
Identifying Sparse Low-Dimensional Structures in Markov Chains:
A Nonnegative Matrix Factorization Approach

Mahsa Ghasemi, Abolfazl Hashemi, Haris Vikalo, and Ufuk Topcu

Abstract— We consider the problem of learning low-
dimensional representations for large-scale Markov chains. We
formulate the task of representation learning as that of mapping
the state space of the model to a low-dimensional state space,
called the kernel space. The kernel space contains a set of meta
states which are desired to be representative of only a small
subset of original states. To promote this structural property,
we constrain the number of nonzero entries of the mappings
between the state space and the kernel space. By imposing
the desired characteristics of the representation, we cast the
problem as a constrained nonnegative matrix factorization. To
compute the solution, we propose an efficient block coordinate
gradient descent and theoretically analyze its convergence
properties.

I. INTRODUCTION

A variety of queries about stochastic systems boil down
to study of Markov chains and their properties. They have
been widely used as a modeling tool in applications in-
cluding control [1], machine learning [2], and computational
biology [3]. Moreover, they create the foundation for more
complex probabilistic graphical models including hidden
Markov models and Markov decision processes [4], [5].

In many practical settings, a system modeled as a Markov
chain, has a large state space. For instance, fine discretization
of a zero-input dynamical model with continuous space
may lead to a Markov chain with a huge discrete state
space. The fact that analyzing such large-scale models may
be intractable has motivated significant research on model
reduction algorithms. These algorithms attempt to create
compressed abstractions that enable efficient downstream
analysis without compromising the performance.

A key enabling factor in abstracting Markov chains is
the existence of certain structural properties of the charac-
terizing transition probabilities. For instance, the transition
probabilities, captured by a stochastic matrix, may be low-
rank or sparse. Therefore, one can exploit these structural
properties to construct abstractions that accurately approxi-
mate the original model. The present work is motivated by
the state aggregation framework for reducing the complexity
of reinforcement learning and control systems [6]. State
aggregation schemes attempt to group similar states into a
small number of meta states, which are typically handpicked
based on domain-specific knowledge [7], [8], or based on a
given similarity metric or feature function [9].

Mahsa Ghasemi, Abolfazl Hashemi and Haris Vikalo are with the
Department of Electrical and Computer Engineering, and Ufuk Topcu is
with the Department of Aerospace Engineering and Engineering Mechanics
of University of Texas at Austin, Austin, TX 78712 USA.

This work was supported in part by ONR grant # N000141712623, and
NSF grants # 1652113 and # 1809327.

In this paper, we propose an algorithm to find a surrogate
representation that approximates the original Markov chain
while having a low-dimensional state space. The proposed
framework aims to learn a bidirectional mapping between
the original high-dimensional state space and the low-
dimensional state space, referred to as the kernel space.
Additionally, to improve representativeness of the states in
the kernel space, we constrain the mappings to be sparse.
We model the task of learning the mappings and the kernel
transition as a combinatorial optimization problem. Then,
we relax this formulation and establish a sparsity-promoting
constrained nonnegative matrix factorization problem. In
order to solve this factorization, we propose an efficient
block coordinate gradient descent algorithm that starting
from an initial guess, learns the bidirectional mappings and
the kernel transition in an iterative fashion. We further prove
that under certain conditions on the step sizes, the algorithm
converges to a stationery point of the proposed optimization
problem. We complement our methodology with extensive
simulation results where we demonstrate efficacy of the
proposed algorithm in terms of the quality of the low-
dimensional representation as well as its computational cost.

A. Related Work

In the analysis of dynamical systems, different model-
reduction techniques have been designed, such as approx-
imating the transfer operators [10], dynamic mode decom-
position [11], and data-driven approximations [12]. In control
theory and reinforcement learning, state abstraction has been
widely studied as a way of reducing the complexity of com-
puting the optimal controller or optimal value function [8],
[13]. Additionally, a related direction of research, called
representation learning, tries to construct basis functions
for representing high-dimensional value functions. Different
Laplacian-based methods have been proposed to generate a
surrogate for the exact transition operator [14]–[16].

Matrix factorization is an optimization framework that
decomposes a matrix into a product of two or more matri-
ces [17]. In general matrix factorization framework, as op-
posed to spectral decomposition, one can impose additional
desired structural properties. Common structural properties
are those of being low-rank or sparse that can be promoted
by nuclear norm regularization and `1-norm regularization,
respectively. Furthermore, matrix factorization is typically
amenable to efficient gradient descent solutions. The problem
of decomposing a matrix into a product of factors arises in
different applications such as learning Markov models [18]
and bioinformatics [19]. What makes matrix factorization

ar
X

iv
:1

90
9.

12
89

8v
2

 [
cs

.L
G

]
 7

 A
pr

 2
02

0

methods appealing is the fact that their solution complexity
depends on the rank of the factors which is typically much
smaller than the input matrix.

Recovery of a low-rank probability transition matrix has
been considered in [20]–[23]. The majority of the proposed
methods are based on spectral decomposition framework.
In [24], the authors use the notion of anchor states to enhance
the interpretability of the meta states and further, develop a
method of learning a soft-aggregation model from a set of
system’s trajectories. In contrast, we propose an optimization
formulation for the task of learning a low-dimensional rep-
resentation of a known Markov chain. This formulation can
easily induce different desired structural properties, such as
sparsity, by imposing additional constraints. Furthermore, it
enables an efficient solution that relies on block coordinate
gradient descent.

II. PROBLEM FORMULATION

In this section, we provide the outline of the related
concepts and definitions, and formally state the problem of
learning representations for Markov chains.

A. Preliminaries

In this paper, we focus on time-homogeneous discrete-time
Markov chains with finite states, as formally defined below.

Definition 1 (Markov Chain). A Markov chain is a random
process such that its evolution is characterized by a tuple
MC = (S, µinit, P), where S is a finite set of states
with cardinality |S| = n, µinit is an initial distribution
over the states, and P : S × S → [0, 1] ⊆ R is a
probabilistic transition function such that for all s ∈ S,∑
s′∈S P (s, s′) = 1.

A finite path in MC is a realization of a finite-length
sequence X0, X1, . . . of states, denoted by σ = x0x1x2 . . .,
such that x0 is in the support of µinit and ∀i ∈ Z :
P (xi, xi+1) > 0. Using the Markovian property, the proba-
bility of sampling σ = x0x1x2 . . . xT is

Pr(σ) = µinit(x0)

T∑
t=1

P (xt−1, xt),

and the probability of going from state si at time step t
to state sj , in m time steps, is Pr(Xt+m = sj |Xt =

si) = p
(m)
ij , where p(m)

ij = [Pm]ij is an entry of the m-step
transition matrix.

Runnenburg [25] introduced the notion of Markov chains
with small rank as a type of dependence that is close to
independence. Hoekstra [26] has further analyzed properties
of Markov chains with small rank. Next, we provide the
formal definition of the nonnegative rank of a Markov chain
that will later motivate the proposed factorization.

Definition 2 (Nonnegative Rank of Markov Chain). Let P
denote the transition matrix of a Markov chain MC. The
nonnegative rank ofMC is the smallest k ∈ N for which the

following decomposition exists:

Pr(Xt+1|Xt) =

k∑
l=1

fl(Xt)gl(Xt+1), (1)

where f1, f2, . . . , fk and g1, g2, . . . , gk are real-valued func-
tions mapping S to R+.

In particular, f1, f2, . . . , fk denote the left Markov features
and g1, g2, . . . , gk denote the right Markov features. Without
loss of generality, one can assume that the left and right
Markov features are probability mass functions. Notice that
if the nonnegative rank ofMC is k, it holds that rank(P) ≤
k [26]. In other words, the nonnegative rank of a Markov
chain upperbounds the rank of its transition matrix.

The next proposition states a critical property of nonneg-
ative rank of Markov chains that we will later exploit.

Proposition 1 (Decomposition into Stochastic Matrices
[23]). The nonnegative rank of a Markov chain is k if and
only if there exists U ∈ Rn×k+ , P̃ ∈ Rk×k+ , and V ∈ Rk×n+

such that P = UP̃V , where U , P , and V are stochastic
matrices, i.e., U1 = 1, P̃1 = 1, and V 1 = 1.

In Proposition 1, P̃ resembles a surrogate lower-
dimensional model for the transition matrix P if P admits
a low nonnegative rank. We refer to the state space and the
transitions in this abstract model as kernel space and kernel
transition, respectively. In Proposition 1, U maps the states of
the original Markov chain into the kernel space, P̃ indicates
the kernel transition, and V maps the kernel states back to the
original states. In control and reinforcement learning, rows
of U correspond to aggregation distributions while rows of
V correspond to disaggregation distributions [27].

The strength of the model abstraction setting introduced
in Proposition 1 is that it is independent of the downstream
analysis to be performed on the Markov chain. Therefore,
once such abstraction is found, it can be used for acceler-
ating different types of analyses. For instance, in the next
proposition, we show how the m-step transition matrix can
be computed more efficiently by using the factorized model.

Proposition 2 (Efficient m-Step Transition). Given a
Markov chain MC = (S, µinit, P), assume that a perfect
low-rank decomposition of the transition matrix exists such
that P = UP̃V , P̃ ∈ Rk×k+ . Let K = V UP̃ . Then, the
m-step transition matrix of MC can be computed by

Pr(Xt+m|Xt) =

k∑
l1=1

k∑
l2=1

UXt,l1 [P̃Km−1]l1l2Vl2,Xt+m .

Hence, one can reduce the complexity of computing the
m-step transition matrix from O(mn2) to O(mk2).

B. Problem Statement

In many applications, often the Markov chain model of a
system has underlying structural properties, including posses-
sion of a low-rank or sparse transition function. Motivated by
this fact, we seek an abstraction of a Markov chain in a low-
dimensional kernel space. To that end, we need to find the

mapping from the original state space to the state space of the
abstracted (surrogate) model as well as the inverse mapping
from the state space of the surrogate model to the original
state space. Figure 1 demonstrates a pictorial overview of the
mapping between the spaces. Essentially, a transition in the
original model can be represented through three steps: step
1 maps a state in the original model to meta states in the
surrogate model; step 2 is a transition inside the surrogate
model; and step 3 is a mapping from a meta state back to
original states. Additionally, we would like the meta states
to be representative of a small subset of states. This property
means that each meta state should be connected to as few
states as possible and hence, we impose that by looking for
sparse mappings between the spaces.

Problem 1. Given a Markov chain MC = (S, µinit, P), we
aim to find a kernel space and kernel transition, denoted by
(S̃, P̃), with lower dimensionality, i.e., |S̃| � |S|. Further,
we look for a sparse bidirectional mapping (U, V) where U
represents the mapping from S to S̃ while V represents the
mapping from S̃ to S. The surrogate model (S̃, P̃) along
the bidirectional mapping (U, V) must be such that the
decomposition property P = UP̃V holds.

III. APPROACH

Let n = |S| to be the size of the high-dimensional state
space and k denote the nonnegative rank of the MC. Let
D : Rn×n × Rn×n → R+ denote a metric on the space
of n × n matrices. As we discussed in Section II, we seek
to promote sparsity patterns in the rows of the bidirectional
mapping (U, V). Therefore, in order to find the factorization
in Problem 1, we propose the following optimization task

min
U≥0,P̃≥0,V≥0

D(P,UP̃V)

s.t.
k∑
j=1

Uij = 1, ‖ui‖0 ≤ s(u)i ,∀i ∈ [n],

k∑
j=1

P̃`j = 1, ∀` ∈ [k],

n∑
j=1

V`j = 1, ‖v`‖0 ≤ s(v)` ,∀` ∈ [k],

(2)

where ‖.‖0 is the so-called `0-norm and returns the number
of nonzero entries of its argument, and {s(u)i } and {s(v)` }
are positive integers that determine the extent of the desired
sparsity structure in the rows of U and V . Notice that
because of the `0-norm constraints, (2) is a combinato-
rial optimization problem and generally NP-hard to solve.
Therefore, we propose to relax these constraints by using
the `1-norm which is the convex envelope of the `0-norm
and is known to promote sparsity in the solution of an
optimization problem. Following this idea and by specifying
D(X,Y) = 1

2‖X − Y ‖2F as the metric, we consider the

Fig. 1: Mapping between high- and low-dimensional spaces.
A transition between two states in the original Markov
chain (Pij) is equivalent to concatenation of the following
sequence: a mapping from high-dimensional space to low-
dimensional space (Uĩi), a transition in the low-dimensional
space (P̃ĩj̃), and a mapping from low-dimensional space back
to the high-dimensional space (Vj̃j).

relaxed and regularized problem

min
U≥0,P̃≥0,V≥0

1

2
‖P − UP̃V ‖2F + λu‖U‖1 + λv‖V ‖1

s.t. U1 = 1, P̃1 = 1, V 1 = 1.
(3)

Here, λu > 0 and λv > 0 are the regularization parameters
that determine the sparsity level of the rows of the bidirec-
tional mapping matrices U and V . Recall that sparsity of
U means that each state is mapped to one (or few) meta
state(s). On the other hand, sparsity of V asks for mapping
of a meta state to a few states. This sparsity promoting
terms ensure that the meta states are a good representative of
their corresponding states. Additionally, the constraints of the
optimization make sure that each of matrices are a stochastic
matrix, i.e., can be interpreted as a transition matrix.

The objective function in (3) consists of a convex function
and hence is convex in each of the matrices when the other
matrices are fixed. However, due to the fact that the first term
in the objective function contains a product of the unknowns,
(3) is generally a nonconvex program. Notice that even if
P is perfectly decomposable into the corresponding factors,
any permutation of the low-rank abstraction P̃ is also a
solution. Therefore, in general, Problem 3 has at least k!
global optima.

To facilitate a computationally efficient search for the
solution of (3), we rely on a modified gradient search
algorithm which exploits the special structures of U , P̃ , and
V . The algorithm (summarized as Algorithm 1) is essentially
a block coordinate gradient descent (BCGD) method that
alternatively updates matrices U , P̃ , and V in an iterative
fashion starting from an initial point (U0, P̃0, V0). That is,
in (t + 1)st iteration (t = 0, . . . , T − 1 where T is the total
number of iterations), given (Ut, P̃t, Vt) we optimize with re-
spect to U to find Ut+1. Similarly, we find updated P̃t+1 and
Vt+1 using the values (Ut+1, P̃t, Vt) and (Ut+1, P̃t+1, Vt),
respectively.

Algorithm 1 Block Coordinate Gradient Descent (BCGD)

1: Input: Probability transition matrix P , number of low-
dimensional states k, step sizes α, β, and γ, regular-
ization parameters λu and λv , maximum number of
iterations T

2: Output: Factor matrices U , P̃ , and V
3: Initialization: Initialize U0 at random
4: for t = 0, 1, 2 . . . , T − 1
5: Update rule for Ut+1

• ∇f(Ut) = −(P − UtP̃tVt)V >t P̃>t
• Ut+ 1

2
= Ut − αt∇f(Ut)

• Ut+1 = Π4k

(
Tλu

2
(Ut+ 1

2
)
)

(Algorithm 2)

6: Update rule for P̃t+1

• ∇f(P̃t) = −U>t+1(P − Ut+1P̃tVt)V
>
t

• P̃t+ 1
2

= P̃t − βt∇f(P̃t)

• P̃t+1 = Π4k(P̃t+ 1
2
) (Algorithm 2)

7: Update rule for Vt+1

• ∇f(Vt) = −P̃>t+1U
>
t+1(P − Ut+1P̃t+1Vt)

• Vt+ 1
2

= Vt − γt∇f(Vt)

• Vt+1 = Π4n

(
Tλv

2
(Vt+ 1

2
)
)

(Algorithm 2)

8: end for

Algorithm 2 Projection onto 4d
1: Input: y = [y1, . . . , yd]

> ∈ Rd
2: Output: projection Π4d(y)
3: Sort y in the ascending order as y(1) ≤ · · · ≤ y(d)
4: for i = d− 1, d− 2, . . . , 1

5: bi =
∑d
j=i+1 y(j)−1

d−i
6: if bi ≥ y(i) then
7: b̄ = bi
8: return Π4d(y) = (y − b̄)+
9: end if

10: end for

11: b̄ =
∑d
j=1 y(j)−1

d

12: return Π4d(y) = (y − b̄)+

In Algorithm 1, Tη(x) = (|x|−η)+sgn(x) is the so-called
shrinkage-thresholding operator that acts on each element of
the given matrix, and Π4d(.) denotes the projection operator
that projects each row of its argument onto the probability
simplex in Rd. This projection can be efficiently computed
by the method of [28, Algorithm 1] that we summarize in
Algorithm 2 for completeness.

A. Convergence Analysis of BCGD

In this section, we analyze the convergence properties of
BCGD. Specifically, in Theorem 1 we establish that given
judicious choices of the step sizes, the value of the objective
function in (3) decreases as one alternates between updating
the factor matrices which in turn implies that the BCGD
algorithm converges to a stationary point of the nonconvex

optimization task in (3).

Theorem 1. Assume the step sizes of Algorithm 1 satisfy

αt =
C1‖∇f(Ut)‖2F
‖∇f(Ut)P̃tVt‖2F

, (4)

βt =
C2‖∇f(Vt)‖2F
‖Ut+1∇f(P̃t)Vt‖2F

, (5)

γt =
C3‖∇f(P̃t)‖2F

‖Ut+1P̃t+1∇f(Vt)‖2F
, (6)

where C1, C2, C3 ∈ (0, 2). Then, the solution (U∗, P̃ ∗, V ∗)
found by the BCGD scheme is a stationary point of (3).

Proof. Let f(U, P̃ , V) = 1
2‖P −UP̃V ‖

2
F . For the proposed

algorithm to converge, it must hold that

f(Ut+1, P̃t+1, Vt+1) ≤ f(Ut, P̃t, Vt), (7)

for all t. Note that since Tη(x) and Π4d are projections onto
convex sets of constraints (the former being the projection
operator onto the `1 ball), following a similar analysis as
those in the proofs of the projected gradient descent and the
iterative shrinkage-thresholding algorithms (ISTA) [29], [30]

f(Ut+1, P̃t, Vt) ≤ f(Ut+ 1
2
, P̃t, Vt),

f(Ut+1, P̃t+1, Vt) ≤ f(Ut+1, P̃t+ 1
2
, Vt),

f(Ut+1, P̃t+1, Vt+1) ≤ f(Ut+1, P̃t+1, Vt+ 1
2
).

Thus, it suffices to show

f(Ut+ 1
2
, P̃t, Vt) ≤ f(Ut, P̃t, Vt), (8)

f(Ut+1, P̃t+ 1
2
, Vt) ≤ f(Ut+1, P̃t, Vt), (9)

f(Ut+1, P̃t+1, Vt+ 1
2
) ≤ f(Ut+1, P̃t+1, Vt). (10)

We now show that under (4), the sufficient condition (8)
holds. Proof of the parts that (9) and (10) hold under (5) and
(6), respectively, follows a similar argument.

Note that

f(Ut+ 1
2
, P̃t, Vt)− f(Ut, P̃t, Vt)

=
1

2
‖P − UtP̃ Vt + αt∇f(Ut)P̃tVt‖2F

− 1

2
‖P − UtP̃ VtVt‖2F

= αtTr
(

(P − UtP̃ Vt)>∇f(Ut)P̃tVt

)
+
α2
t

2
‖∇f(Ut)P̃tVt‖2F . (11)

Now, consider the first term in the last line of (11). Following
straightforward linear algebra, we obtain

Tr
(

(P − UtP̃ Vt)>∇f(Ut)P̃tVt

)
= −Tr

(
(P − UtP̃ Vt)>(P − UtP̃tVt)V >t P̃>t P̃tVt

)
= −Tr

(
P̃tVt(P − UtP̃ Vt)>(P − UtP̃tVt)V >t P̃>t

)
= −‖(P − UtP̃tVt)V >t P̃>t ‖2F = −‖∇f(Ut)

>‖2F .

(12)

(a) approximation error (b) decomposition time

Fig. 2: Effect of kernel size and mapping sparsity on quality of approximation and computational complexity.

Therefore,

f(Ut+ 1
2
, P̃t, Vt)− f(Ut, P̃t, Vt)

=
α2
t

2
‖∇f(Ut)P̃tVt‖2F − αt‖∇f(Ut)

>‖2F

=

(
C2

1

2
− C1

)
‖∇f(Ut)

>‖4F
‖∇f(Ut)P̃tVt‖2F

, (13)

where the last equality follows according to the definition
of αt in (4). It is now clear that if C1 ∈ (0, 2) it must be
the case that (8) holds, which in turn implies convergence of
Algorithm 1. �

B. Computational Complexity of BCGD

The computational complexity of the proposed BCGD
algorithm is analyzed next. Note that the determining factor
for cost per iteration of Algorithm 1 is computation of
the gradients. Finding ∇f(Ut) incurs O(nk) as it contains
matrix products between k×k and k×n matrices. Similarly,
∇f(P̃t) and ∇f(Vt) require O(nk) computational costs.
Thus, Algorithm 1 incurs a linear complexity of O(nkT).

IV. SIMULATION RESULTS

We implemented the proposed BCGD algorithm for non-
negative matrix factorization in Python.1 We evaluated the
performance of the proposed abstraction solution for a vari-
ety of parameters. In particular, we investigated the effect of
sparsity-promoting term on the approximation quality of the
factorized transition matrix. We also ran the algorithm for
different values of step size and compared the convergence
of BCGD. For these simulations, we generated a transition
matrix P of size 100 × 100 for the original Markov chain.
The transition matrix has a rank of 25 and is constructed
by multiplying three stochastic matrices. Each stochastic
matrix is generated by independently sampling its rows by
a uniform sampling from the simplex of proper size. We set
the number of iterations of BCGD to 1000. If the difference
between two consecutive instances of a factor, i.e., Ut, P̃t,

1The code is available at https://github.com/MahsaGhasemi/state-
abstraction

or Vt falls below a threshold 10−8 of their magnitude, the
algorithm terminates, where the magnitudes are measured
by Frobenius norm. Similarly, if the difference between two
consecutive values of the objective function falls below 10−8,
the algorithm terminates. We run the simulation with each
set of parameters for 10 independent instances and report the
average values along the standard deviations. All simulations
were run on a machine with 2.0 GHz Intel Core i7-4510U
CPU and with 8.00 GB RAM.

A. Effect of Regularization Parameter on Performance

One of the key differences of the proposed abstraction
formulation is the integration of a `1-norm regularization
term in the optimization objective. This term promotes
sparsity for the bidirectional mapping between the original
and the kernel space. Intuitively, this sparsity ensures that the
meta states in the kernel space are representative of a small
number of original states. The sparsity level of the mappings
depends on regularization parameters λu and λv .

In Figure 2, we demonstrate the effect of these param-
eters on the quality of the solutions. We compare four
different values, more specifically, λ = λu = λv ∈
{0, 0.001, 0.005, 0.01}. The results in Figure 2(a) show that
a careful selection of λ, while increasing sparsity, does
not affect the quality of the decomposition in terms of the
approximation error, computed by ‖P−UP̃V ‖2F . However, a
large λ leads to high approximation error. Therefore, one has
to find the right trade-off between lower approximation error
and higher sparsity of the mappings. Furthermore, we can see
that error significantly reduces once the size of the kernel
transition is set to values higher than 20. Above that value,
the approximation error only slightly changes. Therefore, the
proposed algorithm is successful in identifying a low-rank
representation.

Figure 2(b) depicts the running time of the BCGD al-
gorithm. As derived in Section IV-B, the running time is
linear with respect to the kernel size and the results reflect
that. Furthermore, the addition of `1-norm regularization
term has negligible effect on the running time. Note that
for λ = 0.01, the algorithm terminates early as it cannot

Fig. 3: The effect of step size on the convergence of BCGD.

improve the objective value sufficiently. Furthermore, for this
choice of λ, we can observe high variance in the running time
due to the varying sparsity degree of the randomly generated
matrices.

B. Effect of Step Size on Convergence

In Section IV-A, we derived necessary conditions on the
step sizes α, β, and γ for the convergence of the BCGD
algorithm. In this section, we show the sensitivity of the
convergence to different values of the step size. To that end,
we ran the algorithm for different values of step size that
we kept constant throughout the run. In particular, we ran
the algorithm for α = β = γ ∈ {0.002, 0.02, 0.2}. Figure 3
depicts the evolution of error over the course of 500 iterations
of BCGD. While the algorithm converges for all three values,
the smaller step sizes achieve lower approximation error at
the end. We also observed that the algorithm would often
diverge for step sizes over 0.2.

V. CONCLUSION

We studied the problem of approximating a large-scale
Markov chain by a surrogate model in a low-dimensional
state space, called kernel space. We proposed a nonnegative
matrix factorization formulation that learns a low-rank kernel
transition as well as a pair of forward and backward map-
pings while promoting a sparse connection between the high
and low-dimensional states. We showed that the formulated
optimization is amenable to an efficient iterative solution
that converges to a stationary solution under a judicious
schedule of step sizes. As part of future work, we aim
to extend the proposed matrix factorization formulation to
model reduction of Markov decision processes. Furthermore,
we would like to evaluate the abstracted Markov decision
process in different analyses, including model checking and
value function approximation.

REFERENCES

[1] H. Kushner, “Introduction to stochastic control,” tech. rep., Brown
University Providence Division of Applied Mathematics, 1971.

[2] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[3] S. R. Eddy, “Hidden Markov models,” Current opinion in Structural
Biology, vol. 6, no. 3, pp. 361–365, 1996.

[4] D. Koller and N. Friedman, Probabilistic graphical models: Principles
and techniques. MIT press, 2009.

[5] M. Ghasemi and U. Topcu, “Perception-aware point-based value
iteration for partially observable Markov decision processes,” in Proc.
International Joint Conference on Artificial Inteligence, pp. 2371–
2377, 2019.

[6] D. Abel, D. Arumugam, L. Lehnert, and M. Littman, “State ab-
stractions for lifelong reinforcement learning,” in Proc. International
Conference on Machine Learning, pp. 10–19, PMLR, 2018.

[7] D. F. Rogers, R. D. Plante, R. T. Wong, and J. R. Evans, “Aggregation
and disaggregation techniques and methodology in optimization,”
Operations Research, vol. 39, no. 4, pp. 553–582, 1991.

[8] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming,
vol. 5. Athena Scientific Belmont, MA, 1996.

[9] J. N. Tsitsiklis and B. Van Roy, “Feature-based methods for large scale
dynamic programming,” Machine Learning, vol. 22, no. 1-3, pp. 59–
94, 1996.

[10] L. Molgedey and H. G. Schuster, “Separation of a mixture of indepen-
dent signals using time delayed correlations,” Physical Review Letters,
vol. 72, no. 23, p. 3634, 1994.

[11] P. J. Schmid, “Dynamic mode decomposition of numerical and exper-
imental data,” Journal of Fluid Mechanics, vol. 656, pp. 5–28, 2010.

[12] S. Klus, F. Nüske, P. Koltai, H. Wu, I. Kevrekidis, C. Schütte, and
F. Noé, “Data-driven model reduction and transfer operator approxi-
mation,” Journal of Nonlinear Science, vol. 28, no. 3, pp. 985–1010,
2018.

[13] Z. Ren and B. H. Krogh, “State aggregation in Markov decision
processes,” in Proc. Conference on Decision and Control, vol. 4,
pp. 3819–3824, IEEE, 2002.

[14] J. Johns and S. Mahadevan, “Constructing basis functions from di-
rected graphs for value function approximation,” in Proc. International
Conference on Machine Learning, pp. 385–392, ACM, 2007.

[15] R. Parr, C. Painter-Wakefield, L. Li, and M. Littman, “Analyzing
feature generation for value-function approximation,” in Proc. Inter-
national Conference on Machine learning, pp. 737–744, ACM, 2007.

[16] M. Petrik, “An analysis of Laplacian methods for value function
approximation in MDPs.,” in Proc. International Joint Conference on
Artificial Inteligence, pp. 2574–2579, 2007.

[17] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Proc. Advances in Neural Information Processing
Systems, pp. 556–562, 2001.

[18] G. Cybenko and V. Crespi, “Learning hidden Markov models using
nonnegative matrix factorization,” IEEE Transactions on Information
Theory, vol. 57, no. 6, pp. 3963–3970, 2011.

[19] A. Hashemi, B. Zhu, and H. Vikalo, “Sparse tensor decomposition
for haplotype assembly of diploids and polyploids,” BMC Genomics,
vol. 19, no. 4, p. 191, 2018.

[20] D. Hsu, S. M. Kakade, and T. Zhang, “A spectral algorithm for learning
hidden Markov models,” Journal of Computer and System Sciences,
vol. 78, no. 5, pp. 1460–1480, 2012.

[21] Q. Huang, S. M. Kakade, W. Kong, and G. Valiant, “Recovering
structured probability matrices,” arXiv preprint arXiv:1602.06586,
2016.

[22] X. Li, M. Wang, and A. Zhang, “Estimation of Markov chain via rank-
constrained likelihood,” in Proc. International Conference on Machine
Learning, pp. 4729–4744, PMLR, 2018.

[23] A. Zhang and M. Wang, “Spectral state compression of Markov
processes,” IEEE Transactions on Information Theory, 2019.

[24] Y. Duan, Z. T. Ke, and M. Wang, “State aggregation learning from
Markov transition data,” in Proc. Advances in Neural Information
Processing Systems, pp. 4486–4495, Curran Associates, Inc., 2019.

[25] J. T. Runnenburg, Markov processes in waiting-time and renewal
theory. PhD thesis, Thesis, Poortpers, Amsterdam, 1966.

[26] Æ. H. Hoekstra, “On Markov chains of finite rank,” 1983.
[27] D. P. Bertsekas, Dynamic programming and optimal control, vol. 1.

Athena scientific Belmont, MA, 1995.
[28] Y. Chen and X. Ye, “Projection onto a simplex,” arXiv preprint

arXiv:1101.6081, 2011.
[29] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding

algorithm for linear inverse problems,” SIAM Journal on Imaging
Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[30] S. Bubeck et al., “Convex optimization: Algorithms and complexity,”
Foundations and Trends in Machine Learning, vol. 8, no. 3-4, pp. 231–
357, 2015.

	I Introduction
	I-A Related Work

	II Problem Formulation
	II-A Preliminaries
	II-B Problem Statement

	III Approach
	III-A Convergence Analysis of BCGD
	III-B Computational Complexity of BCGD

	IV Simulation Results
	IV-A Effect of Regularization Parameter on Performance
	IV-B Effect of Step Size on Convergence

	V Conclusion
	References

