
A fully distributed motion coordination strategy for multi-robot systems
with local information

Pian Yu and Dimos V. Dimarogonas

Abstract— This paper investigates the online motion coordi-
nation problem for a group of mobile robots moving in a shared
workspace. Based on the realistic assumptions that each robot
is subject to both velocity and input constraints and can have
only local view and local information, a fully distributed multi-
robot motion coordination strategy is proposed. Building on
top of a cell decomposition, a conflict detection algorithm is
presented first. Then, a rule is proposed to assign dynamically
a planning order to each pair of neighboring robots, which
is deadlock-free. Finally, a two-step motion planning process
that combines fixed-path planning and trajectory planning is
designed. The effectiveness of the resulting solution is verified
by a simulation example.

I. INTRODUCTION

One challenge for multi-robot systems (MRSs) is the
design of coordination strategies between robots that en-
able them to perform operations safely and efficiently in a
shared workspace while achieving individual/group motion
objectives [1]. This problem was originated from 1980s
and has been extensively investigated since. In recent years,
the attention that has been put on this problem has grown
significantly due to the emergence of new applications, such
as smart transportation and service robotics. The existing
literature can be divided into two categories: path coordi-
nation and motion coordination. The former category plans
and coordinates the entire paths of all the robots in advance,
while the latter category focuses on decentralized approaches
that allow robots to resolve conflicts online as the situation
occurs1 [2]. This paper aims at developing a fully distributed
strategy for multi-robot motion coordination (MRMC).

Depending on how the controller is synthesized for each
robot, the literature concerning MRMC can further be clas-
sified into two types: the reactive approach and the planner-
based approach. Typical methods that generate reactive con-
trollers consist of potential-field approach [3], sliding mode
control [4] and control barrier functions [5]. These reactive-
style methods are fast and operate well in real-time. However,
it is well-known that these methods are sensitive to deadlocks
that are caused by local minima. Moreover, guidance for
setting control parameters is not analyzed formally when
explicit constraints on the system states and/or inputs are
presented [2]. Apart from the above, other reactive methods

This work was supported in part by the Swedish Research Council (VR),
the Swedish Foundation for Strategic Research (SSF) and the Knut and
Alice Wallenberg Foundation (KAW).

The authors are with School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
piany@kth.se, dimos@kth.se

1In some literatures, these two terms are also used interchangeably. In
this paper, we try to distinguish between the two as explained above.

include the generalized roundabout policy [6] and a family
of biologically inspired methods [7].

An early example of the planner-based method is the work
of Azarm and Schmidt [8], where a framework for online
coordination of multiple mobile robots was proposed. Based
on this framework, various applications and different mo-
tion planning algorithms are investigated. Roughly speaking,
the motion planning algorithms used in planner-based ap-
proaches can be divided into two types: fixed-path planning
[9], [10] and trajectory planning [8], [11], [12], while the
former one differs from the latter one in that the motions
for individual robots are fixed along specific paths. Guo and
Parker [11] proposed a MRMC strategy based on the D∗

algorithm [12]. In this work, each robot has an independent
goal position to reach and know all path information. In [13],
a distributed bidding algorithm was designed to coordinate
the movement of multiple robots, which focuses on area
exploration. In the work of Liu [10], conflict resolution
at intersections was considered for connected autonomous
vehicles, where each vehicle is required to move along a
pre-planned path. In general, the fixed-path planning method
is more efficient. Its major disadvantage, however, lies in the
fact that it fails more often. A literature review on MRMC
can be found in [1].

In this paper, we investigate the MRMC problem on a
realistic setup. Robots are assumed to have limited sensing
capabilities and both velocity and input constraints are con-
sidered. Conflicts are assumed to be local and can occur
at arbitrary locations in the workspace. To cope with this
setup, a fully distributed MRMC strategy is proposed. The
contributions of this paper can be summarized as follows.
Building on top of a cell decomposition, a formal definition
of spatial-temporal conflict is introduced first. This definition
characterizes when replanning is required for each robot.
Then, a simple rule is proposed for online planning order
assignment, which is deadlock-free when only local infor-
mation is available to each robot. Finally, a two-step motion
planning process is proposed, i.e., the fixed-path planning is
activated first while the trajectory planning is activated if and
only if the fixed-path planning returns no feasible solution,
which allows us to leverage both the benefits of fixed-path
planning and trajectory planning.

The remainder of the paper is organized as follows. In
Section II, notation and preliminaries on graph theory are
introduced. Section III formalizes the considered problem.
Section IV presents the proposed solution in detail, which is
verified by simulations in Section V. Conclusions are given
in Section VI.

ar
X

iv
:2

00
4.

10
43

7v
1 

 [
cs

.R
O

] 
 2

2 
A

pr
 2

02
0



II. PRELIMINARIES

A. Notation

Let R := (−∞,∞), R≥0 := [0,∞), and Z≥0 :=
{0, 1, 2, . . .}. Denote Rn as the n dimensional real vector
space, Rn×m as the n × m real matrix space. Let |λ| be
the absolute value of a real number λ, ‖x‖ and ‖A‖ be
the Euclidean norm of vector x and matrix A, respectively.
Given a set Ω, 2Ω denotes its powerset and |Ω| denotes its
cardinality. Given two sets Ω1,Ω2, the set F(Ω1,Ω2) denotes
the set of all functions from Ω1 to Ω2. The operators ∪ and
∩ represent set union and set intersection, respectively. In
addition, we use ∧ to denote the logical operator AND and
∨ to denote the logical operator OR. The set difference A\B
is defined by A\B := {x : x ∈ A ∧ x /∈ B}. Given a point
x ∈ Rn and a constant r ≥ 0, the notation B(x, r) represents
a ball area centered at point x and with radius r.

B. Graph Theory

Let G = {V, E} be a digraph with the set of nodes V =
1, 2, . . . , N , and E ⊆ {(i, j) : i, j ∈ V, j 6= i} the set of
edges. If (i, j) ∈ E , then node j is called a neighbor of
node i and node j can receive information from node i. The
neighboring set of node i is denoted by Ni = {j ∈ V|(j, i) ∈
E}. A graph is called undirected if (i, j) ∈ E ⇔ (j, i) ∈ E ,
and a graph is called connected if for every pair of nodes
(i, j), there exists a path which connects i and j, where a
path is an ordered list of edges such that the head of each
edge is equal to the tail of the following edge.

III. PROBLEM FORMULATION

Consider a group of N mobile robots, whose dynamics
are given by:

ẋi(t) = vi(t) cos(θi(t)),
ẏi(t) = vi(t) sin(θi(t)),

θ̇i(t) = ωi(t),
v̇i(t) = Fi(t),
ω̇i(t) = τi(t), i = 1, 2, . . . , N.

(1)

where pi := (xi, yi) is the Cartesian position, θi is the
orientation, vi, ωi are respectively the tangential velocity
and the angular velocity, Fi is the force input, and τi
is the torque input of robot i. For convenience, we de-
fine ξi := (xi, yi, θi, vi, ωi) and ui := (Fi, τi). Then,
(1) can be written as ξ̇i = f(ξi, ui), where f(ξi, ui) =
(vi cos(θi), vi sin(θi), ωi, 0, 0) + (0, 0, 0, ui). The velocity
and input of each robot i are subject to the constraints

|vi(t)| ≤ vmax
i , |ωi(t)| ≤ ωmax

i ,

|Fi(t)| ≤ Fmax
i , |τi(t)| ≤ τmax

i ,∀t ≥ 0.
(2)

Let Vi := {vi : |vi| ≤ vmax
i },Wi := {ωi : |ωi| ≤ ωmax

i }
and Ui := {(Fi, τi) : |Fi| ≤ Fmax

i , |τi| ≤ τmax
i }.

Given a vector ξi, define the projection operator
projpi

(ξi) : R5 → R2 as a mapping from ξi to its first
2 components pi. A curve ξi : [0, T [→ R5 is said to be
a trajectory of robot i if there exists input ui(t) ∈ Ui

satisfying ξ̇i(t) = f(ξi(t), ui(t)) for all t ∈ [0, T [. A

curve pi : [0, T [→ R2 is a position trajectory of robot i if
pi(t) = projpi

(ξi(t)),∀t ∈ [0, T [. Given a time interval
[t1, t2], t1 < t2, the corresponding position trajectory is
denoted by pi([t1, t2]).

Supposing that the sensing radius of each robot is the
same, given by R > 0, then the communication graph formed
by the group of robots is undirected. The neighboring set of
robot i at time t is given by Ni(t) = {j : ‖xi(t)− xj(t)‖ ≤
R, j ∈ V, j 6= i}, so that j ∈ Ni(t) ⇔ i ∈ Nj(t), i 6= j,∀t.
The group of robots are working in a common workspace
X ⊂ R2, which is populated with m closed sets Oi,
corresponding to obstacles. Let O = ∪iOi, then the free
space F is defined as F := X \O.

Each robot i is subject to its own task specification ϕi

(in this work, we consider ϕi to be a reach-avoid type of
task expressed as a linear temporal logic (Chapter 5 [15])
formula). Given a position trajectory pi, the satisfaction
relation is denoted by pi |= ϕi. Given the position pi of robot
i, we refer to its footprint φ(pi) as the set of points in X that
are occupied by robot i in this position. The objective of the
system is to ensure that the task specification ϕi of each
robot is satisfied efficiently (in the sense that a pre-defined
objective function, e.g., Ji, is minimized), while safety (no
inter-robot collision) of the system is guaranteed.

Note that in this paper, it is assumed that each robot is
not aware of the existence of other robots. Moreover, each
robot has only local view and local information. Under these
settings, the MRMC problem has to be broken into local
distributed motion coordination problems and solved online
for individual robots. Let pj([t, t

∗
j (t)]), j ∈ Ni(t) be the local

position trajectory of robot j that is available to robot i at
time t, where t∗j (t) is determined by t. Then, the (online)
motion coordination problem for robot i is formulated as

min Ji(ξi, ui) (3a)
subject to

(1), (2) and pi |= ϕi, (3b)
φ(pi(t

′)) ∩ φ(pj(t
′)) = ∅,∀j ∈ Ni(t),∀t′ ∈ [t, t∗j (t)], (3c)

where constraint (3c) means that two robots can not arrive
at the same cell at the same time for all t′ ∈ [t, t∗j (t)], thus
guarantees no inter-robot collision occurs.

IV. SOLUTION

The proposed solution to the motion coordination problem
(3) consists of two layers: 1) an initialization layer and 2)
an online coordination layer.

A. Structure of each robot
Before moving on, the structure of each robot is presented.

Each robot i is equipped with four modules, the decision
making module, the motion planning module, the control
module and the communication module. The first three
modules work sequentially while the communication module
works in parallel with the first three.

Each robot i has two states: ACTIVE and PASSIVE (see
Fig. 1). Robot i enters ACTIVE state when a task specifica-
tion is active, and it switches to PASSIVE state if and only



ACTIVE

Free Busy Emerg PASSIVE

Fig. 1: Transitions of robot i.

if the task specification is completed. When robot i is in
PASSIVE state, all the four modules are off and it will be
viewed as a static obstacle. At the time instant that robot i
enters ACTIVE state, the motion planning module is activated
and an initial (optimal) plan is synthesized (explained later).
During online implementation, robot i tries to satisfy its
task specification safely by resolving conflicts with other
robots. This is done by following some mode switching rules
encoded into a Finite State Machine (FSM). Each FSM has
the following three modes:
• Free: Robot moves as planned. This is the normal mode,

in which there is no conflict detected.
• Busy: Robot enters this mode when conflicts are de-

tected.
• Emerg: Robot starts an emergency stop process.
In Fig. 1, the transitions between different modes of the

FSM are also depicted. Initially, robot i is in Free mode.
Once conflict neighbors (will be defined later) are detected,
robot i switches to Busy mode and the motion planning
module is activated to solve the conflicts, otherwise, robot
i stays in Free mode. When robot i is in Busy mode, it
switches back to Free mode if the motion planning module
returns a feasible solution, otherwise (e.g., no feasible plan
is found), robot i switches to Emerg mode. Note that when
robot i switches to Emerg mode, it will come to a stop
but with power-on. This means that robot i will continue
monitoring the environment and restart (switches back to
Free mode) the task when it is possible.

B. Initialization

Denote by ti0 the task activation time of robot i. Then,
robot i enters ACTIVE state at ti0. Once robot i is ACTIVE, it
first finds an optimal trajectory ξi (without the knowledge of
other robots) such that the corresponding position trajectory
pi |= ϕi. The trajectory planning problem for a single
robot can be solved by many existing methods, such as
search/sampling based method [16], [17], automata-based
method [18] and optimization-based method [19], [20]. We
note that the details of initial trajectory planning is not
the focus of this paper. We refer to interested readers to
corresponding literatures and the references therein.

C. Decision making

1) Conflict detection: Supposing that a cell decomposition
is given over the workspace X. The cell decomposition is
a partition of X into finite disjoint convex regions Φ :=

{X1, . . . , XM1} with X = ∪M1

l=1Xl. Given a set S ⊂ R2,
define the map Q : R2 → 2Φ as

Q(S) := {Xl ∈ Φ : Xl ∩ S 6= ∅}, (4)

which returns the set of cells in Φ that intersect with S.
The cell decomposition can be computed exactly or approx-
imately using existing approaches (Chapters 4-5 [14]). The
choice depends on the particular models used for obstacles
and other constraints.

The notation pi([t,→)) represents the position trajectory
of robot i from time t onwards. Given a position trajectory
pi([t1, t2]) and a (set of) cell(s) Φl ⊂ Φ, the function Γ :
F(R≥0,R2)× 2Φ → 2R≥0 , defined as

Γ(pi([t1, t2]),Φl) := {t ∈ [t1, t2] : φ(pi(t))∩Φl 6= ∅}, (5)

gives the time interval that robot i occupies Φl. Let tc be the
current time and tfli := mint>tc{pi(t) /∈ B(pi(tc), R)} be
the first time that robot i leaves its sensing area B(pi(tc), R).
Then, denote by Si(tc) := ∪t∈[tc,t

fl
i ]Q

(
φ(pi(t))

)
the set of

cells traversed by robot i within the time interval [tc, t
fl
i ].

Similarly, for each j ∈ Ni(tc), let tflj be the first time that
robot j leaves its sensing area B(pj(tc), R) and Sj(tc) the
set of cells traversed by robot j within [tc, t

fl
j ]. Then, the

conflict region between robot i and j at time tc is defined as

Ci,j(tc) = Si(tc) ∩ Sj(tc). (6)

According to (5), the time interval that robot i(j)
occupies the conflict cell Xl ∈ Ci,j(tc) is given by
Γ(pi([tc, t

fl
i ]), Xl)

(
Γ(pj([tc, t

fl
j ]), Xl)

)
. Then, we have the

following definition.
Definition 1: We say that there is a spatial-temporal con-

flict between robot i and j at time t if ∃Xl ∈ Ci,j(tc) such
that Γ(pi([tc, t

fl
i ]), Xl) ∩ Γ(pj([tc, t

fl
j ]), Xl) 6= ∅.

Based on Definition 1, define the set of conflict neighbors
of robot i at time tc, denoted by Ñi(tc), as

Ñi(tc) := {j ∈ Ni(tc) : ∃Xl ∈ Ci,j(tc) s.t.

Γ(pi([tc, t
fl
i ]), Xl) ∩ Γ(pj([tc, t

fl
j ]), Xl) 6= ∅}.

Robot i switches to Busy mode if and only if the set
of conflict neighbors is non-empty (i.e., Ñi(tc) 6= ∅). The
conflict detection process is outlined in Algorithm 1.

2) Determine planning order: Based on the neighboring
relation, the graph G(tc) = {V, E(tc)} formed by the group
of robots is naturally divided into one or multiple connected
subgraphs, and the motion planning is conducted in parallel
within each connected subgraph in a sequential manner. In
order to do that, a planning order needs to be decided within
each connected subgraph. In this work, we propose a simple
rule to assign priorities between each pair of neighbors.

The number of neighbors of robot i at time tc is given by
|Ni(tc)|. Denote by Ci,Ni(tc)(tc) := ∪j∈Ni(tc){Ci,j(tc)} the
entire conflict region of robot i at time tc. Let

T i(tc) = min
Xl∈Ci,Ni(tc)

(tc)
{min{Ti(Xl)}} (7)

be the earliest time that robot i enters a conflict cell. Then,
we have the following definition.



Algorithm 1 Conflict Detection

Input: Sj(tc),Γ(pj([tc, t
fl
j ]), Xl),∀Xl ∈ Sj(tc),∀j ∈

Ni(tc) ∪ {i}.
Output: Ñi(tc).

1: Initialize Ñi(tc) = ∅.
2: for j ∈ Ni(tc) do
3: if ∃Xl ∈ Si(tc) ∩ Sj(tc) s.t. Γ(pi([tc, t

fl
i ]), Xl) ∩

Γ(pj([tc, t
fl
j ]), Xl) 6= ∅, then

4: Ñi(tc) = Ñi(tc) ∪ {j},
5: end if
6: end for
7: if Ñi(tc) 6= ∅ then
8: Robot i switches to Busy mode.
9: end if

Definition 2: We say that robot i has advantage over robot
j at time tc if

1) |Ni(tc)| > |Nj(tc)|; OR
2) |Ni(tc)| = |Nj(tc)| and T i(tc) < T j(tc).
Let Yi(tc) be the set of neighbors that have higher priority

than robot i at time tc. The planning order determination
process is outlined in Algorithm 2.

Algorithm 2 Determine planning order

Input: Ni(tc), P
0
i and T j(tc), P

0
j , j ∈ Ni(tc).

Output: Yi(tc).
1: Initialize Yi(tc) = ∅.
2: Compute T i(tc) according to (7),
3: for j ∈ Ni(tc) do,
4: if j is in PASSIVE state or Emerg mode then,
5: Yi(tc) = Yi(tc) ∪ j,
6: else
7: if j has advantage over i then,
8: Yi(tc) = Yi(tc) ∪ j,
9: else

10: if neither robot i nor j has advantage over
the other and P 0

j > P 0
i then,

11: Yi(tc) = Yi(tc) ∪ j,
12: end if
13: end if
14: end if
15: end for

Proposition 1 (Deadlock-free): The planning order as-
signment rule given in Algorithm 2 will result in no cycles,
i.e., @{qm}k̂1 , k̂ ≥ 2 such that qk̂ ∈ Yq1 and qm−1 ∈
Yqm ,∀m = 2, . . . , k̂.

Remark 1: The rationale behind our rule can be explained
as follows. The total time required to complete the motion
planning is given by KO(dt), where O(dt) represents the
time complexity of one round of motion planning and K
represents the number of rounds (if multiple robots conduct
motion planning in parallel, it is counted as one round),
which is determined by the priority assignment rule being
used (e.g., if fixed priority is used, the number of rounds

is K = N ). In our rule, we assign the robot with more
neighbors the higher priority, and in this way, the minimal
number of rounds can be achieved. Furthermore, if two
conflict robots have the same number of neighbors, then the
one that arrives earlier at the conflict region should have
higher priority.

D. Motion planning

The motion planning module consists of two submodules,
i.e., fixed-path planning and trajectory planning. The fixed-
path planning is activated first while the trajectory planning
is activated if and only if the fixed-path planning returns no
feasible solution.

1) Fixed-path planning: To define the fixed-path plan-
ning problem formally, the following notations are required.
Denote by gi ⊂ R2 the path of robot i, which is a one
dimensional manifold (curves in position space) that can
be parameterized using the distance si along the path, then
gi(si) ∈ R2. In this case, the path starts at gi(0), the tangent
vector ġi(si) = ∂gi/∂si has unit length. The velocity profile
of robot i is denoted by si(t), which is a mapping from time
to distance along the path. Before starting to plan, robot i
needs to wait for the updated plan from the set of neighbors
that have higher priority than robot i (i.e., j ∈ Yi(tc)) and
consider them as moving obstacles. Denoted by p+

j ([tc,→))

the updated position trajectory of robot j and let tfl+j be the
first time that robot j leaves its sensing area B(pj(tc), R)
according to p+

j ([tc,→)). Then, one can define S+
j (tc) as

the set of cells traversed by robot j within [tc, t
fl+
j ].

Definition 3: We say there is a spatial conflict between
robot i and j, j ∈ Yi(tc) before (after) the fixed-path
planning if Si(tc) ∩ S+

j (tc) 6= ∅ (S+
i (tc) ∩ S+

j (tc) 6= ∅).
Due to the fixed-path property, one can conclude that

Si(tc) ∩ S+
j (tc) = ∅ ⇒ S+

i (tc) ∩ S+
j (tc) = ∅. Therefore,

in fixed-path planning, only the higher priority neighbors
that have spatial conflict with robot i before the fixed-path
planning need to be considered. Based on this observation,
we define C+

i,j(tc) := Si(tc) ∩ S+
j (tc) as the (updated) set

of conflict cells between robot i and j at time tc and let
Ỹi(tc) := {j ∈ Yi(tc) : C+

i,j(tc) 6= ∅} be the set of higher
priority robots that have spatial conflict with robot i. Denote
by gtci := pi([tc,→)) the path of robot i at time tc. Then, the
fixed-path planning problem (FPPP) is formulated as follows:

min Ji(ξi, ui) (8a)
subject to

ġtc
i (si)ṡi ∈ Π(gtci ), (8b)

gtci (si(t)) /∈Xl, t ∈ Γ(p+
j ([tc, t

fl+
j ]), Xl),

∀j ∈ Ỹi(tc),∀Xl ∈ C+
i,j(tc),

(8c)

where si is the speed profile that needs to be optimized and
Π(gtc

i ) is defined as

Π(gtci ) := {ġtc
i (si)ṡi : ∃vi ∈ Vi, ωi ∈Wi, ui ∈ Ui, s.t.,

ġtci (si)ṡi = (cos(θi), sin(θi))vi, θ̇i = ωi, (v̇i, ω̇i) = ui}.



2) Trajectory planning: If fixed-path planning returns no
feasible solution, then it is necessary to replan the trajectory
(path and velocity profile). The trajectory planning problem
(TPP) can be formulated as follows:

min Ji(ξi, ui), (9a)
subject to
(3b), (9b)

projpi
(ξi(t)) /∈ Xl, t ∈ Γ(p+

j ([tc, t
fl+
j ]), Xl),

∀j ∈ Yi(tc),∀Xl ∈ S+
j (tc) ∩Q(B(pi(tc), R)).

(9c)

If both FPPP (8) and TPP (9) return no feasible solution,
robot i switches to Emerg mode. In this mode, robot i will
continue monitoring the environment, and once the TPP (9)
becomes feasible, it will switch back to Free mode. The
motion planning process is outlined in Algorithm 3.

Remark 2: Various existing optimization toolboxes, e.g.,
IPOPT [22], ICLOCS2 [23], and algorithms, e.g., the con-
figuration space-time search [24] and the Hamilton-Jacobian
reachability-based motion planning [25] can be utilized to
solve (8) and (9). We note that, in general (no matter which
method is used), the computational complexity of TPP (9) is
much higher than that of FPPP (8).

Algorithm 3 Motion Planning

Input: S+
j (tc),Γ(p+

j ([tc, t
fl+
j ]), Xl),∀j ∈ Yi(tc) ∪

{i},∀Xl ∈ S+
j (tc).

Output: p+
i ([tc,→)).

1: Compute Ỹi(tc) and solve the FPPP (8),
2: if Solution obtained (denoted by s∗i ), then
3: p+

i ([tc,→)) = gtci (s∗i ),
4: Robot i switches to Free mode,
5: else
6: Solve the TPP (9),
7: if Solution obtained (denoted by ξ∗i ) then,
8: p+

i ([tc,→)) = projpi
(ξ∗i ),

9: Robot i switches to Free mode,
10: else
11: Robot i switches to Emerg mode,
12: if The TPP (9) is feasible, then
13: Robot i switches to Free mode,
14: end if
15: end if
16: end if

Remark 3: Due to the distributed fashion of the solution
and the locally available information, the proposed MRMC
strategy is totally scalable in the sense that the computational
complexity of the solution is not increasing with the number
of robots. In addition, it is straightforward to extend the work
to MRSs scenarios where moving obstacles are presented.

Remark 4: We assume that the deceleration (i.e., negative
force input) that each robot can take when switching to
Emerg mode is unbounded. This guarantees that no inter-
robot collision will occur during the emergency stop process
since in the worst case, the robot can stop immediately. The

problem of safety guarantees under bounded deceleration in
Emerg mode will be studied in future work.

V. SIMULATION

We illustrate the results of the paper on a MRS consisting
of N = 7 robots. The velocity and input constraints for each
robot are given by |vi| ≤ 2m/s, |ωi| ≤ 115rad/s, |Fi| ≤
2m/s2, |τi| ≤ 115rad/s2 and the sensing radius is R = 5m.
The common workspace for the group of robots is depicted in
Fig. 2 (xy axis), where the gray areas represent the obstacles
and a grid representation with grid size 0.5m is implemented
as cell decomposition. For each robot, the task specification
is given by ϕi := �¬O∧♦�Xf

i ,∀i, where Xf
i (marked as

colored region in Fig. 2) represents the target set for robot i,
while ¬, � and ♦ are respectively “negation”, “always” and
“eventually” operators in a linear temporal logic formula.

The initial optimal trajectories for each robot are de-
picted in Fig. 2, where the colored arrows show the mov-
ing direction of each robot. It can be seen that con-
flicts (i.e., inter-robot collisions) occur between robot pairs
(1, 3), (1, 7), (4, 5) and (3, 6). During online implementation,
conflicts are detected by each robot and replanning is con-
ducted by robots 1, 4 and 6 at time instants 19.7s, 7.5s
and 8.4s, respectively. In the motion planning module, the
ICLOCS2 [23] toolbox is implemented to solve the FPPP (8)
and the TPP (9). The real-time moving trajectory for each
robot is shown in Fig. 3, where all the conflicts are resolved.

Fig. 2: The initial optimal trajectories of each robot.

The real-time evolution of velocities (vi, ωi) and inputs
(Fi, τi) for each robot are given in Fig. 4 and Fig. 5,
respectively. One can see that the tangential and angular
velocity constraints and the force and torque input constraints
are satisfied by all robots at all times. All the simulations
were run in Matlab 2018b on a DELL laptop of 2.6GHz
using Intel Core i7.

VI. CONCLUSION

In this paper, the online MRMC problem is considered.
Under the assumptions that each robot has only local view
and local information, and subject to both velocity and input



Fig. 3: The real-time trajectories of each robot.

0 5 10 15 20 25 30

t(s)

-2

-1

0

1

2

v i(m
/s

)

0 5 10 15 20 25 30

t(s)

-100

0

100

i(r
a
d
/s

)

Fig. 4: The real-time evolution of vi and ωi.

0 5 10 15 20 25 30

t(s)

-2

-1

0

1

2

F
i(m

/s
2
)

0 5 10 15 20 25 30

t(s)

-100

0

100

i(r
ad

/s
2
)

Fig. 5: The real-time evolution of Fi and τi.

constraints, a fully distributed motion coordination strategy
was proposed for steering individual robots in a common
workspace, where each robot is assigned independent task
specifications. It was shown that the proposed strategy can
guarantee collision-free motion of each robot. A next step is
to perform real-world experiments.

ACKNOWLEDGEMENT

The authors would like to thank Yulong Gao for valuable
discussions.

REFERENCES

[1] Z. Yan, N. Jouandeau, and A. A. Cherif, A survey and analysis of multi-
robot coordination, International Journal of Advanced Robotic Systems,
10(12): 399, 2013.

[2] L. E. Parker, Path planning and motion coordination in multiple mobile
robot teams, Encyclopedia of complexity and system science, 2009:
5783-5800.

[3] O. Khatib, Real-time obstacle avoidance for manipulators and mobile
robots, The International Journal of Robotics Research, 5(1): 90-98,
1986.

[4] L. Gracia, F. Garelli, and A. Sala, Reactive siding-mode algorithm for
collision avoidance in robotic systems, IEEE Transactions on Control
Systems Technology, 21(6): 2391-2399, 2013.

[5] L. Wang, D. A. Ames, and M. Egerstedt, Safety barrier certificates
for collisions-free multirobot systems, IEEE Transactions on Robotics,
33(3): 661-674, 2017.

[6] L. Pallottino, V. G. Scordio, A. Bicchi, and E. Fazzoli, Decentralized
cooperative policy for conflict resolution in multivehicle systems, IEEE
Transactions on Robotics, 23(6): 1170-1183, 2007.

[7] G. A. Bekey, Autonomous Robots: From Biological Inspiration to
Implementation and Control. MIT press, 2005.

[8] K. Azarm, G. Schmidt, Conflict-free motion of multiple mobile robots
based on decentralized motion planning and negotiation, Proceedings of
International Conference on Robotics and Automation, 4: 3526-3533,
1997.

[9] T. Siméon, S. Thierry, and J. P. Lauumond, Path coordination for multi-
ple mobile robots: A resolution-complete algorithm, IEEE Transactions
on Robotics and Automation, 18(1): 42-49, 2002.

[10] C. Liu, W. Zhan, and M. Tomizuka, Speed profile planning in dynamic
environments via temporal optimization, 2017 IEEE Intelligent Vehicles
Symposium, 2017: 154-159.

[11] Y. Guo, and L. E. Parker, A distributed and optimal motion planning
approach for multiple mobile robots, Proceedings 2002 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 02CH37292),
3: 2612-2619, 2002.

[12] A. Stentz, Optimal and efficient path planning for partially known
environments, Intelligent Unmanned Ground Vehicles, Springer, Boston,
MA, 1997: 203-220.

[13] W. Sheng, Q. Yang, J. Tan, and N Xi, Distributed multi-robot coordi-
nation in area exploration, Robotics and Autonomous Systems, 54(12):
945-955, 2006.

[14] J. C., Latombe, Robot motion planning, Springer Science & Business
Media. Vol. 124, 2012.

[15] C. Baier and J. P. Katoen, Principles of model checking. MIT press,
2008.

[16] B. Subhrajit, Search-based path planning with homotopy class con-
straints, Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010: 1230-1237.

[17] S. M. LaValle and J. J. Kuffner Jr, Rapidly-exploring random trees:
Progress and prospects, Algorithmic and Computational Robotics: New
Directions, 2000: 293-308.

[18] M. M. Quottrup, T. Bak, and R. I. Zamanabadi, Multi-robot plan-
ning: A timed automata approach, IEEE International Conference on
Robotics and Automation (ICRA), 5: 4417-4422, 2004.

[19] T. M. Howard, C. J. Green, and A. Kelly, Receding horizon model-
predictive control for mobile robot navigation of intricate paths, Field
and Service Robotics, 2010: 69-78.

[20] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
Finding Locally Optimal, Collision-Free Trajectories with Sequential
Convex Optimization, Proceedings of the Robotics: Science and Systems
Conference, 9(1): 1-10, 2013.

[21] J. P. Van Den Berg, and M. H. Overmars, Prioritized motion plan-
ning for multiple robots, 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2005: 430-435.

[22] A. Wächter and L. Biegler, IPOPT-an interior point OPTimizer, 2009.
[23] Y. Nie, O. Faqir, and E. C. Kerrigan. ICLOCS2: Solve your optimal

control problems with less pain, in Proc. 6th IFAC Conference on
Nonlinear Model Predictive Control, 2018.

[24] D. Parsons, J. Canny, A motion planner for multiple mobile robots,
IEEE International Conference on Robotics and Automation, 1990: 8-
13.

[25] M. Chen, S. Bansal, J. F. Fisac, and C. J. Tomlin, Robust Sequential
Trajectory Planning Under Disturbances and Adversarial Intruder, IEEE
Transactions on Control Systems Technology, 27(4): 1566-1582, 2018.

[26] M. Bennewitz, W. Burgard, and S. Thrun, Finding and optimizing
solvable priority schemes for decoupled path planning techniques for
teams of mobiel robots, Robotics and Autonomous Systems, 41(2):89-
99, 2002.


	I Introduction
	II Preliminaries
	II-A Notation
	II-B Graph Theory

	III Problem Formulation
	IV Solution
	IV-A Structure of each robot
	IV-B Initialization
	IV-C Decision making
	IV-C.1 Conflict detection
	IV-C.2 Determine planning order

	IV-D Motion planning
	IV-D.1 Fixed-path planning
	IV-D.2 Trajectory planning


	V Simulation
	VI Conclusion
	References

