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Actuator Security Index for Structured Systems
Sebin Gracy, Jezdimir Milošević and Henrik Sandberg

Abstract—Given a network with the set of vulnerable actuators
(and sensors), the security index of an actuator equals the
minimum number of sensors and actuators that needs to be com-
promised so as to conduct a perfectly undetectable attack using
the said actuator. This paper deals with the problem of computing
actuator security indices for discrete-time LTI network systems.
Firstly, we show that, under a structured systems framework,
the actuator security index is generic. Thereafter, we provide
graph-theoretic conditions for computing the structural actuator
security index. The said conditions are in terms of existence
of linkings on appropriately-defined directed (sub)graphs. Based
on these conditions, we present an algorithm for computing the
structural index.

Index Terms—Network Systems, Cyber-Physical Security, Ac-
tuator Security Index

I. INTRODUCTION

In recent years, security of cyber-physical systems has
attracted a lot of interest within the control systems commu-
nity [1], [2]. A large number of problems, previously consid-
ered in an attack-free setting, have been extended to account
for cyber-attacks; examples include design of attack resilient
estimators [3], detectors [4], and consensus protocols [5].
However, new problems such as cyber-attacks modeling [6],
attack analysis [7], and development of security indices [8]
have also emerged. The present paper is concerned with the
latter.

The security index, δ(i), is defined for every actuator i,
and is equal to the minimum number of sensors and actuators
that needs to be compromised by an attacker so as to conduct
a perfectly undetectable attack using i. A large (resp. small)
security index means that a large (resp. small) number of com-
ponents have to be attacked in conjunction with the actuator
of interest. Thus, the security index helps the system operator
to characterize which actuators are the most vulnerable in the
system, and can also be used to prioritize allocation of security
investment [9].

The notion of security index in dynamical network systems
was first introduced in [10]. In the said paper, the security in-
dex was defined based on the notion of undetectable attacks [4]
i.e., attacks where the output corresponds to that generated by
a disturbance, thus leading the system operator to conclude
(erroneously) that the system is affected by disturbance as
opposed to an attack. Yet another class of attacks is that of
perfectly undetectable attacks [11], i.e., attacks that do not
leave a trace at the output. Clearly, perfectly undetectable
attacks could lead to more serious consequences. Hence,
from a security viewpoint, it is more prudent to define the
security index with respect to perfectly undetectable attacks.
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As such, a novel (actuator) security index has been recently
proposed in [8]. Note that the said index is defined with
respect to a given plant model, i.e., each of the system matrices
having specific numerical entries. Since variations of system
parameters can result in actuator security indices changing
their values, a robust security index, δr(i), has been proposed
and developed based on structural model of the system [8].
However, this index is developed for finding only the most
vulnerable actuators in the system, that is, those actuators
that are vulnerable for every admissible realization of the
system parameters. Yet, some actuators can be vulnerable for
almost all, but not necessarily for every realization of the
system parameters. Hence, we aim to develop an index that is
less strict than δr(i), yet still robust to numerical changes in
modeling parameters.

We consider a structured systems framework. That is, the
system matrices are structured matrices; certain positions are
fixed to zero, while the positions that are not a priori fixed to
zero are referred to as free parameters. Each numerical choice
of free parameters yields a realization of the system at hand.
Under such a setting, our contributions are twofold: First, we
show that for a given actuator i, the security index δ(i) is
generic (Theorem 1). That is, the security index of an actuator
i has the same value for almost all choices of free parameters,
say p. We adopt this value to be the generic security index
of an actuator i, and refer to it as δs(i). Second, we provide
graph-theoretic conditions for computing the generic security
index (Theorem 2), and, based on those, an algorithm for the
same (Algorithm 1).

We conclude this section by presenting the list of notations
that would be used in the sequel. Thereafter, we formally state
our problem of interest in Section II, while the necessary
background material is provided in Section III. The main
results are provided in Section IV. Finally, we conclude with
some closing remarks in Section V.

Notations

R, C Z, Z+ and Z≥0 denote the set of real numbers,
complex numbers, integers, positive integers, and non-negative
integers, respectively. IN indicates an identity matrix of size
N . |X | indicates cardinality of a set X . For a column vector
a, a(i) denotes the element corresponding to its ith row.

II. PROBLEM FORMULATION

A. Plant Model

We consider a linear time-invariant plant model

x(k + 1) =Wx(k) +Bu(k),

y(k) = Cx(k)
(1)
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where: x(k) ∈ RN is the state vector; u(k) ∈ RQ is the control
input; and y(k) ∈ RM are the sensor measurements.

B. Attacker Model

Following [8], we model the plant dynamics under attack
as

x(k + 1) =Wx(k) +Bu(k) +Baa(k),

y(k) = Cx(k) +Daa(k)
(2)

where a(k)∈RP is the attack vector. Some sensors may be
immune to attacks, in which case they are referred to as secure
sensors. We define the joint set of actuators and unprotected
sensors by I = {1, 2, . . . P}, the set of protected sensors by
f , and attack cardinality by

|a|0 = | ∪k∈Z≥0
supp(a(k))|,

where supp(a(k)) = {i ∈ I : a(i)(k) 6= 0}.
Note that the system (1) could be subject to actuator attacks as
well as sensor attacks. The first Q < P elements of a(k) rep-
resent attacks on the actuator(s), while the remaining elements
model (dedicated) attacks on the sensor(s). Consequently, Ba
and Da are as follows:

Ba =
[
B 0N×(P−Q)

]
, Da =

[
0 IM−|f |
0 0

]
Note that it is a standard practice in the literature to assume

dedicated attacks on the actuators, see for instance [8], [11].
Given that we make no assumptions on the input matrix, our
results, in particular, apply to the case where the actuator
attacks are dedicated.

We are concerned with perfectly undetectable attacks [11]
i.e., the attacker would like to conduct an attack without being
detected by the system operator. These attacks are formally
defined as follows.

Definition 1: Let y(x(0), u, a) denote the response of sys-
tem (2) for the initial condition x(0), input u, and attack signal
a 6= 0. Then, the attack signal a is perfectly undetectable if
y(x(0), u, a) = y(x(0), u, 0). �
Since system (2) is linear, we can set x(0) = 0 and u = 0
without any loss of generality.

Based on this notion of undetectability, [8] introduces the
actuator security index. Recall that this index quantifies the
minimum number of sensors and actuators that needs to be
compromised by the attacker to attack actuator i and remain
perfectly undetectable simultaneously. Hence, for an actuator
i, the problem of computing δ(i) can then be defined in the
following way.

Problem 1: Calculating δ

δ(i) :=minimize
a

||a||0
subject to x(k + 1) =Wx(k) +Baa(k), (C1)

0 = Cx(k) +Daa(k), (C2)
x(0) = 0, (C3)

a(i) 6= 0. (C4)

In words, the optimal solution of the problem equals the
minimum number of sensors and actuators to conduct a

perfectly undetectable attack. The constraints (C1) and (C2)
ensure that the physical dynamics is according to the model we
introduced, while (C2) and (C3) ensure that the attack signal
a is perfectly undetectable. Finally, since we are calculating
the security index for actuator i, by definition we need to
ensure that actuator i is actively used in the attack. This is
accomplished by introducing constraint (C4). As pointed out
in [8] it is not always the case that Problem 1 has a solution.
If, for a given actuator i ∈ I, Problem 1 does not have a
solution, then we adopt the notation: δ(i) = +∞.

Given that we are interested in understanding how δ(i)
changes with respect to variations in system matrices, we turn
our attention to structured systems.

C. Structured System and Graphical Representation

Inspired by the graphical representations of structured
systems in the literature (see for instance [11], [12]), we
introduce graphical representations of (1) and (2) in this
subsection.

Let Wω , Bβ and Cγ be structured matrices. That is, they
have positions that are a priori fixed to zero, and the ones that
are not fixed to zero are referred to as free parameters. The
interpretation is in the following sense: the fixed zero posi-
tions represent interactions that are prohibited from occurring,
while the free parameters denote interactions that may happen
without specifying how intense these interactions may be. Let
s1, s2 and s3 denote the number of free parameters in Wω , Bβ
and Cγ , respectively, and let Rα1 , where α1 = s1 + s2 + s3,
denote the space of free parameters. We define ω ∈ Rs1 to be
the vector of free parameters in Wω . Analogously, we define
β and γ. Each choice of free parameter in Rα1 yields a system
(W,B,C) having dynamics as given in (1).

Let X = {x1, x2, . . . , xN}, Y = {y1, y2, . . . , yM}, and
U = {u1, u2, . . . , uQ} denote the set of state vertices, output
vertices and actuator vertices, respectively. We define the
associated edge sets as follows: EW = {(xj , xi) ⊆ X ×X |
[Wω]ij 6= 0)}, EB = {(uj , xi) ⊆ U × X | [Bβ ]ij 6= 0)},
EC = {(xj , yi) ⊆ X × Y | [Cγ ]ij 6= 0)}. Let G = (V, E),
where V = X ∪U ∪ Y and E = EW ∪ EB ∪ EC , be the graph
associated with the system (1).

We define Bβ′ and Dσ as structured matrices whose
columns correspond to vertices of I and rows correspond
to vertices of X and Y , respectively. Let Bβ′ = [Bβ 0 ].
Therefore, the number of free parameters in Bβ′ is the same
as that in Bβ , and, hence, equal to s2. Let s4 be the number
of free parameters in Dσ , and notice that the edges in EY,YF
are in one to one correspondence with the free parameters
in Dσ . Let Rα, where α = α1 + s4, denote the space of free
parameters for the structured system under attack. Each choice
of free parameters in Rα yields a system (W,Ba, C,Da)
having dynamics as given in (2).

Recall that I denotes the joint set of actuators and sensors
that are vulnerable to attacks. With respect to G, I =
{u1, u2, . . . , uQ, yQ+1, . . . , yQ+P−Q}, where ui ∈ U and
yi ∈ Y . While no assumptions are made on actuator attacks,
we do assume that the sensor attacks are dedicated. Hence,



we introduce corresponding set of (dedicated) sensor attack
nodes YF = {ay` , ay`+1

, . . . , ayP−Q}, and the associated edge
set EDa = {(yi, ayj ) ⊆ YF × Y | [Dσ]ij 6= 0}. Since the
attacks are dedicated, [Dσ]ij 6= 0 if and only if i) j > Q
and ii) i = j. Let GF = (V ′, E ′), where V ′ = V ∪ YF and
E ′ = E ∪ EDa , be the graph associated with the system (2).
An illustration of this setup is given in Figure 1, which will
be the running example in this paper.
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Fig. 1: Graph G1

Note that the representation in terms of GF (resp. G) and
structured matrices (Wω, Bβ′ , Cγ , Dσ) (resp. (Wω, Bβ , Cγ))
are in one-to-one correspondence. Hence throughout this pa-
per, we use the terms “choice of edge weights” and “realiza-
tion” interchangeably as the context warrants.

So as to avoid degenerate cases, we make the following
assumption.

Assumption 1:
(i) Every actuator ui ∈ U acts upon at least one state xj ∈

X .
(ii) Every state vertex xi ∈ X has a path to at least one

vertex yk ∈ Y .

D. Problem Statement

The main objective of the present paper is to answer the
following:

(i) For a given actuator, i ∈ I, does δ(i) have the same value
for almost all choices of edge weights in GF ?

(ii) Secondly, assming that the aforementioned question has
a positive answer, how does one compute that value?

Hereafter, for a given i ∈ I, we use “δs(i)” in place of “δ(i)
for almost all choices of edge weights in GF ”.

III. PRELIMINARIES

A. Structured matrices and associated ranks

We recall some notions related to ranks in this subsection.
The matrix pencil associated with a realization (W,Ba, C,Da)
is defined by

P (z) =

[
W − zIN Ba

C Da

]
.

The normal rank of P (z) is the maximum rank that P (z)
attains for some z0 ∈ C.

Define
Pα(z) =

[
Wω − zIN Bβ′

Cγ Dσ

]
.

Note that for each numerical choice of free parameters in
Rα, we obtain the matrix pencil, P (z), associated with the

corresponding realization (W,Ba, C,Da). Subsequently, we
can compute the normal rank for such a P (z). It turns out that
normal-rank(P (z)) is the same value for almost all choices
of free parameters in Rα [13]. Below we recall a formal
definition.

Definition 2: [Defintion C.3 [14]] The generic normal rank
of Pα(z) (g-n-rankPα(z)) is the maximum rank that a matrix
pencil P (z) achieves over all choices of free parameters in Rα
and z ∈ C. �

B. Graph Vocabulary

The advantage of a structured systems approach is that,
thanks to the fixed zero pattern of the structured system
matrices, such systems can be represented using graphs. Con-
sequently, they can be studied using tools from graph-theory.
In this subsection, we familiarize ourselves with some graph-
theoretic notions, which would be used in the sequel (see [15]
for more detailed treatment).

Consider a graph G = (V, E). Let wp, wp+r ∈ V . A path
from wp to wp+r in G is a sequence of edges wp → wp+1,
wp+1 → wp+2, . . ., wp+r−1 → wp+r. Two paths are said to
be vertex-disjoint if they have no vertex in common.

Definition 3: Let S1 and S2 be two sets of vertices of a
directed graph. A collection of vertex-disjoint paths from S1

to S2 is called a linking from S1 to S2. �
Suppose L is a linking in G. If q is one of the vertices along
the paths in L, we say that L saturates q. The size of a linking
is the number of paths contained in the linking. Let S1 and
S2 be two sets of vertices in G. If a linking, L, from S1

to S2 has maximum size among all linkings from S1 to S2,
then L is a maximum S1-S2 linking in G. Note that maximum
linkings are not necessarily unique. Vertices that are present
in every maximum linking from S1 to S2 are referred to as
essential vertices between vertex sets S1 and S2, and denoted
as Vess(S1, S2).

Indeed, the maximum size of a linking on a directed
graph relates to the generic normal rank of the corresponding
structured transfer function matrix. We recall this connection
in the following lemma.

Lemma 1 ( [16], Pg.140 [14]): The maximum number of
vertex-disjoint paths from the set of input vertices to the set of
output vertices in GF equals g-n-rankCγ(zI −Wω)

−1Bβ′ +
Dσ . �

IV. MAIN RESULT

In this section, we establish the main contributions of the
present paper. Our first main result is Theorem 1, where we
show that the actuator security index is generic. Our second
main result is Theorem 2, wherein we provide graph-theoretic
conditions for computing the generic actuator security index.

Let Ia ⊆ I denote the (sub)set of actuators and unpro-
tected sensors that are used in an attack. Let us denote by
(W, B̃a, C, D̃a) the corresponding system, where [ B̃a

D̃a
] the

submatrix of [ BaDa ] formed by looking at columns of [ BaDa ]
that correspond to elements in Ia. Denote by GIaα (z) the
corresponding structured transfer function matrix.



Before we proceed to our first result, we need the following
intermediate results:

Lemma 2: Let Ia ⊆ I. If for some i ∈ Ia, g-n-rankGIa =
g-n-rankGIa\i + 1, then vertex i is saturated by every maxi-
mum linking from Ia to Y . �
Proof: Let g-n-rankGIa = r, where 1 ≤ r ≤ |Ia|. Then,
from Lemma 1, the size of a maximum linking from Ia to Y
in GF equals r. Suppose that vertex i is not saturated by some
maximum linking, say L, from Ia to Y in GF . This implies
that the size of maximum linking, namely size of linking L,
from Ia \ i to Y equals r, since if it were r−1 then L should
have included vertex i . Consequently, g-n-rankGIa\i = r,
and hence, g-n-rankGIa 6= g-n-rankGIa\i + 1. �

Lemma 3: Let Ia ⊆ I such that i1 ∈ Ia. If every maximum
linking from Ia to Y saturates i1, then using Ia, for almost all
realizations (W, B̃a, C, D̃a) ∈ (Wω, B̃β′ , Cγ , D̃σ), an attacker
cannot attack i1 and remain perfectly undetetcable. �
Proof: Let r ∈ Z+ be the size of a maximum linking from
Ia to Y in the directed graph GF . Denote by GIaL1

(z) the
structured transfer function matrix.
Pick a maximum linking, say L1, from Ia to Y in the directed
graph GF , and do the following: for all edges of GF that are
contained in L1, set the weights to 1; for the rest, set the
weights to 0. As a consequence of this choice of edge weights,
and since size of a maximum linking from Ia to Y in the
directed graph GF equals r, from the definition of linking it
follows that for the aforementioned choice of free parameters,
rankGIaL1

(z) = r. Moreover, column i1 is linearly independent
of the remaining columns in GIaL1

(z). Since there exists one
realization for which rankGIaLj (z) = r, then for almost all
choices of edge weights in GF rankGIa(z) = r, and all such
realizations would have column i1 to be linearly independent
of the remaining columns in GIaLi (z).
Given that every maximum linking from Ia to Y saturates
i1, it follows that, even though repeating the procedure above
for different maximum linkings in GF would yield different
GIaLi (z), for all such structured transfer function matrices,
GIaLi (z), the following are satisfied: a) g-n-rankGIaLi (z) = r,
and b) for almost all realizations, column i1 will be linearly
independent of the remaining columns in GIaLi (z), i 6= 1.
Therefore, for almost all realizations (W, B̃a, C, D̃a) ∈
(Wω, B̃β′ , Cγ , D̃σ), the following is satisfied: let x(0) = 0,
u = 0, then y = 0 =⇒ a(i1) = 0, which, with respect to set
Ia, is in violation of constraint (C4). Hence, using Ia, for al-
most all realizations (W, B̃a, C, D̃a) ∈ (Wω, B̃β′ , Cγ , D̃σ), an
attacker cannot attack i1 and remain perfectly undetectable. �

With Lemmas 2 and 3 in place, the following proposition
gives an upper bound for the generic actuator security index.

Proposition 1: If for every Ia ⊆ I such that a) |Ia| = p,
and b) i1 ∈ Ia,

g-n-rankGIa 6= g-n-rankGIa\i1 ,

then δs(i1) ≥ p+ 1. �
Proof: Suppose that the conditions in Prop. 1 are satisfied,
yet δs(i1) ≤ p. That is, there exists some I1a ⊆ I, where a)
|I1a | = p, and b) i1 ∈ I1a , such that for almost all realizations
(W, B̃a, C, D̃a) ∈ {Wω, B̃β′ , Cγ , D̃σ}, where [

B̃β′

D̃σ
] is the

structured submatrix of [Bβ′
Dσ

] with column indices correspond-
ing to elements in I1a , the following is satisfied: let x(0) = 0,
u = 0, then y = 0 =⇒ a(i1) 6= 0.

Let r ∈ Z+, where 1 ≤ r ≤ |I1a | − 1, denote the size of a
maximum linking from I1a to Y in GF . Then, from Lemma 1,
g-n-rankGI

1
a = r. Hence, g-n-rankGI

1
a\i1 ≥ r − 1. Now

there are two cases to consider here.
Case a: If g-n-rankGI

1
a\i1 = r, then, by contraposition, the

proof is complete.
Case b: If g-n-rankGI

1
a\i1 = r − 1, then

g-n-rankGI
1
a = g-n-rankGI

1
a\i1 +1. Hence, from Lemma 2,

vertex i1 is covered by every maximum linking from I1a to Y .
This implies, from Lemma 3, that for almost all realizations
(W, B̃a, C, D̃a) ∈ {Wω, B̃β′ , Cγ , D̃σ}, an attacker cannot
attack i1 and remain perfectly undetectable. This contradicts
our initial assumption. Thus, the proof is complete. �

It is interesting to ask whether the bound in Prop. 1 is tight;
i.e, if for some i ∈ I δs(i) ≥ p + 1, then is it also true that
for the same i ∈ I δs(i) ≤ p+ 1? The following proposition
answers this question.

Proposition 2: Let Ia ⊆ I, and i1 ∈ Ia. If

g-n-rankGIa = g-n-rankGIa\i1 ,

then δs(i1) ≤ |Ia|. �
Proof: Let us denote by [

B̂β′

D̂σ
] the columns of [

Bβ′
Dσ

] that
correspond to elements in Ia. By assumption, all such struc-
tured submatrices [

B̂β′

D̂σ
] contain column i1. Let us denote

by (Wω, B̂β′ , Cγ , D̂σ) the corresponding structured subsystem
of (Wω, Bβ′ , Cγ , Dσ). Let GIa denote the corresponding
structured transfer function matrix, and let g-n-rankGIa = r,
where 1 ≤ r ≤ |Ia|.
Suppose that δs(i1) > |Ia|. Then, together with the definition
of actuator security indices, it follows that for every set of size
|Ia| containing i1, for almost all realizations (W, B̂a, C, D̂a) ∈
(Wω, B̂β′ , Cγ , D̂σ), the following is satisfied: let x(0) = 0,
u = 0, then y = 0 =⇒ a(i1) = 0. This, since GIa =[
GIa\{i1} G{i1}

]
, implies that g-n-rankG{i1} = 1, and

moreover, column i1 is linearly independent of the columns
of GIa\{i1}. Therefore, g-n-rankGIa\{i1} = r − 1, which
further implies that g-n-rankGIa 6= g-n-rankGIa\{i1}. This
completes the proof. �
Combining the results in Prop. 1 and 2, yields the following.

Proposition 3: Let p ∈ Z+ such that 1 ≤ p ≤ |I|.
(i) If for every Ia ⊆ I such that a) |Ia| = p, and b) i1 ∈ Ia,

g-n-rankGIa 6= g-n-rankGIa\i1 , then δs(i1) ≥ p+ 1.
(ii) If g-n-rankGIa = g-n-rankGIa\i1 , then δs(i1) ≤ p. �

Note that the conditions in Prop. 3 give lower bound and
upper bound on the number of elements needed to conduct
an attack using a particular actuator (or sensor) for almost
all choices of edge weights in GF . It turns out that the exact
number of elements needed is generic, i.e., in order to conduct
an attack using a particular component for almost all choices of
edge weights in GF , the same number of elements are needed.
The following theorem addresses this.

Theorem 1: For an actuator i ∈ I, the security index, δ(i),
is generic. �



Proof: First note that the conditions in Prop. 3 are mutually
exclusive. For p = 1, thanks to Assumption 1, the condition
in item (i) is trivially satisfied for every i ∈ I. Therefore,
one needs to check for p 6= 1, starting from p = 2. This is
done as follows: generate all sets Ia such that i ∈ Ia and
|Ia| = p. If the condition in item (i) is satisfied for every such
set Ia, then at least p+1 elements are needed. Let Ia be the
first set for which the condition in item (ii) (resp. item (i)) is
satisfied (resp. violated). Then a perfectly undetectable attack
using actuator i can be conducted with at most p elements
for almost all choices of edge weights in GF . However, since
the condition was satisfied for p = p − 1 , it follows that in
order to conduct an attack using actuator i exactly p elements
are needed for almost all choices of edge weights in GF . This
implies that δs(i) = p. �
Theorem 1 answers question (i) in Sect. II-D, and should be
interpreted in the following sense: For almost all choices of
free parameters in Rα, the security index of actuator i, δ(i),
remains the same (i.e., p). For some choices of free parameters
in Rα, δ(i) could be different from p. However, all such
choices of free parameters would lie on a set of Lebesgue
measure zero in the space of free parameters.

In the context of network systems, one is often interested
in graph-theoretic conditions as opposed to algebraic ones.
This motivates us to seek graph-theoretic alternative for the
conditions given in Prop. 3. The following lemma eases this
transition.

Lemma 4: Let Ia ⊆ I such that i1 ∈ Ia, and let GF be
the associated directed (sub)graph. Vertex i1 is saturated by
every maximum linking from Ia to Y in GF if and only if
g-n-rankGIa = g-n-rankGIa\i1 + 1. �
Proof: Let r, where 1 ≤ r ≤ |Ia| be the size of a
maximum linking from Ia to Y in GF . Then, from Lemma 1,
g-n-rankGIa = r. Suppose i1 is saturated by every maximum
linking from Ia to Y in GF , then removing vertex i1 from Ia
should reduce the size of the maximum linking from Ia \ i1 to
Y in GF by one, because otherwise there would be a maximum
linking from Ia to Y in GF that does not saturate i1. Hence,
the maximum size of a linking from Ia \ i1 to Y equals r−1.
This further implies that g-n-rankGIa\i1 = r − 1.
The other direction is handled in Lemma 2. �

From Prop. 3 and Lemma 4, the following is readily
obtained.

Theorem 2 (Graph-theoretic conditions): Let p ∈ Z+ such
that 1 ≤ p ≤ |I|. Then

(i) If for every Ia ⊆ I such that a) i1 ∈ Ia, and b)|Ia| = p,
i1 is saturated by every maximum linking from Ia to Y
in GF , then δs(i1) ≥ p+ 1;

(ii) If for some Ia ⊆ I such that a) i1 ∈ Ia, and b)|Ia| = p,
there exists a maximum linking from Ia to Y in GF that
does not saturate i1, then δs(i1) ≤ p. �

Theorem 2 answers question (ii) in Sect. II-D.
Some special cases are of interest; these are addressed by the
following remarks.

Remark 1: If condition in item (i) of Theorem 2 is satisfied
for the particular case of p = |I|, then for almost all choices of
edge weights in GF the attacker cannot attack i while staying
perfectly undetectable. Hence, δs(i) = +∞. �

In the context of perfectly undetectable attacks, a closely-
related notion is that of left-invertibility. A system is left-
invertible if given a sequence of outputs and initial state,
the unknown inputs, in our case attacks, can be uniquely
recovered up to some delay. The next two remarks show the
interplay between generic left-invertibility and the conditions
in Theorem 2.

Remark 2: The condition in Remark 1 being satisfied does
not necessarily imply that the system (Wω, Bβ′ , Cγ , Dσ) is
generically left-invertible. To see this, consider the example in
Figure 2. Let u1 be the vertex of interest, p = 3, and, therefore,

𝑢1

𝑥1

𝑦1

𝑢2

𝑥2

𝑦2

𝑢3

𝑥3

𝑦3

Fig. 2: G2

Ia = {u1, u2, u3}. The list of all maximum linkings are as
follows: {(u1 → x1 → y1), (u2 → x2 → y2)}; and {(u1 →
x1 → y1), (u3 → x2 → y2)}. Note that u1 is saturated by
both the maximum linkings. Hence, δs(u1) = +∞. However,
since maximum size of a linking from Ia to Y is 2, from
Theorem C.5 in [14], the structured system represented by
graph G2 is generically not left-invertible. �

Remark 3: Suppose that the condition in item (i) of Theo-
rem 2 is satisfied for the particular case of p = |I| for every
i ∈ I, then, from Remark 1, δs(i) = +∞ for every i ∈ I. This
also implies that the maximum size of a linking from I to Y
in G̃ is |I|. Hence, the system (W,Ba, C,Da) is generically
left-invertible. �
Note that the condition (i) in Theorem 2 asks that for every Ia
that satisfies the given criteria, the actuator i ∈ Vess(Ia,Y).
For a given Ia, whether i ∈ Vess(Ia,Y) can be checked
efficiently using depth search algorithms [17]. With this un-
derstanding in place, we can now present an approach for
computing δs(i).

Calculating structural security index

In this subsection, we introduce a brute force search method
for calculating a structural security index δs(i) of an actuator
i. The idea is to iterate through all subsets Ia that contain i
and have cardinality p, 1 ≤ p ≤ |I|, starting from p = 1.
If we find a subset for which condition (ii) in Theorem 2 is
satisfied, then δs(i) = p, and we stop the search. Otherwise,
we increment p, and repeat the process.

With respect to the example in Figure 1, I = {u1, u2, ay1},
For vertex, u1, consider the vertex set Ia = {u1, ay1}.
The maximum size of a linking from Ia to Y is 1; there
are two such linkings, namely: i) u1 → x1 → y1 and ii)
ay1 → y1. Note that Vess(Ia, Y ) = {y1}, and, therefore,
u1 /∈ Vess(Ia, Y ). Hence, δs(u1) = 2. It can also be seen
that δs(ay1) = 2.
To compute δs(u2), consider the vertex set I = {u1, u2, ay1}.
The maximum linkings from I to Y are the following:
• (u1 → x1 → y1, u2 → x2 → y2);



Algorithm 1 Calculating the structural security index δs(i) of
an actuator i.

Input: Wω ,Bβ′ ,Cγ ,Dσ , i ∈ I
Output: δs(i)
Step 0: Set p = 1 ;
Step 1: Generate all subsets Ia of I such that: (i) |Ia| = p;
(ii) i ∈ Ia; and calculate q, the number of such subsets
Step 2: for j=1:q
Step 3: compute Vess(Ija,Y) in G̃
- if i ∈ Vess(Ija,Y), then j = j+1, and go to step 3 - else
δs(i) = p, and terminate the algorithm.
Step 4: If p ≤ |I|, then p = p+ 1, and return to step 1
-else return δs(i) = +∞, and terminate the algorithm.

• (u1 → x1 → y1, u2 → x2 → x3 → y3);
• (u1 → x1 → y1, u2 → x2 → x3 → x4 → y3);
• (ay1 → y1, u2 → x2 → y2);
• (ay1 → y1, u2 → x2 → x3 → y3); and
• (ay1 → y1, u2 → x2 → x3 → x4 → y3)

It can be immediately seen that u2 ∈ Vess(I, Y ), and, hence
from Remark 1 δs(u2) = +∞.

V. CONCLUSION

This paper tackled the problem of computing actuator
security indices for discrete-time LTI network systems. First,
we showed that, under a structured systems framework, the
actuator security index is generic. Subsequently, we provided
graph-theoretic conditions for computing the structural
actuator security index. Based on those conditions, we
presented an algorithm for the same.

In the future work, we will focus on computing the index
δs efficiently and developing defense strategies for improving
this index.
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