured total current, and Ik(t) represents
the local current for cell k. It is worth highlighting that (9)
imposes (m−1) nonlinear algebraic constraints, whereas (10)
imposes one linear algebraic constraint. When only the total
current is measured, the local cell currents are unknown.
Hence, the system of DAE (1)-(10) must be solved such that
the algebraic equations (9) and (10) are fulfilled for all t.

The cells are thermally coupled through coolant flow and
heat exchange between adjacent cells [23]. For cell k,

CcṪc,k(t) =Q̇k(t)+
Ts,k(t)−Tc,k(t)

Rc
, (11)

CsṪs,k(t) =
Tf ,k(t)−Ts,k(t)

Ru
−

Ts,k(t)−Tc,k(t)
Rc

+
Ts,k−1(t)+Ts,k+1(t)−2Ts,k(t)

Rcc
, (12)

Tf ,k(t) =Tf ,k−1(t)+
Ts,k−1(t)−Tf ,k−1(t)

RuC f
, (13)

Q̇k(t) =
∣∣Ik(t)

[
yk(t)−OCV (zk(t))

]∣∣ , (14)

Tk(t) =
1
2
(Ts,k(t)+Tc,k(t)), (15)
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where Tf ,k is the coolant flow temperature at the k-th cell,
and Rcc denotes heat conduction resistance between adjacent
battery cell surfaces. Heat conduction between battery cells
is driven by the temperature difference between cell surfaces,
and this process is described by the third term on the right
hand side of (12). Inside the block of m cells in parallel, the
coolant flows through individual cells, and the coolant flow
temperature at the k-th cell is determined by the flow heat
balance of the previous cell, as illustrated in (13). We assume
that all the battery cells have the same thermal parameters.

III. MOTIVATION

In this section, we illustrate the heterogeneity for cells in
parallel via an open-loop simulation study. Without loss of
generality, we consider two LiNiMnCoO2/Graphite (NMC)
type cells with 2.8 Ah nominal capacity in parallel. In this
embodiment, the cells have identical SOC-OCV relationship,
and the heterogeneity arises from:
• Difference in SOC initialization.
• Difference in electrical parameters due to SOC variation.
• Unevenly distributed currents due to parameter variation.
• Difference in temperature due to current variation.

A transient electric vehicle-like charge/discharge cycle
generated from the urban dynamometer driving schedule
(UDDS) is applied. Specifically, this total applied current
(summation of local currents) is plotted in Fig. 2(a).

Two cases are examined here. In the first case, the cells
are initialized at the same SOC. Since Cell 2 has higher
resistance, its local current is smaller in magnitude relative
to local current of Cell 1, as shown in Fig. 2(b) and (c).
Figures 2(d) and (e) demonstrate the second case where the
cells have different initial SOCs. It can be observed that even
though the applied total current is small initially (around
zero), Cell 1 takes large negative current (around −10 A)
and Cell 2 positions itself at a large positive current (around
+10 A). This occurs because z1(0) is initialized higher, and
even though the z values for two cells follow a similar trend,
they do not synchronize – a bias persists.

In a battery pack composed of hundreds or thousands of
heterogeneous cells, executing state estimation algorithms
based on a highly nonlinear and coupled model consists
of differential-algebraic equations for every single cell in
real-time is intractable and not scalable. This motivates our
subsequent study on interval observers to increase algorithm
scalability and reduce computation and design complexity

IV. INTERVAL OBSERVER PRELIMINARIES

The development of finite-dimensional interval observers
based on monotone system theory closely follows the work in
[18], [19], [20]. In this section, we review the preliminaries.

Consider the following nonlinear model dynamics [20]:

ẋ = f (x)+B(θ(t))u+δ f (x,θ(t)), (16)
y = h(x)+δh(θ(t))u, (17)

where x∈Rn is the state vector, and u∈R and y∈R are the
system input and output, respectively. The considered system

Fig. 2. Simulation results of two cells in parallel using coupled electrical-
thermal dynamics with temperature and SOC dependent electrical parame-
ters. In (b)-(c), cells are initialized at the same SOC, and the total current
distributes unevenly due to parameter heterogeneity. In (d)-(e), the initial
cell SOCs are distinct. The total current again distributes unevenly due to
both parameter and initialization heterogeneity.

is single-input-single-output (SISO). The functions f (x) and
h(x) are deterministic and smooth, and δ f is uncertain and
assumed to be locally Lipschitz continuous with respect to x.
It is noted that the nominal terms f (x) and h(x) can be freely
assigned by the designer via the modification of δ f and δh.
The initial conditions for the states belong to a compact set
x0 ∈ [x0,x0], where x0 and x0 are given. Suppose the uncertain
parameters θ(t) belong to a compact set Θ⊂Rp, where p is
the number of parameters. The values of the parameter vector
θ(t) are not available for measurement, and only the set of
admissible values Θ is known. One can obtain a nominal
system of (16)-(17) by setting B = 0, δ f = 0, and δh = 0:

ẋ = f (x), (18)
y = h(x). (19)

According to [18], [24], a time-varying nonlinear and invert-
ible state transformation, based on the Lie derivatives, yields
a partial-linear dynamics in the new state coordinate.

Denote the gradient of a scalar field h by dh, and the
Lie derivative of h along a vector field f is given by the
inner product L f h(x) = 〈dh(x), f (x)〉. High-order Lie deriva-
tives are computed with the iteration Lk

f h(x) = L f (Lk−1
f h(x))

where L0
f h(x)= h(x). The nominal system (18)-(19) is locally

observable around x = xe if the matrix

O(xe) =
[
dh(xe) dL f h(xe) · · · dLn−1

f h(xe)
]>

(20)
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has full rank. Under this scenario, the vectors h(x), L f h(x),
· · · , Ln−1

f h(x) form the new coordinate for the states in a
neighborhood of x defined by

Φ(x) =


φ1(x)
φ2(x)

...
φn(x)

=


h(x)

L f h(x)
...

Ln−1
f h(x)

 , (21)

and the transformation map ξ = Φx is a local diffeomor-
phism. The coordinate transformation obtained from the
locally observable nominal system (18)-(19) is then utilized
to transform the original uncertain system (16)-(17) into a
partial-linear expression

ξ̇ = A0ξ +δA(θ)ξ +b(ξ ,θ), (22)
y = Hξ + v(θ , t), (23)

where v(θ , t) = δh(θ)u. The matrix A0 ∈Rn is deterministic
and the matrix δA(θ) ∈ Rn represents the uncertain part in-
herited from the uncertain nonlinear system (16)-(17). Sym-
bol b(ξ ,θ) indicates a lumped uncertain nonlinear function.
Since θ ∈Θ, the following assumptions will be used.

Assumption 1: δA ≤ δA(θ) ≤ δA, b(t) ≤ b(ξ ,θ) ≤ b(t),∣∣v(θ , t)∣∣≤V (t), for all θ ∈Θ and t ≥ 0.
We then introduce the following definition.

Definition 1 ([19]): For a matrix A ∈Rn×n, define A + =
max{0,A } and A − =A +−A . For a vector ξ ∈Rn, define
ξ+ = max{0,ξ} and ξ− = ξ+−ξ .

According to Assumption 1 and Definition 1, the following
lemma is then realized.

Lemma 1 ([19]): Let δA ≤ δA(θ) ≤ δA for some
δA,δA,δA ∈ Rn×n, and ξ ≤ ξ ≤ ξ for ξ ,ξ ,ξ ∈ Rn, then

δA(θ) ·ξ ∈[δA+
ξ
+−δA

+
ξ
−−δA−ξ

+
+δA

−
ξ
−
,

δA
+

ξ
+−δA+

ξ
−−δA

−
ξ
++δA−ξ

−]. (24)
For a vector L ∈ Rn, system (22)-(23) can be rewritten as

ξ̇ =(A0−LH)ξ +δA(θ)ξ +b(ξ ,θ)+L(y− v), (25)

The following interval observer structure is proposed [19],

ξ̇ =(A0−LH)ξ +(δA+
ξ
+−δA

+
ξ
−−δA−ξ

+
+δA

−
ξ
−
)

+Ly−|L|V (t)+b(t), (26)

ξ̇ =(A0−LH)ξ +(δA
+

ξ
+−δA+

ξ
−−δA

−
ξ
++δA−ξ

−)

+Ly+
∣∣L∣∣V (t)+b(t) (27)

The following theorem provides a sufficient condition for
stability and enclosure of the interval observer design.

Theorem 1 ([19]): Let Assumption 1 be satisfied and the
matrices (A0−LH) and (A0−LH) are Metzler. Then ξ (t)≤
ξ (t)≤ ξ (t), ∀ t ≥ 0 is satisfied provided that ξ

0
≤ ξ0 ≤ ξ 0.

Furthermore, if there exists P∈R2n×2n, P=P>� 0 and γ > 0
such that the following Riccati matrix inequality is verified

G>P+PG+2γ
−2P2 + γ

2
η

2Id2n +Z>Z ≺ 0, (28)

where η = 2n‖δA−δA‖max, Z ∈ Rs×2n, 0 < s≤ 2n and

G =

[
A0−LH +δA+ −δA−

−δA
−

A0−LH +δA
+

]
, (29)

then ξ , ξ ∈L n
∞ . Moreover,

x = inf
(

Φ
−1(η)

)
, x = sup

(
Φ
−1(η)

)
, (30)

where η ∈
[
ξ ,ξ

]
.

The proof for Theorem 1 is omitted here. Interested
readers may refer to [19] Theorem 7 for more details. We
translate this theory to battery pack state estimation next.

V. INTERVAL OBSERVER FOR BATTERIES

In this section, the interval observer design introduced in
Section IV is applied to the Li-ion battery state estimation
problem. We examine two scenarios – (i) a single battery cell
with temperature and SOC-dependent electrical parameters;
(ii) electrically and thermally coupled cells in parallel, with
SOC and temperature-dependent electrical parameters.

A. Single Battery Cell

It is hereby assumed that the input current, terminal
voltage and surface temperature of the k-th single cell are ex-
perimentally measured. Ideally, a deterministic state observer
could be proposed for the state estimation of the coupled
nonlinear electrical-thermal system (1)-(8). However, this
approach is intractable due to the system nonlinearities like
electrical-thermal coupling, state-dependent parameters and
voltage output function. To tackle this issue, we suppress
the electrical parameters’ dependence on the internal states,
and treat these parameters as uncertain. Specifically, θ ∈Θ⊂
R4, where θ =

[
R1,k R2,k Ck Qk

]>. The objective is to
design a robust interval observer, using the measurements, to
determine the set of admissible values for cell SOC at each
time instant, when the plant model is subject to bounded
uncertainties in the parameters and states’ initial conditions.

Let τk = 1/(R2,kCk), and consider a known nominal value
τk,0 such that τk = τk,0 + δτk, where τk,0 is a deterministic
scalar and δτk represents the uncertain component. The
single cell electrical system (1)-(3) can thus be formulated
in terms of uncertain system (16)-(17), with

x =

[
x1
x2

]
=

[
zk

Vc,k

]
, f (x) =

[
0

−τk,0x2

]
,

δ f (x,θ) =

[
0

−δτkx2

]
, B(θ) =

[
1

Qk
1

Ck

]
, u = Ik(t),

h(x) = OCV (x1)+ x2, δh(θ) = R1,k. (31)

It is assumed that the following upper and lower bounds
are imposed on the uncertain parameters, i.e. Qk ∈

[
Q,Q

]
,

Ck ∈
[
C,C

]
, δτk ∈

[
δτ,δτ

]
, R1,k ∈

[
R1,k,R1,k

]
, so that Θ is a

four-dimensional polytope. These bounds might be found in
practice through parameter identification of the weakest and
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strongest cells in the pack. The local observability matrix for
the nominal system is then given by

O(x) =

[
dh(x)

dL f h(x)

]
=

[
dOCV

dx1
(x1) 1

0 −τk,0

]
, (32)

whose rank is 2 if and only if the first derivative of the
OCV function with respect to SOC is non-zero around an
equilibrium point x1 = x1,e and τk,0 6= 0, i.e.

dOCV
dx1

(x1,e) 6= 0, τk,0 6= 0 (33)

which aligns with existing results on local observability for
battery models [3]. Hence, the coordinate transformation
based on Lie algebra

Φ(x) =

[
ξ1
ξ2

]
=

[
OCV (x1)+ x2
−τk,0x2

]
(34)

transforms the system (16), (17), with (31) to the nonlinear
parameter-varying system (22)-(23), with

A0 =

[
0 1
0 −τk,0

]
, δA(θ) =

[
0 δτk

τk,0

0 −δτk

]
, H =

[
1 0

]
,

b(ξ ,θ) =

 1
Qk

ϕ

(
ξ1 +

1
τk,0

ξ2

)
+ 1

Ck

− τk,0
Ck

 I, (35)

where
ϕ(·) = dOCV

dx
(OCV−1(·)). (36)

An interval observer can be designed based on (26)-(27)
and Theorem 1. The bounding functions δA and δA for δA
can be readily obtained by applying the parameter bounds.
The bounding functions b(t) and b(t) are carefully evaluated
according to the direction of current I(t) for all t.

B. Battery Cells in Parallel

As opposed to having one interval observer for a single
cell in the preceding discussion, the proposed design is gen-
eralized for a cluster of battery cells in parallel. One practical
advantage for using an interval observer for a group of cells
is scalabilty. An interval observer, composed of only two
dynamical systems estimating upper and lower bounds that
all trajectories of unknown states live in, significantly reduces
computation and design effort. Due to cell heterogeneity, an
interval observer constructs two trajectories that upper and
lower bound all SOC trajectories, without dealing with the
differential-algebraic nature of the circuit dynamics.

The interval observer design for parallel cells inherits the
essence of the design for single cells. The only difference
is to compute a single set of bounding functions that bound
uncertainties from each cell in the parallel configuration.

Remark 1: A crucial step in designing interval observers
for cells in parallel is to find the bounding functions for the
uncertainties. Namely, the bounding functions are closely as-
sociated with the instantaneous bounds on the local currents.
Unlike the single cell scenario, the local currents of parallel
cells are not available for measurement. In this work, we

assume that appropriate bounds on the local currents are
given. This issue will be addressed in future work.

Remark 2: The width/tightness of the estimated intervals
is dependent on the magnitude of model uncertainties,
and our knowledge of the uncertainties when defining the
bounding functions.

VI. SIMULATION STUDIES

In order to validate the interval observer design, numerical
studies are carried out on NMC battery cells modeled
with a lumped electrical-thermal model (1)-(10). The state-
dependent electrical model parameters are taken from [22].
The total current fed to the battery is a UDDS driving cycle.
The interval observer from Theorem 1 is used to estimate
the bounds on the internal states from only total current
and voltage measurements. Two scenarios are considered.
First, the state estimation of a single battery cell is tested,
which accounts for uncertainties linked to state dependent
parameters. Then, the same observer is used to estimate the
state interval for a parallel arrangement of five cells, which
involves uncertainty due to cell heterogeneity as well as SOC
and temperature dependent parameters.

A. Interval Observer for Single Battery Cell

Let us first consider a single cell and design the interval
observer according to Section V-A. The initial value for SOC
in the plant model is 30%, and the initial values on the
interval observers (lower and upper bounds) are 20% and
40%. The observer gains are chosen to be L = [10 −0.1]>

and L = [10 − 0.1]>, which ensure that (A0 − LH) and
(A0 − LH) are Metzler and Hurwitz. The black signal in
Fig. 3(a) shows the applied current. The solid black curve in
Fig. 3(b) is the plant model simulated SOC, and the shaded
green region represents feasible SOC values between the
estimated intervals. From these plots, the interval observer
recovers quickly (less than 20 s) from large initial errors and
always enclose the true SOC of the battery. These results
confirm the stability and inclusion properties of the designed
interval observer stated in Theorem 1, given uncertain initial
conditions and state-dependent parameters.

B. Interval Observer for Battery Cells in Parallel

Let us now consider a parallel arrangement of five cells,
which differ in their initial SOCs and model parameters. The
interval observer is designed according to V-B. The initial
SOCs are 20%, 30%, 34%, 37%, and 49%, and the initial
bounds (interval observer) on SOCs are 15% and 54%. The
applied total current is given by the orange signal in Fig. 3(a).
In Fig. 3(c), the solid curves represent the true SOC of each
cell, and the shaded green area highlights the feasible SOC
values for all cells between the estimated intervals. These
plots show that the interval observer is close to the minimum
and maximum states during its temporal evolution. It also
envelops the state distribution across the five cells. Hence,
the results show that cell heterogeneity can be included as
unknown but bounded uncertainties, which is exploited to
develop an interval observer that provides reliable bound
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Fig. 3. The interval observer bounds enclose the true states of charge for
(b) a single cell and (c) five cells in parallel.

estimates for the states. Moreover, stability and inclusion of
the observer are guaranteed by Theorem 1.

VII. CONCLUSIONS

An interval observer based on an equivalent circuit-
thermal model for lithium-ion batteries has been presented in
this paper. The SOC-temperature-dependent parameters are
considered as unknown but bounded uncertainties. Then, a
parallel arrangement of five cells is used for observer design,
where cell heterogeneity is now accounted for through the
uncertainty bounding functions. Given that the nominal bat-
tery model is locally observable, the original uncertain model
can be transformed into a partial-linear form, which enables
interval estimation based on monotone systems. By properly
choosing the observer gains, the state matrix of the estima-
tion error is Hurwitz and Metzler, which guarantees stability
and inclusion of the state bound estimates. A major feature
of the proposed estimation approach is its scalability, since
the number of states of interval observers is independent of
the number of cells. Simulation showcases the effectiveness
of the interval observer design. Future work includes devel-
oping a systematic methodology for computing the bounding
functions associated with unknown local currents.
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