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Abstract—1In this paper, a multi-horizon model predictive
controller (MH-MPC) is developed for integrated power and
thermal management (iPTM) of a power-split hybrid electric
vehicle (HEV). The proposed MH-MPC leverages an accu-
rate short-horizon vehicle speed preview and an approximate
forecast over a longer shrinking horizon till the end of the
driving cycle. This multiple-horizon scheme is developed to
cope with fast and slow dynamics associated with power
and thermal responses. The main objective of the proposed
MH-MPC is to minimize fuel consumption and enforce the
power and thermal constraints on the battery state-of-charge
and engine coolant temperature, while meeting the driving
(traction) and cabin air conditioning (heating) demands. The
proposed MH-MPC allows for exploiting the engine coolant
as thermal energy storage, providing more flexibility for the
HEV energy flow optimization. The simulation results show
that the proposed MH-MPC provides near-optimal results in
reference to the Dynamic Programming (DP) solution with
an affordable computational cost. Moreover, compared with
a more conventional MPC strategy, the MH-MPC can leverage
the speed previews with different resolutions effectively to
achieve the desired performance with satisfactory robustness.

[. INTRODUCTION

Efficient thermal management of hybrid electrical vehicles
(HEVs), including engine cooling, cabin heating/cooling, and
aftertreatment system, has a significant impact on the overall
vehicle energy efficiency [1]-[4]. Power and thermal loops
of an HEV are strongly coupled. For example, the engine
coolant temperature has a direct impact on engine efficiency,
emission, cabin air conditioner (i.e., cabin heating in winter).
While numerous energy management strategies (EMS) have
been developed for HEVs with the focus on power-split and
energy flow management to meet the traction power demand
and improve fuel economy [5]-[7], the integrated power and
thermal management (iPTM) of HEVs and plug-in HEVs (p-
HEVs) has been the subject of only a few recent studies [8]—
[10].

EMS strategies are based on either heuristic or optimiza-
tion methods. Many optimization-based approaches, such
as dynamic programming (DP) [11]-[13] and Pontryagins
maximum principle (PMP) [14], [15], have been applied
under the assumption that the full driving cycle is known
a priori. DP with multiple states is computationally de-
manding, making its real-time implementation infeasible.
Compared with DP, PMP reduces the computational time and
can be implemented online with real-time adaptation, i.e.,
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adaptive PMP [14], [16]. A common assumption considered
in the PMP is to set the co-state of the battery state-
of-charge (SOC) as a constant, thereby simplifying the
adaptation processes. However, for the iPTM problem, the
thermal states (e.g., engine coolant temperature) introduce
additional co-states, which usually cannot be regarded as
constants. The increased complexity due to multiple co-states
makes it harder for real-time adaptation. Another limitation
of the PMP-based methods is the difficulty in handling state
constraints.

Model predictive control (MPC) is an online optimization-
based technique extensively investigated in previous stud-
ies [17]-[19] for energy management of HEVs. While
MPC can handle the state and input constraints explic-
itly and is computationally less demanding, as compared
to DP, it strongly relies on the prediction of the future
vehicle speed. Uncertainties in the speed prediction can
raise robustness challenges. With the recent development in
the connectivity-based technologies, e.g., vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communications,
short-range prediction of the future vehicle speed and traffic
events has become more feasible and accurate [20]. Long-
term vehicle speed prediction, however, is still subject to
large uncertainties. Thus, the MPC-based solutions are often
implemented with a short prediction horizon to reduce the
impact of the speed preview uncertainties and lower the
computational load. This approach, on the other hand, limits
the energy-saving potentials of the MPC-based EMS [21].
This issue is more pronounced for iPTM as the thermal
and power systems have different timescales and require
different lengths of prediction horizon to optimize their
responses [22].

In order to address the challenges associated with MPC-
based iPTM of HEVs, we introduce a novel multi-horizon
MPC (MH-MPC) framework in this paper. The main objec-
tive of the MPC-based iPTM is to minimize the fuel con-
sumption, while enforcing the power and thermal constraints
in response to the traction and cabin heating demands. The
operations in cold weather conditions are considered in the
thermal loops. We consider the entire time horizon of the
trip and divide it into two segments. The first segment is
relatively short with high resolution, during which the vehicle
speed predictions could be obtained from the V2I/V2V
information and is assumed to be accurate. The second
segment is a shrinking horizon with low resolution to reduce
the computation demands of the predictive controller. An
approximate long-term prediction of the future vehicle speed,
which can be realized by processing the traffic data collected
from the connected vehicles [23], is incorporated in the
second segment of the horizon.

The main contributions of this paper are twofold. Firstly,
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a multi-horizon MPC is developed to leverage the speed pre-
views with different accuracies over short and long prediction
horizons. This multi-horizon framework not only reduces the
computational demands, but it also allows for incorporating
fast (i.e., power) and slow (i.e., thermal) dynamics over
different prediction horizons. Secondly, the engine coolant
is exploited as thermal energy storage, providing further
flexibility for hybrid energy flow optimization. The MH-
MPC allows us to utilize the thermal energy storage to the
full extent with the multi-horizon speed preview.

The rest of the paper is organized as follows: experi-
mentally validated power and thermal models of a power-
split HEV are described in Sec. [[I} Next, the baseline (con-
ventional) MPC and the proposed MH-MPC are presented
in Sec. Sec. [[V] reports simulation results. Finally, the
concluding remarks are summarized in Sec. [V]

II. HEV POWER AND THERMAL MODELS

Consider the powertrain for the power-split Toyota Prius
HEV. The overall schematic of the power and thermal loops
of the HEV is shown in Fig. E} The two states of interest,
which represent two energy storages within the HEV, are
battery SOC' and engine coolant temperature (7). We
presented physics-based models of SOC and T;; dynamics
in our previous work [1], where the power (SOC and fuel
consumption rate 17 y,e;) and thermal (7;) models were
experimentally validated against the data collected from a
Prius HEV MY 2017.
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Fig. 1. Schematic of power-split HEV thermal and power loops.

A. Battery Power-Balance Model

The battery provides electrical traction power (PL7¢¢), as
well as auxiliary power (P24"), e.g., for an air conditioning
(HVAC) system. The battery SOC' is modeled using the

equivalent circuit model [21]:
_ Uoc(t) B \/Ugc(t) - 4Rint (t)Pbat (t)
2Rint (t)Cbat '

where Pyt = P + PP Chat, Rint and U, are the
battery power, capacity, internal resistance, and open-circuit
voltage, respectively. Note that P£¢¢ is a part of the total
traction power demand (FPy) and the rest is delivered by the
combustion engine:

Py(t) = Piaie(t) + Peng(t), 2)

where the engine mechanical output power (Fe,g4) is deter-
mined by engine speed (w,) and torque (7,), which follow the
optimal operating points (OPP) line on which engine brake
specific fuel consumption (BSFC) is minimized.

S0C(t) ¢))

B. Engine Coolant Temperature Model
The engine thermal dynamics are represented by the
coolant temperature model [1],

. 1 . . . .
Tcl = m(@fuel - Peng - Qexh - Qai'f - Qheat)a
3)

where Me,g and C.,, are the equivalent thermal mass
and capacity of the engine cooling system, respectively.
Additionally, Q) fye; is the heat rate released in the combus-
tion process, Qezh is the heat rate rejected in the exhaust,
Qair is the rate of the heat rejected by air convection, and
Qheat is the heat rate exchanged for cabin heating. In ,
Q fuer is calculated as a function of the fuel consumption
rate and lower heating value (LHV') of gasoline. The fuel
consumption rate is a function of many variables, among
which we consider engine speed, engine torque, and engine
coolant temperature:

Qfuet = LHV -1t pyei(we, Te, Ter) )
mfuel(wea Te, Tcl) = a(Tcl) : ffuel (We; Te) (5)

where 17, is the fuel consumption rate, fyryer(we,7e) is
the nominal fuel consumption rate calculated according to the
BSFC map and a(Ty;) is a correction multiplier introduced
to reflect the impact of T;. The function of «(7;), shown
in Fig. |2} can be found in Autonomie{]_-] software’s thermal
HEV model.
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Fig. 2. The correction multiplier reflecting the impact of coolant temper-
ature on the actual engine fuel consumption at low temperatures

III. MPC-BASED IPTM OF HEV

In this paper, we consider winter time operations when
cabin heating is required and the coolant temperature should
be maintained within a specified range. We assume that
the cabin heating demand, Qpeq: = 1.5 kW, is constant
and the engine is warmed-up at the beginning of the trip
(Te1,imit = 50°C), which means the engine cold-start is not
considered. In the following subsections, first, a baseline
MPC with a short prediction horizon and with a quadratic
term in the stage cost is formulated. Next, and based on
the insight gained from the baseline MPC, a multi-horizon
MPC (MH-MPC) is proposed. In both cases, battery power
is considered as the control input in MPC design and the
prediction model is a two-state model reflecting the dynamics
of T,; and SOC.

A. Baseline (Conventional) MPC
The baseline MPC solves the following finite-time con-

strained optimal control problem:

! Autonomie® is a MATLAB®/Simulink®-based system simulation tool
for vehicle energy consumption and performance analysis developed by
Argonne National Laboratory (ANL) [4]
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subject to: )
SOCmin < SOC(Z) < SOCmaxa N

Tcl,min S Tcl(l) S Tcl,maza (8)

where H is the prediction horizon, ¢ indicates the current
time, Jt is the sampling time, and ¢ = ¢,---,¢ + H. Other
parameters for SOC' and Ty; in (7) and () are: SOC,y,, =
0.4, SOCpaz = 0.8, Toymin = 40°C, and Ty mes =
90°C. The cost function ¢ consists of two terms, (i) the
integration of fuel consumption rate, and (ii) the quadratic
penalty term on terminal SOC(t + H). This quadratic term,
with a relatively large and constant weighting factor of
A, is included to enforce the battery charge sustainability
constraints. Note that here we set the reference SOC as
SOC;cr = SOCipi. A similar MPC framework has been
adopted in the literature [17], [19], [24].

The optimization problem (6) is solved every 1 sec, and
the resulting Py,+(t) is used to determine the required engine
power according to (2), based on which the desired engine
speed and torque are obtained according to the optimal BSFC
map. The MPC is solved numerically using MPCTools [25]
package, which exploits CasADi [26] for automatic differen-
tiation and IPOPT algorithm for the numerical optimization.

The baseline MPC (6) is simulated over two different
driving cycles, New York City Cycle (NYCC) representing
urban driving conditions with multiple stop-and-go, and
a truncated version of the New European Driving Cycle
(NEDC). These two driving cycles are shown in Fig. B}(a1)
and (b1), respectively. First, the MPC prediction horizon is
set to H = 20 (20 sec). The numerical simulation results
of the baseline MPC are shown in Fig. [3] for both of the
considered driving cycles. It can be seen in Figs. [3}(a2) and
(b2) that the battery SOC' is varying within a small range
(< 10%). This is a direct result of the penalty term in the
cost function (6) and the relatively short prediction horizon.
Similar responses were also reported in [17], [19], [24].

One approach to enable the controller to exploit a wider
SOC is by extending the prediction horizon. Fig. [ shows
the results of simulating the same baseline MPC in (6) with
H =20 and H = 100. Moreover, the SOC' trajectory from
the DP is plotted for both driving cycles in Fig. f] It can
be seen that by increasing the prediction horizon from 20
to 100, the variation range of SOC slightly increases. By
comparing the MPC results with those from the DP solution,
Fig. [ shows that even with a longer prediction horizon, the
baseline MPC delivers sub-optimal SOC' trajectories, i.e.,
the battery not being utilized efficiently.

The fuel consumption results of the baseline MPC with
different prediction horizons (20, 50, 100), along with the
DP results are summarized in Fig. [5} While increasing
the prediction horizon reduces the MPC fuel consumption,
the baseline MPC consumes 3% more fuel than the DP
solutions. This observation shows that increasing the baseline
MPC prediction horizon has a marginal impact on the fuel
economy, mainly due to the impact of the SOC' penalty term
in the MPC cost. Extending the prediction horizon imposes
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Fig. 3. The state trajectories (SOC, T,;) of the baseline MPC over (a)
NYCC (b) truncated NEDC.
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truncated NEDC.

several major challenges in the MPC implementation. Firstly,
as shown in Fig. @(c), it increases the computational time of
the controller significantly on an Intel® Core i7-8700@3.20
GHz processor. Secondly, larger uncertainty associated with
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the long-term vehicle speed prediction can degrade the
performance of the MPC [27], [28].

B. Multi-Horizon MPC (MH-MPC)

It was shown in the previous section that a short-horizon
MPC with a penalty term in the cost function may not
allow for efficient use of the vehicle speed preview. On the
other hand, long-horizon MPC is significantly more compu-
tationally demanding and its performance is degraded by the
uncertainties in the long-term vehicle speed predictions. To
bridge this gap, a multi-horizon MPC (MH-MPC) framework
is now introduced. The MH-MPC has a long-prediction
horizon and assumes that the end of the trip is known a
priori. While the entire driving cycle is unknown, we assume
that:

« an accurate forecast of the vehicle speed over a short
prediction horizon is available based on V2V/V2I com-
munication, see [3], [13].

« an approximate forecast of the vehicle speed beyond
the short-range accurate prediction window is also avail-
able. Such a forecast can be generated by processing
traffic data collected from the connected vehicles trav-
eling along the same route as the ego-vehicle, see [22],
[23], [29].

This concept is illustrated in Fig. [6} where the moving
green window represents the short-range high-accuracy speed
preview and the orange shrinking windows show the approx-
imate long-term prediction of the future vehicle speed.

In order to minimize the required computation time of
the MH-MPC with a long prediction horizon, the prediction
horizon is sampled at different rates. Over the short moving-
horizon, a small sampling period of d¢; = 1 sec is applied
and the vehicle speed is updated every 1 sec. Over the longer
shrinking horizon, a large sampling period of dts = 20 sec is
used. Given the two horizons, the baseline MPC formulation
is revised as follows for the MH-MPC:
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Fig. 6. The concept of multi-horizon incorporated in MH-MPC with short
(high resolution) and long (low resolution) term vehicle speed predictions.
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subject to the same constraints (7) and (8), and

SOCinit = SOCeng. (10)

In (9), N is the short moving-horizon, ¢ indicates the
current time, and t.,4 iS the final time at the end of the
trip. Note that there is no terminal penalty in the MH-MPC
cost (¢prp). Instead, a terminal constraint is imposed on the
battery SOC (I0). Enforcing this constraint is hard and often
causes infeasibility for the MH-MPC optimization problem.
Thus, this hard constraint is slightly relaxed by allowing the
final SOC to vary by +£1% as compared with SOCj,;4:

0.99 x SOCinit < SOCeng < SOCipi x 1.01.  (11)

Once the MH-MPC optimization problem is solved, the
computed control input at the current time (¢) is applied to
the system and the receding horizon is shifted by 1 sec.

IV. MH-MPC SIMULATION RESULTS AND DISCUSSION
A. Simulation Results of MH-MPC

This section presents the simulation results of the proposed
MH-MPC over the NYCC and the truncated NEDC. The
MH-MPC results are also compared with the DP, the baseline
MPC, and a rule-based power-split logic to show the effec-
tiveness of the proposed controller. The rule-based power-
split controller is based on the load-leveling logic presented
in [30]. Additionally, for the coolant temperature regulation,
an extra criteria is included in the rule-based controller to
ensure T,; > 50°C [4]. Note that the lower hard constraint
imposed on T, is set to 40°C in the baseline MPC and MH-
MPC with access to the speed preview. In the absence of



speed preview, a relatively higher temperature (e.g., 50°C')
is often selected [4]. Furthermore, the moving-horizon of
the MH-MPC is assumed to be N = 20 (20 sec) with
o0t = 1 sec.
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MPC with H = 20 (20 sec), 100 (100 sec), and MH-MPC with
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The comparison of fuel consumption among different
methods is shown in Fig.[7} By comparing the rule-based and
DP controllers, it can be seen that the DP can reduce the fuel
consumption by 19.9% (NYCC) and 4.8% (NEDC). These
improvements are considered as the maximum achievable
fuel saving when the entire driving cycle is known a priori.
While the baseline MPC shows up to 15.3% fuel saving
over NYCC, as compared to the rule-based, the MH-MPC
provides further fuel saving of 17.6% (Fig. |Z|-(a)). For the
truncated NEDC, the baseline MPC provides marginal fuel
saving of 1.37% (H = 20) and 1.84% (H = 100) compared
to the rule-based controller as shown in Fig. (b). The MH-
MPC, on the other hand, delivers fuel saving of 4.62% over
truncated NEDC, which is close to the maximum fuel saving
resulted from DP.

The average computation time of the MH-MPC per op-
timization iteration is recorded and compared against the
baseline MPC in Fig. [l}(c). For MH-MPC, the average
computation time was recorded at 0.67 sec. Comparing with
baseline MPC with computation times of 0.46 sec (H = 20)
and 2.12 sec (H = 100), one can see that the MH-MPC
provides a computationally efficient framework thanks to the
incorporated low-resolution long shrinking horizon. For a
longer driving cycle, sampling time of the shrinking horizon
can be further increased to reduce the computational cost.

B. Leveraging “uncertain” speed preview for fuel saving

To explain the superior performance of the MH-MPC,
the state trajectories (SOC, T;) of different controllers
are shown in Fig. [B] Compared to the baseline MPC and
rule-based controller, the SOC' trajectories from the MH-
MPC vary in a relatively wider range, specifically for the
NEDC with SOC trajectory showing a similar trend with
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DP (Fig. [8}(b1)). According to the long-range speed pre-
view used in the MH-MPC, the controller is aware of the
overall trends along the driving cycle. For instance, along the
truncated NEDC, the ego-vehicle drives on the highway for
300 sec before it comes to a long stop around ¢ = 550 sec.
Since the vehicle drives at low speed and with multiple stop-
and-go towards the end of the cycle (¢t = 540 — 800 sec),
the vehicle can drive in electric vehicle (EV) mode (and
save fuel) if enough energy is stored in the battery when
it exits the highway. Since the MH-MPC is aware of this
upcoming city-driving phase in advance, it commands the
battery to be charged while the vehicle drives on the high-
way (Fig. (bl)). With the baseline MPC, however, the
battery does not have enough charge and the engine is being
inefficiently used, see Figs. [8}(b2). While the cabin heating
is satisfied and the coolant temperature is enforced within its
constraints, extra heat is generated and stored in the coolant
by the baseline-MPC and rule-based controller, which will
be wasted eventually.

C. Exploiting the Coolant as a Thermal Energy Storage

For both driving cycles shown in Fig.[§] it can be seen that
during the first part of the trip the SOC and Ty, are rising.
Then, since the MH-MPC (i) knows the end of the trip,
(i1) has charged the battery sufficiently, and (iii) has stored
enough thermal energy in the engine coolant, the vehicle can



operate in EV mode while delivering the heating demand to
the cabin. This favorable response is achieved by exploiting
the engine coolant as a energy storage via the developed MH-
MPC. The MH-MPC allows for storing the thermal energy
in the coolant and releasing it during those periods when
traction power demand can be delivered by the battery.

Note that, while the exact driving cycle is not known a
priori, MH-MPC incorporates the approximate knowledge
about the overall driving cycle trend to shift the thermal
loads, thereby enabling the coolant to be leveraged as an
energy storage. Additionally, due to the slow thermal dy-
namics of T¢;, accurate and second-by-second predictions of
the future vehicle speed in long-term is not needed to achieve
an effective thermal load shift [21], [27].

V. SUMMARY AND CONCLUSIONS

A multi-horizon MPC (MH-MPC) for integrated power
and thermal management (iPTM) of power-split hybrid elec-
tric vehicles (HEVs) was developed and studied in this
paper. The iPTM was formulated as a constrained nonlinear
optimization problem to minimize the overall vehicle fuel
consumption while satisfying the traction power and cabin
heating demands in a cold-weather condition, and enforcing
the constraints on the power (SOC) and thermal (7;)
dynamics. In order to account for the slow dynamics of the
thermal systems and improve the computational efficiency,
a multi-horizon prediction horizon was incorporated in the
MH-MPC, which includes a short and accurate moving-
horizon with a fast update rate, and a long shrinking-horizon
with a slower update rate. Over the longer shrinking horizon,
an approximate estimation of the future vehicle speed is
used. The simulation results over urban city driving cycles
showed that the proposed MH-MPC provides results similar
to those obtained from an offline DP solution with much less
computational efforts. Additionally, the MH-MPC allows for
exploiting the engine coolant as thermal energy storage. The
simulation results showed that 4.6% — 17.6% fuel economy
improvement can be achieved over urban driving cycles
compared with a conventional rule-based controller.
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