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Abstract— While the topic of mean-field games (MFGs) has
a relatively long history, heretofore there has been limited
work concerning algorithms for the computation of equilibrium
control policies. In this paper, we develop a computable policy
iteration algorithm for approximating the mean-field equilib-
rium in linear-quadratic MFGs with discounted cost. Given
the mean-field, each agent faces a linear-quadratic tracking
problem, the solution of which involves a dynamical system
evolving in retrograde time. This makes the development of
forward-in-time algorithm updates challenging. By identifying
a structural property of the mean-field update operator, namely
that it preserves sequences of a particular form, we develop
a forward-in-time equilibrium computation algorithm. Bounds
that quantify the accuracy of the computed mean-field equi-
librium as a function of the algorithm’s stopping condition
are provided. The optimality of the computed equilibrium is
validated numerically. In contrast to the most recent/concurrent
results, our algorithm appears to be the first to study infinite-
horizon MFGs with non-stationary mean-field equilibria, though
with focus on the linear quadratic setting.

I. INTRODUCTION

Recent years have witnessed the tremendous progress of
operation, control, and learning in multi-agent systems [1]–
[5], where multiple agents strategically interact with each
other in a common environment, to optimize either a com-
mon or individual long-term return. Despite the substantial
interest, most existing algorithms for multi-agent systems
suffer from scalability issues, due to their complexity in-
creasing exponentially with the number of agents involved.
This issue has precluded the application of many algorithms
to systems with even a moderate number of agents, let alone
to real-world applications [6], [7].

One way to address the scalability issue is to view the
problem in the context of mean-field games (MFGs), pro-
posed in the seminal works of [8], [9] and, independently,
[10]. Under the mean-field setting, the interactions among the
agents are approximately represented by the distribution of
all agents’ states, termed the mean-field, where the influence
of each agent on the system is assumed to be infinitesimal
in the large population setting. In fact, the more agents are
involved, the more accurate the mean-field approximation is,
offering an effective tool for addressing the scalability issue.
Moreover, following the so-termed Nash certainty equiva-
lence (NCE) principle [8], the solution to an MFG, referred
to as a mean-field equilibrium (MFE), can be determined by
each agent computing a best-response control policy to some
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mean-field that is consistent with the aggregate behavior of
all agents. This principle decouples the process of finding
the solution of the game into a computational procedure of
determining the best-response to a fixed mean-field at the
agent level, and an update of the mean-field for all agents. In
particular, a straightforward routine for computing the MFE
proceeds as follows: first, each agent calculates the optimal
control, best-responding to some given mean-field, and then,
after executing the control, the states are aggregated to update
the mean-field. This routine is referred to as the NCE-based
approach, which serves as the foundation for our algorithm.

Serving as a standard, but significant, benchmark for
general MFGs, linear-quadratic MFGs (LQ-MFGs) [11]–
[13] have been advocated in the literature. In particular, the
cost function describing deviations in the state, from the
mean-field, as well as the cost for a given control effort
is assumed to be quadratic while the transition dynamics
are assumed to be linear. Intuitively, the cost incentivizes
each agent to track the collective behavior of the population,
which, for any fixed mean-field, leads to a linear-quadratic
tracking (LQT) subproblem for each agent. Though simple in
form, equilibrium computation in LQ-MFGs (most naturally
posed in continuous state-action spaces) inherits most of the
challenges from equilibrium computation in general MFGs.
While much work has been done in the continuous-time
setting [11]–[13], the discrete-time counterpart has received
considerably less attention. It appears that, only the work of
[14] (which considered a model with unreliable communi-
cation with an average cost criterion) has studied a discrete-
time version of the model proposed in [11]. The formulation
of the discrete-time model of our paper, and the associated
equilibrium analysis, are in a setting distinct from [14], and
constitute one of the contributions of the present work.

There has been an increasing interest in developing
(model-free) equilibrium-computation algorithms for certain
MFGs [15]–[18]; see [19, Sec. 4] for more a detailed
summary. The closest setting to ours is in the concurrent
while independent work on learning for discrete-time LQ-
MFGs [18]. However, given any fixed mean-field, [18] treats
each agent’s subproblem as a linear quadratic regulator
(LQR) with drift, which is different from the continuous-
time formulation [11]–[13]. This is made possible because
they considered mean-field trajectories that are constant in
time (also referred to as stationary mean-fields). This is
in contrast to the LQT subproblems found in both the
literature [11]–[13] and in our formulation. While the former
admits a forward-in-time optimal control that can be obtained
using policy iteration and standard reinforcement learning
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(RL) algorithms [20]–[22], the latter leads to a backward-
in-time optimal control problem, which, in general, has
been recognized to be challenging to solve, especially in
a model-free fashion [23], [24]. Most other RL algorithms
for general MFGs are also restricted to the stationary mean-
field setting [15], [16], which does not apply to the LQ-
MFG problem here. Fortunately, by identifying a structural
property of our policy iteration algorithm and employing
an NCE-based equilibrium-computation approach, one can
develop a computable algorithm that executes forward in
time.

Contribution. Our contribution in this paper is three-fold:
(1) We formally introduce the formulation of discrete-time
LQ-MFGs with discounted cost, complementing the standard
continuous-time formulation [9], [11], and the discrete-time
average-cost setting of [14], together with existence and
uniqueness guarantees for the MFE. (2) By identifying
structural results of the NCE-based policy iteration update,
we develop an equilibrium-computation algorithm, with con-
vergence error analysis, that can be implemented forward-in-
time. (3) We illustrate the quality of the computed MFE in
terms of the algorithm’s stopping condition and the number
of agents. Our structural results and equilibrium-computation
algorithm lay foundations for developing model-free RL
algorithms, as our immediate future work.

Outline. The remainder of the paper proceeds as follows.
In Section II, we introduce the linear-quadratic mean-field
game model. Section III provides a background of relevant
results from the literature on mean-field games as well as
establishes a characterization of the mean-field equilibrium
for our setting. Section IV outlines some properties of the
computational process and presents the algorithm. Numerical
results are presented in Section V. Concluding remarks and
some future directions are presented in Section VI. Proofs
of all results have been relegated to the Appendix.

II. LINEAR QUADRATIC MEAN-FIELD GAME MODEL

Consider a dynamic game with N < ∞ agents playing
on an infinite time horizon. For each agent n ∈ [N ], let
znt ∈ R represent the current state and unt ∈ R represent the
current control. Each agent n’s state is assumed to follow
linear time-invariant (LTI) dynamics,

znt+1 = aznt + bunt + wnt , (1)

with constants a ∈ R, b ∈ R \ {0}, independent and
identically distributed initial state zn0 with mean ν0 and
variance σ2

0 , and independent identically distributed noise
terms, wnt ∼ N (0, σ2

w), assumed to be independent of zn
′

0 ,
wn
′

s for all s and t, and for all n′ 6= n.
At the beginning of each time step, each agent observes

every other agent’s state. Thus, assuming perfect recall, the
information of agent n at time t is int =

(
(z1

0 , . . . , z
N
0 ), un0 ,

. . . , (z1
t−1, . . . , z

N
t−1), unt−1, (z

1
t , . . . , z

N
t )
)
. A control policy

for agent n at time t, denoted by ηnt , maps its current
information int to a control action unt ∈ R. The joint control
policy is the collection of policies across agents, and is

denoted by ηt = (η1
t , . . . , η

N
t ). The joint control law is the

collection of joint control policies across time, denoted by
η = (η0, η1, . . .).

The agents are coupled via their expected cost functions.
The expected cost for agent n under joint policy η and the
initial state distribution, denoted by Jn(η), is defined as,

Jn(η) :=
T∑
t=0

γtEη

[
cz
(
znt −

1

N − 1

∑
n′ 6=n

zn
′

t

)2
+ cu(unt )2

]
, (2)

where γ ∈ [0, 1) is the discount factor and cz, cu > 0
are cost weights for the state and control, respectively. The
expectation is taken with respect to the randomness of all
agents’ state trajectories induced by the joint control law η
and the initial state distribution.

In the finite-agent system described above, each agent
is assumed to fully observe all other agents’ states. As N
grows, determining a policy that is a best-response to all
other agents’ policies becomes computationally intractable,
precluding computation of a Nash equilibrium [25]. Fortu-
nately, since the coupling between agents manifests itself as
an average of all agent’s states, one can approximate the
finite agent game by an infinite population game in which a
generic agent interacts with the mass behavior of all agents.
The empirical average of all agents’ states becomes the mean
state process (i.e., the mean-field), decoupling the agents and
yielding a stochastic control problem. The infinite population
game is termed a mean-field game [8]. In this paper, we
focus on linear-quadratic MFGs in which the generic agents’
dynamics are linear and its costs are quadratic.

The state process of the generic agent is identical to (1),
that is,

zt+1 = azt + but + ωt, (3)

where z0 is distributed with mean ν0 and variance σ2
0 , and

ωt is an i.i.d. noise process generated according to the
distribution N (0, σ2

w), assumed to be independent of the
mean-field and the agent’s state.

The generic agent’s control policy at time t, denoted by
µt, translates the available information at time t, denoted by
it = (z0, u0, . . . , zt−1, ut−1, zt), to a control action ut ∈ R.
The collection of control policies across time is referred to
as a control law and is denoted by µ = (µ0, µ1, . . .) ∈ M
whereM is the space of admissible control laws. The generic
agent’s expected cost under control law µ is defined as,

J(µ, z̄) =

∞∑
t=0

γtEµ
[
cz(zt − z̄t)2 + cuu

2
t

]
, (4)

where z̄t = E[zt] represents the mean-field at time t. The
mean-field trajectory z̄ := (z̄0, z̄1, . . .) is assumed to belong
to the space of bounded sequences, that is, z̄ ∈ Z where
Z := `∞ = {x = (x0, x1, . . .) | supt≥0 |xt| <∞}.

To define a mean-field equilibrium, first define the operator
Λ : M → Z as a mapping from the space of admissible
control laws M to the space of mean-field trajectories Z .



Due to the information structure of the problem, the policy
at any time only depends upon the current state [14]. It is
defined as follows: given µ ∈M, the mean-field z̄ := Λ(µ)
is constructed recursively as

z̄t+1 := Az̄t +Bµt(z̄t), z̄0 = ν0. (5)

Similarly, define an operator Φ : Z →M as a mapping from
a mean-field trajectory to its optimal control law,

Φ(z̄) := argminµ J(µ, z̄). (6)

A mean-field equilibrium can now be defined.

Definition 1 ([26]). The tuple (µ∗, z̄∗) ∈M×Z is an MFE
if µ∗ = Φ(z̄∗) and z̄∗ = Λ(µ∗).

The power of mean-field analysis is the fact that the
equilibrium policies obtained in the infinite-population game
are good approximations to the equilibrium policies in the
finite-population game [8]–[10]. The focus of the current
paper is on approximate equilibrium computation and, while
we do not derive explicit bounds for finite N , we offer
empirical results in Section V illustrating the effectiveness
of the mean-field approximation.

III. BACKGROUND: MFE CHARACTERIZATION

This section establishes some properties of mean-field
equilibria. The results are complementary to those of [27],
[8], and [14]. Note that while [14] constructs a discrete-time
analogue of [8], the model of [14] considers an average-
cost criterion, whereas here we consider a discounted-cost
criterion, as in [26].

Recall that in the limiting case, as N →∞, the problem
becomes a constrained stochastic optimal control problem. In
particular, as described by (4), a generic agent aims to find a
control law µ that tracks a given reference signal (the mean-
field trajectory). This control law, hereafter referred to as the
cost-minimizing control, is characterized in closed-form by
the following lemma.

Lemma 1. Given a mean-field trajectory, z̄ = (z̄0, z̄1,
. . .) ∈ Z , the control law that minimizes (4), termed the cost-
minimizing control, denoted by Φ(z̄) = (µ0(z0; z̄), µ1(z1; z̄),
. . .), is given for each t by,1

ut = µt(zt; z̄) := gp(apzt + λt+1(z̄)), (7)

where gp := −γb/(cu+γb2p), p is the unique positive solu-
tion to the discrete-time algebraic Riccati equation (DARE),

p2 +
(
[(1− γa2)cu/(γb

2)]− cz
)
p− czcu/(γb2) = 0, (8)

that is

p = (−α+
√
α2 + 4β)/2, (9)

1The cost-minimizing control policy µt (from the cost-minimizing control
µ) is denoted by µt(·; z̄) to illustrate that it is parameterized by the mean-
field trajectory z̄.

where α := cu(1−γa2)
γb2 − cz , β := czcu

γb2 , and the sequence
{λt}, referred to as the co-state, is generated backward-in-
time by,

λt(z̄) = γhpλt+1(z̄)− cz z̄t, (10)

where hp := a(1 + bpgp).

To ensure the well-posedness of the cost-minimizing con-
troller for mean-field z̄ ∈ Z , the optimal cost must be
bounded [14]. This is true given the following assumption.

Assumption 1. Given γ, a, b, cz, cu and gp, hp, where p is
the positive solution of (8), as given by (9), the quantity
Tp := |hp|+ |czbgp/(1− γhp)| satisfies Tp < 1.

This assumption is analogous to condition (H6.1) of [27]
for continuous-time settings. Lemma 2 shows that under
Assumption 1, both the co-state process and the optimal cost
are bounded.

Lemma 2. 1) If λ0(z̄) = −cz
∑∞
s=0 (γhp)

s
z̄s then λ =

(λ0, λ1, . . .) ∈ `∞. Moreover, with this initial condition,

λt(z̄) = −cz
∞∑
s=0

(γhp)
s
z̄t+s, for t = 0, 1, . . . . (11)

2) Under Assumption 1, J(Φ(z̄), z̄) for any z̄ ∈ Z is
bounded.

Substituting the cost-minimizing control, (7), into the state
equation, (3), the closed-loop dynamics are

zt+1 = azt + bgp(apzt + λt+1(z̄)) + ωt

= hpzt + bgpλt+1(z̄) + ωt.

Taking expectation, the above equation becomes z̄′t+1 =
hpz̄t + bgpλt+1(z̄) for t = 0, 1, . . ., where z̄′0 = ν0.
Substitution of the co-state process, (11), yields the following
as the mean-field dynamics,

z̄′t+1 = hpz̄t − czbgp
∞∑
s=0

(γhp)
s
z̄t+1+s. (12)

In the same vein as [8], the above can be compactly
summarized as an update rule, termed the mean-field update
operator, on the space of (bounded) mean-field trajectories.
The update rule, denoted by T : Z → Z , is given by,

z̄′ = T (z̄) := Λ(Φ(z̄)). (13)

The operator outputs an updated mean-field trajectory z̄′,
using (5), resulting from the cost-minimizing control for
a mean-field trajectory z̄, given by (7). The operator is a
contraction mapping, as shown below.

Lemma 3. Under Assumption 1, the mean-field update
operator T is a contraction mapping on Z = `∞.

Furthermore, iterated application of T results in a fixed
point which corresponds to an MFE, as expressed below.

Theorem 1. A mean-field trajectory z̄∗ is a fixed point of
T ,

z̄∗ = T (z̄∗), (14)



if and only if (Φ(z̄∗), z̄∗) is an MFE.

As a corollary to the above results, there exists a unique
MFE, by the Banach fixed-point theorem [28]. Moreover,
a straightforward approach for computing the equilibrium,
i.e., the fixed-point of T , is to iterate the operator T until
convergence. Indeed, we note that this process is referred to
as policy iteration in the continuous-time LQ-MFGs setting
of [11]. However, the cost-minimizing control given by
Lemma 1 needs to be calculated backward-in-time, which
makes the update of T in (13) not computable. In fact,
to develop model-free learning algorithms, forward-in-time
computation is necessary.

In what follows, we investigate properties of the mean-
field operator that permit the construction of a computable
policy iteration algorithm that proceeds forward-in-time.

IV. APPROXIMATE COMPUTATION OF THE MFE
A. Properties of the Mean-Field Update Operator

A prerequisite for the development of any algorithm is that
the representations of all quantities in the algorithm are finite.
Satisfying this requirement in our case is complicated by the
fact that both the equilibrium mean-field trajectory and the
cost-minimizing control are infinite dimensional (see Def. 1).
To address the challenge, we represent the infinite sequences
by finite sets of parameters.

The parameterization of the mean-field trajectory is in-
spired by a property of the update operator. To show this
property, consider the following class of sequences.

Definition 2. A sequence x = (x0, x1, . . .) is said to be a
τ -latent LTI sequence if xt+1 = rxt for some r ∈ R for all
t = τ, τ + 1, . . ..

Any τ -latent LTI sequence, for τ <∞, can be represented
by τ+2 parameters, summarized by the pair (x0:τ , r), where
x0:τ = (x0, . . . , xτ ). This is illustrated in the following
example.

Example 1. Consider the following sequence (x0, x1, . . .)
where φ0, φ1 are arbitrary functions and s0, r ∈ R,

(x0, x1, x2, x3, x4, . . .) = (s0, φ0(x0), φ1(x1), rx2, rx3, . . .)

=: (x0:2, r).

The sequence obeys linear dynamics starting at t = 2. As
such, the above sequence is referred to as a 2-latent LTI
sequence and is denoted by (x0:2, r).

Our algorithm is based on the observation that, given any
stable2 τ -latent LTI sequence with constant r, the mean-field
update operator outputs a stable (τ + 1)-latent LTI sequence
with the same constant r, as summarized by Lemma 4 below.

Lemma 4. If (x0:τ , r) is a τ -latent LTI sequence with
constant r satisfying |r| ≤ 1, then (x′0:τ+1, r), where x′ =
T (x), is a (τ + 1)-latent LTI sequence with constant r.

By Lemma 4, each application of operator T increases
the dimension of the mean-field trajectory’s parameterization.

2Namely, |r| ≤ 1.

This allows us to construct an iterative algorithm in which,
for any finite iteration, all quantities are computable.

B. A Computable Policy Iteration Algorithm

This section presents a policy iteration algorithm for
approximately computing the mean-field equilibrium. The
algorithm operates over iterations k = 1, 2, . . ., where
variables at the kth iteration are denoted by superscript (k).

As mentioned in the discussion following Theorem 1,
iterating the mean-field update operator T yields a process
that converges to the MFE, though not computable due to the
backward-in-time calculation of the cost-minimizing control.
To address this issue, we propose an iterative algorithm
that operates on parameterized sequences. Motivated by
the result of Lemma 4, by initializing the algorithm with
a τ -latent sequence, we can ensure that, after any finite
number of iterations, the computed sequence is also τ -latent.
Importantly, this structure allows one to describe the mean-
field trajectory at any iteration by a finite set of parameters.
Furthermore, the τ -latent LTI structure allows for the cost-
minimizing control to be calculated forward-in-time. As a
consequence, the aforementioned procedure can be carried
out in a computable way, provided that the iteration number
k remains finite.

More formally, our (computable) policy iteration algorithm
proceeds as follows. Without loss of generality, we start with
a 0-latent LTI mean-field trajectory z̄(0) with z̄

(0)
0 = ν0

at iteration 0. Thus, at any iteration k, by Lemma 4, the
mean-field trajectory z̄(k) is a k-latent LTI sequence. Hence,
the cost-minimizing control under z̄(k) can be written in
parameterized form3 as:

u
(k)
t = µt(zt; (z̄

(k)
0:k , r)) := gp

(
apzt − czlk(t, z̄(k), r)

)
(15)

where

lk(t, z̄, r) :=


(γhp)k−trz̄k

1−γhpr
+ qk(t, z̄) if t < k

rt−k+1z̄k
1−γhpr(k) if t ≥ k

and qk(t, z̄) :=
∑k−t−1
s=0 (γhp)

sz̄t+1+s.
Note that the control expressed in (15) has a closed-form

(without infinite sums) and is indeed calculated forward-
in-time. The mean-field trajectory is then updated by the
operator T , which first executes the control in (15), then
aggregates the generated mean-field trajectory by averaging
the states over all agents,

z̄
(k+1)
t+1 = az̄

(k)
t + bu

(k)
t , (16)

where z̄
(k+1)
0 = ν0, 0 ≤ t ≤ k. This closes the loop and

leads to a computable version of iterating the operator T .
The details of the algorithm are summarized in Algorithm 1.

Algorithm 1 generates iterates z̄(k) that approach the equi-
librium mean-field trajectory z̄∗. Furthermore, the minimum
number of iterations required to reach a given accuracy
can be represented in terms of the desired accuracy, the

3With some abuse of notation, we have replaced the (infinite) mean-field
trajectory with its parameterized form.



Algorithm 1: Policy iteration for LQ-MFGs
Data: a, b, cz, cu, γ, ν0, |r| ≤ 1, and εs > 0

1 Initialize: Set z̄0 as a 0-latent LTI mean-field with
z̄

(0)
0 = ν0, k = 0;

2 p← (−α+
√
α2 + 4β)/2, where α = cu(1−γa2)

γb2 − cz
and β = czcu

γb2

3 g ← −γb/(cu + γb2p)
4 h← a(1 + bpg)
5 T ← |h|+ |bgcz/(1− γh)|
6 while max0≤t≤k

∣∣∣z̄(k)
t − z̄(k−1)

t

∣∣∣ > εs(1− T )/T do

7 z̄
(k+1)
0 ← ν0

8 for m ∈ {0, 1, . . . , k} do
9 z̄

(k+1)
m+1 ← az̄

(k)
m + bµm(z̄

(k)
m ; (z̄

(k)
0:k , r))

10 k ← k + 1

11 return Parameter tuple (z̄
(k)
0:k , r) that yields the control

µ(·; (z̄
(k)
0:k , r)) (see (15))

initial approximation error, the contraction coefficient, and
the constant of the linear dynamics. The convergence is
summarized by the following theorem.

Theorem 2. Under Assumption 1, given εs > 0 there exists
a k∗ > K(εs) :=

⌈(
log εs − log

∥∥z̄(0) − z̄∗
∥∥
∞

)
/ log Tp

⌉
such that

∥∥z̄(k∗) − z̄∗
∥∥
∞ < εs, where Tp was introduced in

Assumption 1.

V. NUMERICAL RESULTS

In this section we present simulations to demonstrate the
performance of Algorithm 1 that approximates the equilib-
rium mean-field of the LQ-MFG. We use a normal distri-
bution with mean and variance ν0 = 20.0 and σ2

0 = 1.0,
respectively, to generate the initial condition of the generic
agent z0. The dynamics of the generic agent are defined as
in (3) and the parameters are a = 1.1315 and b = 0.7752.
The standard deviation of the noise process is σω = 0.03.
The cost function has the form shown in (4) with values
cz = 0.0392 and cu = 1.6864. The positive solution of the
resulting Riccati equation, given by (9). is p = 0.8787 with
gp = −0.3227, hp = 0.8828 and Tp = 0.9305 < 1. The
algorithm starts with initial mean field z̄(0), which is a 0-
latent LTI mean-field with parameters z̄0 = ν0, r = 0.6.

Figure 1 shows approximations of the mean-field for
different values of εs. As shown, for decreasing values of
εs the approximations approach the equilibrium mean-field.
Interestingly, the algorithm reaches a good approximation
(εs = 0.005) in a small number of iterations (k = 40).
Figure 2 depicts the average cost per agent for different
numbers of agents, N and for different values of εs. Each
plot in the figure corresponds to a different number of agents
N . As N increases, the average cost is seen to decrease.
This provides evidence that our conjecture, regarding policies
obtained from the infinite population case when applied to
the finite population case, is correct. The figure also shows
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Fig. 1. Mean-field approximation for different values of εs. Notice the
convergence of the mean-field trajectory as εs decreases.

that as the approximations become better, there is a decrease
in the average cost per agent.
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Fig. 2. Relative accumulated cost per agent w.r.t. εs. Values are normalized
to the lowest cost obtained (N = 10000, εs = 0.005).

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

We have developed a policy iteration algorithm for ap-
proximating equilibria in infinite-horizon LQ-MFGs with
discounted cost. The main challenge in the algorithm de-
velopment arises from the fact that the optimal control is
computed backward in time. By investigating properties of
the mean-field update operator (which we term the τ -latent
property), we can represent the mean-field trajectory at any
given iteration by a finite set of parameters, resulting in
a forward-in-time construction of the optimal control. The
algorithm is provably convergent, with numerical results
demonstrating the nature of convergence. The optimality
of the computed equilibrium has been empirically studied;
naturally, the optimality of the approximate equilibrium
improves as the iteration index increases and the stopping



threshold decreases. The results derived in this paper pro-
vide an algorithmic viewpoint of the nature of mean-field
equilibria for LQ-MFGs. We believe that such insights will
be useful for developing model-free RL algorithms. Future
work includes an extension to the multivariate case as well as
consideration of a nonlinear/non-quadratic model (see [26]).

APPENDIX

Proof of Lemma 1. Substituting Kt = γtpt and gt = γtλt
into (21)–(26) of [29] yields (similar derivations in [30] and
on p. 234 of [31]),

ut = −γb(cu + b2γpt+1)−1(pt+1azt + λt+1),

λt = γa
(
1− γpt+1b

2(cu + γb2pt+1)−1
)
λt+1 − cz z̄t,

pt = γa2pt+1 + cz − γ2a2b2p2
t+1(cu + γb2pt+1)−1.

Since it is an infinite horizon problem, the Riccati equation
will have a steady state solution. This can be written as,

ut = −γb(apzt + λt+1)/(cu + γb2p),

p = γa2p+ cz − γ2a2b2p2/(cu + γb2p),

λt = γa
(
1− γpb2/(cu + γb2p)

)
λt+1 − cz z̄t.

Defining gp := −γb/(cu+γb2p) and hp := a(1+ bpgp), the
above expressions for ut and λt correspond to (7) and (10),
respectively. Rearranging and grouping p terms in the above
expression yields (8), with unique positive solution (9).

Proof of Lemma 2. 1) First, we show that γ|hp| < 1. It
is well known [30] that the DARE for variables (ac, bc,
sc, rc) and average cost is k̂ = a2

c k̂ + sc − a2
c k̂

2b2c/(rc +
b2c k̂). If bc 6= 0 and sc > 0, then this equation will
have a positive solution. Moreover, the optimal feedback
gain is lc := −acbck̂/(rc + b2c k̂) and the closed-loop gain
|ac + bclc| < 1. By using a change of variables with
ac =

√
γa, bc = b, sc = cz, rc = cu/γ, the equation

(8) is recovered with k̂ = p. Hence there exists a unique
positive solution for (8), given by (9). Moreover |ac +

bclc| =
∣∣∣√γa− γ

√
γab2p

cu+γb2p

∣∣∣ =
√
γ |a(1 + bpg)| =

√
γ|hp| <

1 and thus γ|hp| <
√
γ|hp| < 1. From (10), recursing

backwards yields λ0 = (γhp)
t
λt − cz

∑t−1
s=0 (γhp)

s
z̄s.

Under the assumption λ0 = −cz
∑∞
s=0(γhp)

sz̄s, it fol-
lows that (γhp)

t
λt = −cz

∑∞
s=t (γhp)

s
z̄s ⇒ λt =

−cz
∑∞
s=0 (γhp)

s
z̄t+s. As z̄ ∈ `∞ there exists some 0 ≤

z̄∞ <∞ s.t. |z̄t| ≤ z̄∞. This translates to |λt| ≤ cz z̄∞/(1−
γhp) for all t. Hence λ ∈ `∞.
2) The closed-loop dynamics of zt under the cost-minimizing
control are, zt+1 = azt + bgp(pazt + λt+1) +ωt. Using this
equation recursively, the expression for zt in terms of z0

is, zt = ht−1
p z0 + bgp

∑t−1
s=0 h

s
pλt−s +

∑t−1
s=0 h

s
pωt−1−s. The

expression for E
[(
zt − z̄t

)2]
is thus,

E
[

(zt − z̄t)2 ]
=
(
ht−1
p

)2
(σ2

0 + ν2
0) + σ2

w

t−1∑
s=0

hsp+(
bgp

t−1∑
s=0

hspλt−s − z̄t
)2

+ 2ht−1
p ν0

(
bgp

t−1∑
s=0

hspλt−s − z̄t
)
.

Assumption 1 implies that |hp| < 1. Furthermore, since z̄ ∈
`∞ and λ ∈ `∞, there exist constants z̄∞, λ∞ < ∞ such
that z̄t ≤ z̄∞ and λt ≤ λ∞ for all t. Thus,

E
[
(zt − z̄t)2

]
≤
(
ht−1
p

)2
(σ2

0 + ν2
0) + σ2

wt

+ (bgptλ∞ − z̄∞)
2

+ 2ht−1
p ν0 (bgptλ∞ − z̄∞) .

Similarly, E
[
u2
t

]
is bounded above as,

E
[
u2
t

]
= (agpp)

2
[(
ht−1
p

)2(
σ2

0 + ν2
0

)
+

t−1∑
s=0

σ2
wh

2s
p

+ bgph
s
pλt−s + 2ht−1

p ν0bgph
s
pλt−s

]
+ g2

pλ
2
t+1

+ 2ag2
ppλt+1

(
ht−1
p ν0 + bgp

t−1∑
s=0

hspλt−1

)
≤ (agpp)

2
[(
ht−1
p

)2 (
σ2

0 + ν2
0

)
+ σ2

wt

+ (bgptλ∞) + 2ht−1
p ν0bgptλ∞

]
+ g2

p (λ∞)
2

+ 2ag2
ppλ∞

(
ht−1
p ν0 + bgptλ∞

)
.

Since the optimal cost is,
∑∞
t=0 czE

[
γt
(
zt − z̄t

)2]
+

cuE
[
γtu2

t

]
, and

∑∞
t=0 tγ

t = γ
(1−γ)2 ,

∑∞
t=0 γ

t
(
ht−1
p

)2
=

1

h2
p

(
1−γh2

p

) , ∑∞t=0 tγ
tht−1
p = γ

(1−γhp)2 it can be concluded

that the optimal cost is bounded.

Proof of Lemma 3. Let us define two mean-fields z̄, ẑ ∈ `∞
and their next iterates z̄′ = T (z̄), ẑ′ = T (ẑ). Let us define
the difference sequences δt = z̄t− ẑt and δ′t = z̄′t− ẑ′t. Using
(12), the equation expressing the connection between δt and
δ′t is δ′t+1 = hpδt − czbgp

∑∞
s=0 (γhp)

s
δt+1+s. Hence,

‖δ′‖∞ ≤ ‖δ‖∞
(∣∣hp∣∣+

∣∣∣czbgp ∞∑
s=0

(
γhp

)s∣∣∣)
≤ ‖δ‖∞

(∣∣hp∣∣+
∣∣czbgp/(1− γhp)∣∣) = ‖δ‖∞Tp

where the last inequality follows from γ|hp| < 1 (see Lemma
2). By Assumption 1, T is a contraction.

Proof of Theorem 1. Consider an MFE (µ∗, z̄∗) that satisfies
Definition 1. Then, by definition, µ∗ = Φ(z̄∗). The second
part of Definition 1 states that z̄∗ = Λ(µ∗). Thus z̄∗ =
Λ(Φ(z̄∗)) = T (z̄∗). Now let us prove the converse. Consider
a mean-field z̄∗ which is the fixed point of T i.e. z̄∗ = T (z̄∗).
Then if µ∗ is the cost-minimizing control for z̄∗ i.e. µ∗ =
Φ(z̄∗), (µ∗, z̄∗) is an MFE since (1) µ∗ = Φ(z̄∗), and (2)
Λ(µ∗) = Λ(Φ(z̄∗)) = T (z̄∗) = z̄∗.

Proof of Lemma 4. For t ∈ {τ, τ + 1, . . .} using (12) and
the fact that |r| ≤ 1, we can write x′t+1 = hpxt −
czbgp

∑∞
s=0 (γhpr)

s
rxt = r̂pxt where r̂p := hp − czbgpr

1−γhpr
.

Similarly, x′t+2 is generated as x′t+2 = r̂pxt+1 = r̂prxt
for all t ∈ {τ, τ + 1, . . .}. Grouping terms, we obtain
x′t+2 = rx′t+1 for all t ∈ {τ, τ + 1, . . .}.

Proof of Theorem 2. We first state and prove in Lemma 5
below that the expression in the stopping condition of the
algorithm max0≤t≤k

∣∣z̄(k)
t − z̄

(k−1)
t

∣∣ is equal to
∥∥z̄(k) −



z̄(k−1)
∥∥
∞. This is due to the fact that z̄(k) and z̄(k−1) both

follow stable linear dynamics for t ≥ k.

Lemma 5. max
0≤t≤k

∣∣z̄(k)
t − z̄(k−1)

t

∣∣ =
∥∥z̄(k) − z̄(k−1)

∥∥
∞.

Proof. By definition
∥∥z̄(k) − z̄(k−1)

∥∥
∞ = supt≥0

∣∣z̄(k)
t −

z̄
(k−1)
t

∣∣. Hence for all t ≥ k,
∣∣z̄(k)
t − z̄

(k−1)
t

∣∣ =
∣∣rt−k(z̄(k)

k −
z̄

(k−1)
k

)∣∣ ≤ ∣∣z̄(k)
k − z̄(k−1)

k

∣∣. Using this property,
∥∥z̄(k+1) −

z̄(k)
∥∥
∞ = supt≥0

∣∣z̄(k+1)
t − z̄(k)

t

∣∣ = max0≤t≤k+1

∣∣z̄(k+1)
t −

z̄
(k)
t

∣∣. �
Since T is contractive with a fixed point of z̄∗,∥∥z̄(k+1) − z̄∗

∥∥
∞ ≤ Tp

∥∥z̄(k) − z̄∗
∥∥
∞ (17)

for any k = 1, 2, . . .. The algorithm terminates at iteration k
when

∥∥z̄(k+1) − z̄(k)
∥∥
∞ < εs(1− Tp)/Tp. Thus,

εs(1− Tp)/Tp >
∥∥z̄(k+1) − z̄(k)

∥∥
∞

≥
∥∥z̄(k) − z̄∗

∥∥
∞ −

∥∥z̄(k+1) − z̄∗
∥∥
∞

≥ 1

Tp

∥∥z̄(k+1) − z̄∗
∥∥
∞ −

∥∥z̄(k+1) − z̄∗
∥∥
∞

=
(
1− Tp

)∥∥z̄(k+1) − z̄∗
∥∥
∞/Tp.

Hence,
∥∥z̄(k+1) − z̄∗

∥∥
∞ < εs for any εs > 0. Now we

prove the bound on the number of iterations. If the number
of iterations is k > K(εs), then,

k >
(

log εs − log
∥∥z̄(0) − z̄∗

∥∥
∞

)
/ log Tp

⇔ k log Tp < log εs − log
∥∥z̄(0) − z̄∗

∥∥
∞

⇔ T kp <
εs∥∥z̄(0) − z̄∗

∥∥
∞
⇔ T kp

∥∥z̄(0) − z̄∗
∥∥
∞ < εs. (18)

The inequality flip in the second step is due to the fact that
Tp < 1 (Assumption 1) and log Tp < 0. From (17)

∥∥z̄(k) −
z̄∗
∥∥
∞ ≤ T kp

∥∥z̄(0) − z̄∗
∥∥
∞ and using the inequality (18),∥∥z̄(k) − z̄∗

∥∥
∞ < εs.
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[26] N. Saldi, T. Başar, and M. Raginsky, “Markov–Nash equilibria in
mean-field games with discounted cost,” SIAM Journal on Control
and Optimization, vol. 56, no. 6, pp. 4256–4287, 2018.

[27] M. Huang, “Stochastic control for distributed systems with applica-
tions to wireless communications,” Ph.D. dissertation, McGill Univer-
sity, 2003.

[28] D. G. Luenberger, Optimization by Vector Space Methods. John
Wiley & Sons, 1997.

[29] K. Yazdani and M. Hale, “Technical report: Infinite horizon discrete-
time linear quadratic Gaussian tracking control derivation,” arXiv
preprint arXiv:1807.04700, 2018.

[30] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
scientific Belmont, MA, 1995, vol. 1, no. 2.
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