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Philip E. Paré, Damir Vrabac, Henrik Sandberg, and Karl H. Johansson*

Abstract

In this paper we introduce a discrete time competing virus model and the assumptions necessary for the model to

be well posed. We analyze the system exploring its different equilibria. We provide necessary and sufficient conditions

for the estimation of the model parameters from time series data and introduce an online estimation algorithm. We

employ a dataset of two competing subsidy programs from the US Department of Agriculture to validate the model

by employing the identification techniques. To the best of our knowledge, this work is the first to study competing

virus models in discrete-time, online identification of spread parameters from time series data, and validation of said

models using real data. These new contributions are important for applications since real data is naturally sampled.

I. INTRODUCTION

As the world becomes more connected via transportation networks, communication networks, social media, and

others, society become more susceptible to various types of attacks such as diseases, viruses, and misinformation

(fake news). We have witnessed the massive impacts that the spread of misinformation can have, especially in

political systems [1], [2]. Therefore, it is important to develop models that capture the behavior of spreading

competing information to be able to design and implement mitigation techniques against fake news.

Competing virus models have been motivated in the literature by competing viral strains [3] and competing

ideas spreading on different social networks [4], but they can also have broader applications to political stances,

adoption of competing products, competing practices in farming, etc. Competing SIS virus models have been studied

extensively in recent years [3]–[14]. In [3], the idea of modeling two competing viruses was introduced without any

graph structure. The more recent works have included graph structure. The majority of this work has focused on

the case of two competing viruses, sometimes referred to as the bi-virus model [4]–[11]. Some work has analyzed

the equilibria of models of an arbitrary number of competing viruses [12]–[14]. To the best of our knowledge all

of the previous work on competing viruses has been done in continuous time.

Discrete time models have been studied for the single virus model [15]–[22]. In [18]–[21] identification of a

single virus discrete time spread processes was investigated. In [21], in addition to recovering the homogeneous

spread parameters the authors studied recovering the network structure of the model, but no real data was employed.

In [18]–[20], validation work was carried out using real data. One dataset used in [18], [19] was the adoption of

* The authors are all with the Division of Decision and Control Systems at KTH Royal Institute of Technology and Philip E. Paré can be
contacted at (philipar@kth.se).
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two competing US Department of Agriculture (USDA) farm subsidy programs. We employ that dataset here but

use a two-competing virus (bi-virus) model. The results show that the model fits the dataset much better than when

using a single virus model.

In many ways this paper is an extension of [18], [19], generalizing from a single virus discrete model to multiple

competing viruses. However, the proofs are different in several of the cases. New insights into the discrete time

model are presented via simulations. Finally, the data results from [18], [19] are improved upon when using a

two-competing virus model.

The paper is organized as follows: in Section II, the competing virus spread model is introduced with accom-

panying assumptions that ensure the model is well posed, which is proven. In Section III, we analyze the model

from Section II. In Section IV, we present necessary and sufficient conditions for learning, or identifying, the

spread process parameters of the same model, from data produced by the models. In so doing, we establish several

assumptions that need to be met by the USDA data. In Section V, we validate the results from Sections III and

IV via simulation and present some exploratory simulations to support the work in Section VI and propose an

online spread parameter estimation algorithm. In Section VI, we learn the spread parameters of the USDA subsidy

programs using data from different subsets of the country and verify the learned parameters by simulating the

spread model over the complete United States and comparing the simulated data with the actual data.

A. Notation

Given a vector function of continuous time x, ẋ indicates the time-derivative. Given a vector function of discrete

time x[t], t is the time index. Given a vector x ∈ Rn, the 2-norm is denoted by ‖x‖ and the transpose by x>. The

vector of all equal zeros is denoted by 0. Given two vectors x1, x2 ∈ Rn, x1 > x2 indicates each element of x1

is greater than or equal to the corresponding element of x2 and x1 6= x2, and x1 � x2 indicates each element of

x1 is strictly greater than the corresponding element of x2. Given a matrix A ∈ Rn×n, the spectral radius is ρ(A).

Also, aij indicates the i, jth entry of the matrix A, and ‖A‖F indicates the Frobenius norm of A. The notation

diag(·) refers to a diagonal matrix with the argument(s) on the diagonal; the argument can be a vector x or its

elements xi. For n ∈ Z+, [n] := {1, ..., n}.

II. COMPETING VIRUS MODEL

We introduce a discrete-time multi-virus competing model. The model can be derived from the continuous-time

model, where, for each virus k ∈ [m], xki is the infection level of the ith agent (which can be interpreted as the

probability of agent i being infected or the proportion of subpopulation i that is infected) and evolves as

ẋki = (1− x1i − · · · − xmi )

n∑
j=1

βkijx
k
j − δixki , (1)
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where βkij > 0 are the infection rates and non-negative, edge weights between the agents/groups and δki > 0 is the

healing rate, both associated with virus k ∈ [m] and for agent i. Applying Euler’s method [23] to (1) gives

xki [t+ 1] = xki [t] + h

(1− x1i [t]− · · · − xmi [t])

n∑
j=1

βkijx
k
j [t]− δki xki [t]

 , (2)

where t is the time index and h > 0 is the sampling parameter. We can write (2) in matrix form

xk[t+ 1] = xk[t] + h((I −X1 − · · · −Xm)Bk −Dk)xk[t], (3)

where Xk = diag(xk[t]), Bk is the matrix of βkij , and Dk = diag(δki ). Note that Bk is not symmetric in general.

For the model to be well defined we introduce several assumptions.

Assumption 1. For all i ∈ [n] and k ∈ [m], we have xki [0], (1− x1i [0]− · · · − xmi [0]) ∈ [0, 1].

Assumption 2. For all i ∈ [n] and k ∈ [m], we have δki ≥ 0 and, for all j ∈ [n], βkij ≥ 0.

Assumption 3. For all i ∈ [n] and k ∈ [m], we have hδki ≤ 1 and h
∑m
k=1

∑n
j=1 β

k
ij ≤ 1.

Lemma 1. For the system in (3), under the conditions of Assumptions 1, 2, and 3, xki [t], (1−x1i [t]−· · ·−xmi [t]) ∈

[0, 1] for all i ∈ [n], k ∈ [m], and t ≥ 0.

Proof. Suppose that at some time t ≥ 0, xki [t], (1−x1i [t]−· · ·−xmi [t]) ∈ [0, 1] for all i ∈ [n] and k ∈ [m]. Consider

an arbitrary node i ∈ [n]. Summing (2) over k and rearranging terms gives

m∑
k=1

xki [t+ 1] = (1−
m∑
k=1

xki [t])h

m∑
k=1

n∑
j=1

βkijx
k
j [t] +

m∑
k=1

xki [t](1− hδki )

≤ (1−
m∑
k=1

xki [t])h

m∑
k=1

n∑
j=1

βkij +

m∑
k=1

xki [t](1− hδki ) (4)

≤ 1, (5)

where (4) holds since xkj [t] ≤ 1 for all j ∈ [n] and k ∈ [m] and (5) holds since (4) is a convex combination of

h
∑m
k=1

∑n
j=1 β

k
ij and (1−hδki ), which are less than or equal to one by Assumption 3. Therefore (1−x1i [t+ 1]−

· · · − xmi [t+ 1]) ≥ 0.

Consider an arbitrary virus k ∈ [m]. Since (1− x1i [t]− · · · − xmi [t])
∑n
j=1 β

k
ijx

k
j [t] ≥ 0, we have, from (2),

xki [t+ 1] ≥ (1− hδki )xki [t] ≥ 0,

by Assumption 3. Therefore
∑m
k=1 x

k
i [t+ 1] ≥ 0 and thus (1− x1i [t+ 1]− · · · − xmi [t+ 1]) ≤ 1. Consequently we

have shown (1− x1i [t+ 1]− · · · − xmi [t+ 1]) ∈ [0, 1].
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By rearranging (2), we have

xki [t+ 1] = xki [t](1− hδki ) + (1− xki [t])

h n∑
j=1

βkijx
k
j [t]

−∑
l 6=k

xli[t]

h n∑
j=1

βkijx
k
j [t]

 (6)

≤ xki [t](1− hδki ) + (1− xki [t])

h n∑
j=1

βkij


︸ ︷︷ ︸

zki [t]

,

since the term on line (6) is non-positive. Since xki [t] ∈ [0, 1], zki [t] is a convex combination of (1 − hδki ) and

h
∑n
j=1 β

k
ij , which are less than or equal to one by Assumption 3, zki [t] ≤ 1, which implies xki [t + 1] ≤ 1.

Consequently we have shown xki [t+ 1] ∈ [0, 1].

Further, by Assumption 1, xki [0], (1 − x1i [0] − · · · − xmi [0]) ∈ [0, 1] for all i ∈ [n] and k ∈ [m], thus it follows

that xki [t], (1− x1i [t]− · · · − xmi [t]) ∈ [0, 1] for all i ∈ [n], k ∈ [m], and t ≥ 0.

Lemma 1 implies that the set

D =

{
(x1, . . . , xm) | xk ≥ 0, k ∈ [m],

m∑
k=1

xk ≤ 1

}
(7)

is positively invariant with respect to the system defined by (3). Since xki denotes the probability of infection of

individual i by virus k, or the fraction of group i infected by virus k, and 1−x1i −· · ·−xmi denotes the probability

of individual i being healthy, or the fraction of group i that is healthy, it is natural to assume that their initial

values are in the interval [0, 1], since otherwise the values will lack any physical meaning for the epidemic model

considered here. Therefore, we focus on the analysis of (3) only on the domain D.

We need an assumption to ensure non-trivial virus spread.

Assumption 4. We have B 6= 0, h 6= 0, and n > 1.

III. ANALYSIS

Definition 1. Consider an autonomous system

x[t+ 1] = f(x[t]), (8)

where f : X → Rn is a locally Lipschitz map from a domain X ⊂ Rn into Rn. Let x̃ be an equilibrium of (8)

and E ⊂ X be a domain containing x̃. If the equilibrium x̃ is asymptotically stable such that for any x[0] ∈ E we

have lim
t→∞

x[t] = x̃, then E is said to be a domain of attraction for x̃.

Proposition 1. Let x̃ be an equilibrium of (8) and E ⊂ X be a domain containing x̃. Let V : E → R be a

continuously differentiable function such that V (x̃) = x̃, V (x) > 0 for all x in E \ {x̃}, and ∆V [t] := V (x[t +

1])− V (x[t]) < 0 for all x[t] in E \ {x̃}. If E is a positively invariant set, then the equilibrium x̃ is asymptotically

stable with a domain of attraction E .
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This proposition is a direct consequence of Lyapunov’s stability theorem for discrete-time systems and the definition

of domain of attraction.

Finally, we need an assumption on the structure of the Bk matrices. A square matrix is called irreducible if it

cannot be permuted to a block upper triangular matrix.

Assumption 5. For all k ∈ [m], Bk is irreducible.

Note that this assumption is equivalent to the underlying graph being strongly connected. We have the following

result about the healthy state, where xki = 0 for all i ∈ [n], k ∈ [m].

Theorem 1. Suppose that Assumptions 1-5 hold for (3). If ρ(I−hDk+hBk) ≤ 1 for all k ∈ [m], then the healthy

state is asymptotically stable with domain of attraction D, as defined in (7).

Proof. We employ a LaSalle’s invariance principle argument. To simplify notation, let Mk = I + hBk − hDk,

X̂ = (X1[t] + · · · + Xm[t]), and M̂k = I + h((I − X̂)Bk − Dk). By Assumptions 2-5, Mk is an irreducible

nonnegative matrix. First we evaluate the case where ρ(I − hDk + hBk) < 1 for all k ∈ [m]. Therefore, by

Proposition 1 in [24], for all k ∈ [m], there exists a positive diagonal matrix P k1 such that (Mk)>P k1M
k − P k1 is

negative definite. Consider the Lyapunov function V k1 (xk[t]) = (xk[t])>P k1 x
k[t]. For each k ∈ [m], using (3) with

xk[t] 6= 0 (dropping the [t] for notation convenience) gives

∆V k1 [t] = (xk)>(M̂k)>P k1 (xk)>M̂kxk − (xk)>P k1 x
k

= (xk)>((Mk)>P k1M
k − P k1 )xk − 2h(xk)>(Bk)>X̂P k1M

kxk + h2(xk)>(Bk)>X̂P k1 X̂B
kxk

< h2(xk)>(Bk)>X̂P k1 X̂B
kxk − 2h(xk)>(Bk)>X̂P k1M

kxk (9)

= h2(xk)>(Bk)>X̂P k1 X̂B
kxk − 2h2(xk)>(Bk)>X̂P k1 (Bk)>xk − 2h(xk)>(Bk)>X̂P k1 (I − hD)xk

≤ h2((xk)>(Bk)>X̂P k1 X̂B
kxk − 2(xk)>(Bk)>X̂P k1 (Bk)>xk) (10)

≤ −h2(xk)>(Bk)>X̂P k1 (I − X̂)Bkxk

≤ 0, (11)

where (9) holds by Proposition 1 in [24], (10) holds by Assumptions 2 and 3, and (11) holds by Lemma 1. Therefore,

by Proposition 1, xk converges asymptotically to the origin. Since k ∈ [m] was chosen arbitrarily, the whole system,

that is, every virus k ∈ [m], converges to the healthy state for this case.

For the case where ρ(I − hDk + hBk) = 1, we have, by Lemma 3 in [19], that, for all k ∈ [m], there exists a

positive diagonal matrix P k2 such that (Mk)>P k2M
k−P k2 is negative semi-definite. Consider the Lyapunov function
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V2(xk) = (xk)>P k2 x
k. Using (3) with xk 6= 0, gives

∆V2[k] = (xk)>(M̂k)>P k2 (xk)>M̂kxk − (xk)>P k2 x
k

= (xk)>((Mk)>P k2M
k − P k2 )xk − 2h(xk)>(Bk)>X̂P k2M

kxk + h2(xk)>(Bk)>X̂P k2 X̂B
kxk

< h2(xk)>(Bk)>X̂P k2 X̂B
kxk − 2h(xk)>(Bk)>X̂P k2M

kxk

= h2(xk)>(Bk)>X̂P k2 X̂B
kxk − h(xk)>(Bk)>X̂P k2M

kxk − h2(xk)>(Bk)>X̂P k2 B
kxk

− h(xk)>(Bk)>X̂P k1 (I − hD)xk

≤ h2(xk)>(Bk)>X̂P k2 X̂B
kxk − h(xk)>(Bk)>X̂P k2M

kxk − h2(xk)>(Bk)>X̂P k2 B
kxk

≤ h2(xk)>(Bk)>X̂P k2 (I − X̂)Bkxk − h(xk)>(Bk)>X̂P k2M
kxk

≤ −h(xk)>(Bk)>X̂P k2M
kxk

≤ 0.

Clearly if xk = 0, then −h(xk)>(Bk)>X̂P k2M
kxk = 0. Since, by Assumptions 2 and 4 and by Lemma 3 in [19],

Bk,Mk, P k2 are nonzero, nonnegative matrices, if −h(xk)>(Bk)>X̂P k2M
kxk = 0, then xk = 0. Therefore, by

Proposition 1, xk converges asymptotically to the origin. Since k ∈ [m] was chosen arbitrarily, the whole system,

that is, every virus k ∈ [m], converges to the healthy state for this case. Therefore the healthy state is asymptotically

stable with domain of attraction D.

Proposition 2. Suppose that Assumptions 1-5 hold. If ρ(I−hDk +hBk) > 1 for all k ∈ [m], then (3) has at least

k + 1 equilibria, 0, (x̃1,0, . . . ,0), . . . , (0, . . . ,0, x̃m), where, for each k ∈ [m], x̃k � 0.

Proof. Clearly 0 is always an equilibrium of (3).

By the Perron Frobenius Theorem for irreducible nonnegative matrices (Theorem 8.4.4 in [25]), for all k ∈ [m],

ρ(I − hDk + hBk) = s1(I − hDk + hBk) and there exists vk � 0 such that

(I − hDk + hBk)vk = ρ(I − hDk + hBk)vk > vk,

since ρ(I − hDk + hBk) > 1. Therefore

(−hDk + hBk)vk = ρ(−hDk + hBk)vk = s1(−hDk + hBk)vk > 0vk,

which implies

ρ(I − hDk + hBk) > 1⇐⇒ h(s1(−Dk +Bk)) > 0.

This condition is the same as the condition of Proposition 3 in [9], which shows the existence and stability of the

endemic state in the single virus case. The proof follows similarly, when assuming that xl = 0 for all l 6= k, that

there exists x̃k � 0 such that

h((−Dk +Bk)− X̃kB)x̃k = 0.
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Therefore, if xl = 0 for all l 6= k, x̃k is an equilibrium of (3). Consequently, 0, (x̃1,0, . . . ,0), . . . , (0, . . . ,0, x̃m)

are equilibria of (3).

We have the following corollary.

Corollary 1. Suppose that Assumptions 1-5 hold. If ρ(I − hDk + hBk) ≤ 1 for all k ∈ [m] \ {l} and ρ(I −

hDl + hBl) > 1, then (3) has two equilibria 0 and (0, . . . ,0, x̃l,0, . . . ,0) with x̃l � 0. Furthermore, 0 is

asymptotically stable with domain of attraction equal to {(x1, . . . , xm)|xl = 0 and xk ∈ [0, 1]n ∀k 6= l} and

(0, . . . ,0, x̃l,0, . . . ,0) is locally asymptotically stable.

Proof. The existence of the equilibria follows from Theorem 1 and Proposition 2. The asymptotically stability of 0

with domain of attraction equal to {(x1, . . . , xm)|xl = 0 and xk ∈ [0, 1]n ∀k 6= l} follows directly from Theorem

1 since virus l, which is the only virus with ρ(I − hDl + hBl) > 1, is always equal to zero.

From the proof of Theorem 1, xk[t] will asymptotically converge to 0 as t→∞ for all initial values (x1[0], . . . xm[0]) ∈

{(x1, . . . , xm)|xl = 0 and xk ∈ [0, 1]n ∀k 6= l}, for k 6= l. From (3),

xl[t+ 1] = xl[t] + h(Bl −Dl −X lBl)xl[t]− h
∑
k 6=l

XkBkxk[t].

Thus, we regard the dynamics of xl[t] as an autonomous system

xl[t+ 1] = xl[t] + h(Bl −Dl −X l(t)Bl)xl(t), (12)

with a vanishing perturbation −h
∑
k 6=lX

k(t)Blxl(t), which converges to 0 as t→∞. Therefore, from Theorem

2 in [22], the autonomous system (12) will locally asymptotically converge to the unique epidemic state x̃l. Thus

(3) will converge to (0, . . . ,0, x̃l,0, . . . ,0).

From Theorem 1 and Proposition 2, we have the following result.

Theorem 2. Under Assumptions 1-5, the healthy state is the unique equilibrium of (3) if and only if ρ(I −hDk +

hBk) ≤ 1 for all k ∈ [m].

IV. LEARNING SPREAD PARAMETERS

In this section, we clearly lay out the assumptions and the identification techniques for the multi-virus model.

For this section we use a slightly different version of (3), where we factor βkij into βki a
k
ij as

xk[t+ 1] = xk[t] + h((I −X1 − · · · −Xm)BkAk −Dk)xk[t], (13)

where Bk = diag(βki ) and Ak is the matrix of akij .

Remark 1. If the system has homogeneous spread parameters, that is, βki = βkj and δki = δkj for all i, j ∈ [n], the

condition in Theorems 1-2 reduces to ρ(A) ≤ δk

βk .
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We start by assuming that the underlying graph structures Ak are known and that we have full-state measurement

with no noise on the measurements, which we admit are strong assumptions. However, for the dataset used in

Section VI these assumptions are well-founded because we aggregate the data by county and the adjacency of

counties is known, i.e., the graph structure is known, and any farmer that received a subsidy payout is in the

dataset, i.e., there are no hidden, unmeasured states. We will relax the no-noise assumption in the Simulations

Section (see Section V).

We present several results on learning the spread parameters of the model in (2) from data. The following result

is an improvement of Theorem 3 in [19].

Theorem 3. Consider the model in (3) under Assumptions 1-5 with virus k having homogeneous spread, that is,

βk and δk are the same for all agents. Assume that Ak, xk[t], for all t ∈ [T ] ∪ {0}, k ∈ [m], and h are known.

Then, βk and δk can be identified uniquely if and only if T > 0, and there exist i, j ∈ [n] and t1, t2 ∈ [T −1]∪{0}

such that

xki [t1]gj(x
k[t2]) 6= xkj [t2]gi(x

k[t1]), (14)

where g(xk[t]) := (I −X1[t]− · · · −Xm[t])Akxk[t].

Proof: Since xk[0], . . . , xk[T − 1], and Ak are known, using (13) we can construct the matrix Φk, defined as,
(I −X1[0]− · · · −Xm[0])Akxk[0] −xk[0]

...
...

(I −X1[T − 1]− · · · −Xm[T − 1])Akxk[T − 1] −xk[T − 1]

 . (15)

Therefore, since we also know xk[T ] and h, we can rewrite (3) as
xk[1]− xk[0]

...

xk[T ]− xk[T − 1]

 = hΦk

βk
δk

 . (16)

Since n > 1, Φk has at least two rows. By the assumption that there exist i, j ∈ [n] and t1, t2 ∈ [T − 1]∪{0} such

that (14) holds, Φk has column rank equal to two, with two unknowns. Therefore there exists a unique solution to

(16) using the inverse or pseudoinverse.

If there do not exist i, j ∈ [n] and t1, t2 ∈ [T − 1]∪{0} such that (14) holds, then Φk has a nontrivial nullspace.

Therefore (16) does not have a unique solution.

Note that t1 and t2 from Theorem 3 could both equal zero and the condition in (14) could still hold, that is,

recovery of the spread parameters may be possible with only two time series points. Now we present two corollaries

where hβk and hδk, denoted by βkh and δkh, respectively, can be recovered.

Corollary 2. Consider the model in (3) under Assumptions 1-5 with homogeneous virus spread. Assume that Ak

and xk[0], . . . , xk[T ] are known. Then, βkh and δkh can be identified uniquely for every k ∈ [m] if and only if T > 0
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and there exist i, j ∈ [n] and t1, t2 ∈ [T − 1] ∪ {0} such that xki [t1]gj(x
k[t2]) 6= xkj [t2]gi(x

k[t1]).

This corollary illustrates that under certain conditions, while the exact behavior of the system may not be

recoverable the limiting behavior of the system may be determined, by employing Theorems 1-2 with Remark 1.

If the assumption is made that the underlying spread process is heterogeneous, we have a similar condition, an

improvement of Theorem 4 in [19].

Theorem 4. Consider the model in (2) under Assumptions 1-5. Assume that xk[t], xli[t] for all t ∈ [T −1]∪{0}, l ∈

[m], Ak, xki [T ], and h are known. Then, the spread parameters of virus k for node i can be identified uniquely if

and only if T > 1, and there exist t1, t2 ∈ [T − 1] ∪ {0} such that

xki [t1](1− x1i [t2]− · · · − xmi [t2])

n∑
j=1

akijx
k
j [t2] 6= xki [t2](1− x1i [t1]− · · · − xmi [t1])

n∑
j=1

akijx
k
j [t1]. (17)

Proof. Since xk[t], xli[t] for all t ∈ [T − 1] ∪ {0}, l ∈ [m], and Ak are known, we can construct the matrix Φki ,

defined as, 
(1− x1

i [0]− · · · − xm
i [0])

n∑
j=1

akijx
k
j [0] −xk

i [0]

...
...

(1− x1
i [T − 1]− · · · − xm

i [T − 1])

n∑
j=1

akijx
k
j [T − 1] −xk

i [T − 1]

 .
Then, since we also know xki [T ] and h, we have

xki [1]− xki [0]
...

xki [T ]− xki [T − 1]

 = hΦki

βki
δki

 . (18)

Since T > 1, Φki has at least two rows. By the assumption that there exist t1, t2 ∈ [T − 1] ∪ {0} such that (17)

holds, Φki has column rank equal to two, with two unknowns. Therefore there exists a unique solution to (18) using

the inverse or pseudoinverse.

If there do not exist t1, t2 ∈ [T ] such that (17) holds, then Φki has a nontrivial nullspace. Therefore (18) does

not have a unique solution.

V. SIMULATIONS

In this section, we present first, a set of simulations that illustrate the results from the previous sections and

second, some illuminating simulations of the model that support the validation work with real data. Since the

dataset we consider in Section VI only has two competing spread processes we limit ourselves to m = 2 for this

section as well, however, the behavior is similar for m > 2. Virus 1 is depicted by the color red (r), virus 2 is

depicted by the color green (g), and susceptible, or healthy, is depicted by the color blue (b). For all i ∈ [n], the

color at each time t for node i is given by

x1i [t]r + x2i [t]g + (1− x1i [t]− x2i [t])b. (19)

For the second set of simulations we, at times, inspect the case of m = 1.
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(a) The system at time zero. (b) The system at time 100. (c) The system at time 10000.

Fig. 1: This homogeneous virus system follows (2) with β1 = 1, β2 = 0.01 δ1 = 0.1, δ2 = 0.1, h = 0.05, and A
depicted by the edges.

A. Examples of Results

We consider a system with 50 agents 24 of which are randomly chosen such that they are initially infected by

either one of the two competing viruses. For Virus 1, β1 = 1 and δ1 = 0.1 and for the Virus 2, β2 = 0.01 and

δ2 = 0.1. Moreover, h = 0.05 and the weighted adjacency matrix for both viruses, A, is determined by

aij =

e
−‖zi−zj‖2 , if i 6= j,

0, otherwise,
(20)

where zi is the position of agent i and A is, therefore, fully connected. Since the edges are weighted, the ones

between nodes that are far away from each other are difficult to see in the figures. A simulation, based on this

system, is shown in Figure 1 with plots of the initial condition, the epidemic states at time-step 100 and the final

condition. Assuming A is known we recover β1
h, δ1h, β2

h, and δ2h exactly, using (16) with only two time-steps,

consistent with Corollary 2. Hence, the proportions δ1/β1 and δ2/β2 are also correctly recovered. And clearly, if

h is known, we recover the parameters exactly, consistent with Theorem 3. Moreover,

ρ(I − hD1 + hβ1A) = 1.1976 > 1, and ρ(I − hD2 + hβ2A) = 0.997 ≤ 1,

and consistent with Corollary 1, the endemic state is (x̃1,0), where x̃ � 0. We also find that this endemic

equilibrium is reached for all initial conditions with x1[0] > 0, that is, via simulations it appears to be globally

stable.

We now consider a similar system with 50 agents 24 of which are initially infected by either one of the two

viruses and A given by (20). But the agents have moved and the system is a heterogeneous virus system with

βki ∈ [0.001, 1] and δki ∈ [0.1, 10] randomly generated from uniform distributions for all i ∈ [n] and k ∈ [m]. For

T = 3 the assumptions in Theorem 4 are met and we recover the spread parameters exactly. Moreover,

ρ(I − hD1 + hβ1A) = 0.9958 ≤ 1, and ρ(I − hD2 + hβ2A) = 0.9851 ≤ 1,

and we observe that the system converges to the healthy state, x̃ = 0, consistent with Theorem 1.
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(a) The system at time zero. (b) The system at time 100.

Fig. 2: This heterogeneous virus system follows (2) with βki ∈ [0.001, 1] and δki ∈ [0.1, 10] randomly generated
∀i, k, h = 0.05, and A depicted by the edges.

B. Exploratory Simulations

In this section, we present two set of simulations that give important insight into the model to assist our work

on the USDA dataset in the next section. The first simulation explores how accurately we can capture the behavior

of a heterogeneous virus system with additive i.i.d. Gaussian noise by using a homogeneous approximation, i.e.

recovering the spread parameters by applying (16). The second set of simulations illustrates some interesting behavior

regarding the sampling parameter h.

For the first simulation we consider a heterogeneous system with three agents and two viruses, m = 2. We set

h = 1,

x1[0] = [0 0 1] , δ1 = [0.05 0.03 0.04] , β1 = [0.15 0.13 0.08] ,

x2[0] = [0 1 0] , δ2 = [0.13 0.07 0.08] , β2 = [0.09 0.11 0.10] , and

A1 = A2 =


0 1 1

1 0 1

1 1 0

 .
We generate 40 time-steps of the epidemic states, x, using (2) with additive i.i.d Gaussian noise with the standard

deviation set to 0.03.

To understand how accurately a heterogeneous system can be approximated by a homogeneous model we use

(16) with T = 4 to learn homogeneous spread parameters. The learned parameters areδ̂1h
β̂1
h

 =

0.0415

0.1379

 and

δ̂2h
β̂2
h

 =

0.0772

0.0944

 . (21)

The learned parameters in (21) are used to recover the generated data-samples, x̂, by using (2) with homogeneous

spread parameters. We compare x and x̂ in Figure 3 to illustrate how well a homogeneous model can approximate



12

Fig. 3: Simulation of the epidemic states of a heterogeneous system with additive i.i.d. Gaussian noise and recovered
states using a homogeneous approximation of the system.

a heterogeneous system with additive noise. We see that, even with noise in the system, the approximation is quite

good.

One can see that the errors between the recovered states, x̂21 and x̂13, and the original system, x21 and x13, are

higher than the rest of the errors. The decreased accuracy of x̂13 can be explained by the difference in magnitude

of β1
3 from the infection rates of the other agents. The same applies for x̂21 but for the healing rate, δ21 .

We now propose an online algorithm for learning the spread parameters from data, extending the ideas from

Section IV. The question becomes, if there is additive system noise and data is obtained in an online manner, how

do estimates of the spread parameters improve as more data is added? The algorithm becomes the following: as

more data is added, more rows of (16) are added. Then the spread parameters can be obtained by solving (16) at

each time step, using least squares or by employing a recursive least squares method [26], to predict the next time

step.

A simulation based on the online algorithm for learning is shown in Figure 4 with a single homogeneous virus.

We set h = 1, δ = 0.9, β = 1.5, x[0] = [0 0 1], and
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Fig. 4: Simulation of the epidemic states of a homogeneous system with additive i.i.d. Gaussian noise and recovered
states using the proposed online algorithm for learning the spread parameters, x̄.

A =


0 1 1

1 0 0

1 0 0

 .
We generate the epidemic states, x, using (2) with additive i.i.d Gaussian noise with the standard deviation set to

0.03. By Figure 4 we can see that the estimation is quite accurate using this online algorithm for learning, where

x̄ represents the estimated state. We can see that the new algorithm performs quite well, capturing the behavior of

the system. We now apply these ideas to a USDA farm subsidy dataset.

VI. USDA FARM SUBSIDIES AS COMPETING VIRUSES

In the Food, Conservation and Energy Act of 2008 (2008 Farm Bill) a new subsidy program, ACRE, was

introduced. It was an alternative to the exist CCP program. Similar to [18], [19] we aggregate farms on the county

level. This approach allows us to convert the binary decision to enroll in ACRE or in CCP into a continuous measure

of the proportion of eligible farms that enroll in ACRE or CCP, in each county. The proportion of farms enrolled in

ACRE (and CCP) corresponds exactly to the density of the first virus (second virus), facilitating our investigation

of the spread of the competing programs. The number of eligible farms in a county was set to the max number

of farms enrolled in both programs in any year. We removed counties where no farms were ever enrolled in either

program. We also removed Alaska and Hawaii since they are not in the contiguous United States of America. The

data for the four years considered can be found in Figures 5a-5d. Please see [18], [19] for more detailed information

on the programs.

We now use the learning techniques presented in Section IV and tested in Section V for the model in (2) on the

USDA dataset. The adjacency matrices are calculated using the adjacency of counties, that is,
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(a) 2009 Data

(b) 2010 Data

(c) 2011 Data

(d) 2012 Data

(e) 2009 Simulated Data

(f) 2010 Simulated Data

(g) 2011 Simulated Data

(h) 2012 Simulated Data

Fig. 5: (Left) Calculated from the USDA dataset, the percentage of eligible farms enrolled in the ACRE Program,
the CCP program, or neither are depicted in red, green, and blue, respectively. (Right) Simulated data using Figure
5a as the initial condition on the model in (2) with parameters calculated using the data from Kentucky, given in
(25). The colors of the nodes follow (19).
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aij =


1, if county i and county j share a border,

1, if i = j,

0, otherwise.

(22)

First we identify two sets of homogeneous spread parameters using the whole dataset by applying (16):δ̂1h
β̂1
h

 =

0.0107

0.0139

 and

δ̂2h
β̂2
h

 =

0.0551

0.0852

 . (23)

We then simulate the model in (2) with the spread parameters in (23), with the data from Figure 5a being used

as the initial condition. The resulting scaled error between the dataset, F, and the simulated data, F̂all, using the

Frobenius norm is ∥∥∥F− F̂all

∥∥∥
F

‖F‖F
=

12.0420

96.8382
= 0.1244.

For completeness, similar to [18], [19] we use a subset of the dataset, the USDA data from Idaho, to recover the

two sets of homogeneous model parameters and then simulate the spread of programs over the whole contiguous

United States using the learned parameters. For calculating the adjacency matrix for Idaho, adjacent counties from

bordering states were ignored. Applying (16) on the Idaho dataset gives the following spread parameters:δ̂1h
β̂1
h

 =

−0.0332

0.0663

 and

δ̂2h
β̂2
h

 =

0.0503

0.0345

 . (24)

Note that δ̂1h for the first virus (the ACRE program) is negative, violating the assumptions of the model, which is

not ideal. Nevertheless for completeness, we simulate the spread over the contiguous United States using the model

in (2) with the spread parameters calculated using the data from Idaho, given in (24), with the data from Figure 5a

being used as the initial condition. The scaled error between the dataset, F, and this simulated data, F̂ID, is∥∥∥F− F̂ID

∥∥∥
F

‖F‖F
=

14.28

96.8382
= 0.1348.

The scaled error from the analogous simulation in [18], [19] was 0.2348. Therefore it would appear that, while

not a perfect fit, the competitive-virus model seems to capture the behavior of this USDA Farm Subsidy adoption

dataset better than the single virus model.

After testing every possible state, we found that the data from Kentucky provided the best estimate of the whole

US data set when using the homogeneous version of the model in (13). Applying (16) on the Kentucky dataset

gives the following spread parameters:δ̂1h
β̂1
h

 =

0.0044

0.1352

 and

δ̂2h
β̂2
h

 =

0.0702

0.1272

 . (25)

The simulated data can be found in Figures 5e-5h. The resulting scaled error between the dataset, F, and the
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simulated data, F̂KY, is ∥∥∥F− F̂KY

∥∥∥
F

‖F‖F
=

12.2724

96.8382
= 0.1230.

The results were improved upon when implementing the recursive algorithm proposed in Section V-B, reducing

the scaled error to 0.0855. However, it must be noted that the first two data points were included in the simulated

data, since the recursive algorithm is only used for one step prediction. Using the first set of learned spread

parameters for the second and third data points gave an error of 0.1140, still improving upon the previous results.

VII. CONCLUSION

In this work we have proposed a discrete time competing virus model for an arbitrary number of viruses. We have

provided conditions for the model to be well defined. We provided necessary and sufficient conditions for uniqueness

of the healthy equilibrium. We presented necessary and sufficient conditions for learning spread parameters for

competing viruses from data. We presented an interesting set of simulations that illustrate the analytic results

and depict some characteristics of the model that warrant further study, and proposed an online spread parameter

estimation algorithm. We employed a previously studied USDA dataset to validate the discrete-time two-competing

virus, or bi-virus, case by modeling the spread of two alternative farm subsidy programs among farms aggregated

by county, improving on previous work.
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