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Consensus seeking gradient descent flows on boundaries of convex sets

Johan Markdahl

Abstract— Consensus on nonlinear spaces is of use in many
control applications. This paper proposes a gradient descent
flow algorithm for consensus on hypersurfaces. We show that
if an inequality holds, then the system converges for almost
all initial conditions and all connected graphs. The inequality
involves the hypersurface Gauss map and the gradient and
Hessian of the implicit equation. Moreover, for the inequality
to hold, it is necessary that the manifold is the boundary of
a convex set. The literature already contains an algorithm for
consensus on hypersurfaces. That algorithm on any ellipsoid is
equivalent to our algorithm on the unit sphere. In particular,
that algorithm achieves almost global synchronization on ellip-
soids. These findings suggest that strong convergence results for
consensus seeking gradient descent flows may be established on
manifolds that are the boundaries of convex sets.

I. INTRODUCTION

Consensus on nonlinear spaces is of interest in many ap-

plication areas including robotics [1], flocking [2], opinion

dynamics [3], machine learning [4], and quantum synchro-

nization [5]. The problem of almost global consensus on

nonlinear spaces is interesting from an applied point of view

since it makes the probability of reaching consensus from

a random initial condition independent of the number of

agents. It is also interesting from a theoretical perspective

since the global geometry and topology is what differentiates

a Riemannian manifold M from Euclidean space R
m

. This

paper explores how a consensus seeking gradient descent

flow algorithm being almost globally convergent depends on

the geometry and topology of the manifold it evolves on.

Consider a consensus seeking gradient descent flow of a

disagreement function on a manifold M [6]. Global conver-

gence results are known for some special cases. For example,

the consensus manifold C is almost globally asymptotically

stable (AGAS) for all connected networks over spheres of

dimension n ≥ 2 [7]. There is hence at least one AGAS

consensus protocol on the boundary of every compact, star-

shaped set for n ≥ 2, obtained by lifting the protocol on the

corresponding n-sphere to M. Another example; a necessary

condition states that C cannot be AGAS if M is simply

connected [8]. Since the boundary of any compact convex

set of dimension n in R
m

is homeomorphic to the n-sphere

in R
n+1

, the boundaries of compact convex sets are simply

connected for n ≥ 2. Moreover, the boundary of any compact

convex set can be described as a hypersurface in R
n+1

.

Working with arbitrary manifolds is difficult. Like spheres,

hypersurfaces can be characterized by a single constraint,

wherefore the methodology of [7], [9] can be applied. For
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technical reasons we limit consideration to closed analytic

hypersurfaces, i.e., hypersurfaces that are analytic, compact

and without boundaries. This paper provides a sufficient

condition for C to be AGAS for all connected networks over

such hypersurfaces. The condition can only be satisfied if

the hypersurface is the boundary of a convex set. How-

ever, because the condition is based on a quadratic Taylor

expansion of the disagreement function, it cannot be used

for manifolds on which the quadratic term vanishes. The

question concerning the boundary of any convex set hence

remains unresolved.

There is another algorithm for consensus on hypersurfaces

in the literature [10]–[12]. Compared to our algorithm, it

is more restricted in terms of the hypersurfaces it can be

applied to. We show that this algorithm on any ellipsoid is

equivalent to our algorithm on the unit sphere. Almost global

convergence on ellipsoid have been established for graphs

that are either complete or acyclic [11]. The result for our

algorithm on networks over the sphere [7] also applies to the

algorithm [11] on networks over ellipsoids, showing that it

converges almost globally for all connected graphs.

II. PRELIMINARIES

The boundary ∂S of any compact convex set S ⊂ R
m

,

dim ∂S = n < m, can be transformed into a hypersurface

in R
n+1

by a change of coordinates. For technical reasons

we focus on closed analytic hypersurfaces. A closed analytic

hypersurface M ⊂ R
n+1

can without loss of generality be

characterized as a set on the form

M = {y ∈ R
n+1 | c(y) = 0},

where c : Rn+1 → R is an analytic function. The Jordan-

Brouwer theorem implies that M separates the set on which

c is positive from the set on which c is negative [13]. One

of the sets is bounded while the other is unbounded. If the

gradient ∇c(y) is considered as a vector located at y, then

it points towards the region on which c is positive. This set

can be assumed to be unbounded without loss of generality.

A hypersurface M is called nonsingular if ∇c(y) , 0 for

all y ∈ M. Assume that M is nonsingular. Let

n(y) =
∇c(y)

‖∇c(y)‖

denote the unit normal obtained from the Gauss map n :
M → Sn

. The projection Π : Rn → TyM on the tangent

space of M at y is given by

z 7→ (In+1 − n(y)n⊤(y)) z,
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where the Gram-Schmidt rule n ⊥ z − 〈z, n〉n is used to

cancel the normal component of z. This expression allows

us to calculate the gradient Π∇f(y) of f(y) on M as

Π∇f(y) = (In+1 − ∇c(y)
‖∇c(y)‖ ( ∇c(y)

‖∇c(y)‖ )⊤)∇f(y),

where ∇f(y) is the Euclidean gradient of f(y) in R
n+1

.

A set is almost globally asymptotically stable if almost all

system trajectories converge to it:

Definition 1 (AGAS): A Lyapunov stable equilibrium set

S of a dynamical system ẋ = f (x) on a Riemannian

manifold (M, g), where M ⊂ R
n+1

, is said to be AGAS

if limx→∞ x(t) ∈ S for all x(0) ∈ M\N , where N has

Riemannian measure zero.

III. DISTRIBUTED CONTROL DESIGN

We use a graph G = (V , E) to model interactions between

agents. Each node i ∈ V corresponds to an agent and each

edge {i, j} ∈ E corresponds to a pair of communicating

agents. The graph is assumed to be connected. Items asso-

ciated with agent i carry the subindex i; we denote the state

of agent i by xi ∈ M, the normal of M at xi by ni, the

projection onto the tangent space of M at xi by Πi, the

neighbor set of agent i by Ni = {j ∈ V | {i, j} ∈ E}, the

Euclidean gradient of V with respect to xi by ∇iV etc. We

call x = (xi)
N
i=1 ∈ MN

a configuration of agents.

Consider a dynamical system defined on MN
. The dy-

namics of agent i could e.g., be

ẋi = ui (1)

where ui ∈ TiM is the control signal. Another option is

ẋi = Πiui = (In+1 − nin
⊤
i )ui (2)

where ui ∈ R
n+1

and ni = n(xi) is introduced for the sake

of notational convenience. Note that the right-hand sides of

(1) and (2) belong to Txi
M. Suppose that xi(0) ∈ M,

that ui is Lipschitz, and that M is a C2
manifold. Then

xi(t) ∈ M for all t ∈ R by the Bony-Brezis theorem since

〈v, ∇ic(xi)〉 = 0 for all v ∈ Txi
M and all xi ∈ M. By

confining ẋi to TiM, we confine xi to M.

The input model (1) corresponds to a situation where the

constraint xi ∈ M is adopted to accomplish a task whereas

the model (2) refers to the case where the mechanical

design of a systems constrains it to only be actuated in a

certain fashion. An example of (1) is a team of satellites in

orbit; they could leave the orbit if so desired. Examples of

(2) include camera sensor networks where each camera is

mounted on a spherical joint. The orientation of camera i is

always some xi ∈ S2
regardless of the control input.

The goal of consensus seeking systems is for the agents

to asymptotically approach the consensus manifold

C = {(x)N
i=1 ∈ MN }. (3)

The set C is a manifold C ≃ M by the diffeomorphism

MN → C : (x)N
i=1 7→ x. If the agents are satellites in

orbit that satisfy xi ∈ S2
, then this would be interpreted

as all N agents meeting up at one point. If the agents are

rigid bodies whose pointing direction (reduced attitude) is

modelled as xi ∈ S2
, then a consensus implies that all N

bodies are pointing in the same direction.

As a measure of the distance to consensus, consider the

disagreement function V : MN → R given by

V (x) = 1
2

∑

i,j∈E

aij‖xj − xi‖
2, (4)

where aij ∈ [0, ∞). Clearly, V = 0 if and only if x =

(xi)
N
i=1 ∈ C, i.e., no disagreement. The consensus seeking

algorithm that we study in this paper is the gradient descent

flow of (4). The gradient of V on M is given by

Πi∇iV = (In − nin
⊤
i )

∑

j∈Ni

aij(xi − xj).

We are now ready to state the main algorithm of this paper.

This algorithm previously appears in [6], although their work

is limited to the case when the norm of the states are constant,

‖xi‖ = k, i.e., the case when M is a sphere. Moreover, they

only show local stability results.

Algorithm 2: The consensus seeking gradient descent

flow on M is given by

ẋi = −Πi∇iV = (I − nin
⊤
i )

∑

j∈Ni

aij(xj − xi). (5)

Suppose that M is closed, then the solution x(t) =
(xi)

N
i=1 to (5) is unique and exists for all t ∈ R [14].

There is another algorithm for consensus on hypersurfaces

in the literature:

Algorithm 3 (Zhu [11]): The consensus seeking algo-

rithm on M is given by

ẋi =
(

I − xi∇c(xi)
⊤

〈xi,∇c(xi)〉

)

∑

j∈Ni

aij(xj − xi)

=
(

I − xi∇c(xi)
⊤

〈xi,∇c(xi)〉

)

∑

j∈Ni

aijxj (6)

To briefly compare Algorithm 2 and 3, note that Algorithm

2 requires that ∇c(x) , 0 on M whereas Algorithm 3 also

requires 〈x, ∇c(x)〉 , 0. The two algorithms are identical

when ∇c(x) = kx for some k ∈ R, i.e., when M is Sn
.

Indeed, both algorithms are conceived of as generalizations

of a consensus algorithm on the n-sphere [15], [16]. In

general, it may be more difficult to establish convergence

of Algorithm 3 since it is not a gradient descent flow. We

provide the following result about Algorithm 3:

Proposition 4: The system (6) on an ellipsoid is equiva-

lent to the system (5) on the unit sphere.

Proof: Let M be an ellipsoid, i.e.,

M = {y ∈ R
n | c(y) = 1

2 〈y, Ay〉 − 1 = 0},

where A is a positive definite matrix. The dynamics (6) of

the consensus seeking system on M under Algorithm 3 is

ẏi = (I − 1
〈yi,Ayi〉 yiy

⊤
i A)

∑

{i,j}∈E

aij(yj − yi).



Let L denote the Cholesky factor of A, i.e., A = LL
⊤

.

Introduce zi = L
⊤

yi and note that ‖zi‖
2 = 〈yi, Ayi〉 = 1,

i.e., zi ∈ Sn
. Calculate

żi = L
⊤(I − 1

〈yi,LL
⊤

yi〉
yiy

⊤
i LL

⊤)
∑

j∈Ni

aij(yj − yi)

= (I − zi

‖zi‖ ( zi

‖zi‖ )⊤)
∑

j∈Ni

aij(zj − zi)

= (I − ziz
⊤
i )

∑

j∈Ni

aijzj ,

which is the system (5) on the unit sphere.

IV. ALMOST GLOBAL ASYMPTOTIC STABILITY

The main result of this paper states that for any closed,

analytic manifold that satisfies a geometric condition, the

consensus manifold C is an AGAS equilibrium manifold of

the gradient descent flow (5). In the derivation of the main

result, the condition appears as an expression which relates

the relative information xj − xi for any {i, j} ∈ E at

an equilibria of the system to some geometric quantities

evaluated at xi and xj . However, it is difficult to say which

pairs of points are part of an equilibrium and which are

not. As such, we make the conservative requirement that the

condition is satisfied at any pair of points y, z ∈ M.

Let Q denote the set of all equilibria of the gradient

descent flow (5) that does not belong to the consensus

manifold C given by (3). Most of this section is concerned

with establishing that each equilibria in Q is unstable; a result

which is summarized in Proposition 10. This leads us to

sufficient conditions for C to be an AGAS set of equilibria

of the gradient descent flow (5). Before that we establish

Proposition 5 which shows that the consensus manifold C
given by (3) is asymptotically stable as a set. Note that

Proposition 5 only requires M to be a closed analytic

manifold, i.e., a compact analytic manifold without boundary.

A. Local stability

Proposition 5: Let M ⊂ R
m

be a closed, analytic,

embedded Riemannian manifold. The consensus manifold

C = {(x)N
i=1 ∈ MN} is an asymptotically stable equilibrium

set of the gradient descent flow ẋ = −(Πi∇iV )N
i=1 and

V (x) = 1
2

∑

{i,j}∈E

‖xj − xi‖
2.

Proof: The potential function of a gradient descent flow

decreases with time,

V̇ = 〈Πi∇V, ẋ〉 = −‖Πi∇V ‖2. (7)

Since V ≥ 0 with V = 0 if and only if x ∈ C, we can take

V as a Lyapunov function and conclude that C is stable.

Since M is closed, the gradient descent flow converges

to a connected component of the set of critical points of

V [17]. By (7), any sublevel set of V is forward invariant.

Moreover, all sublevel sets contain C. If there is an open

sublevel set of V which does not intersect Q, then there is

an open neighborhood of C from which x converges to C.

Since V is analytic it satisfies the Łojasiewicz inequality

on Riemannian manifolds [18]. For every x ∈ C there is an

open ball B(x), an α < 1, and a k > 0 such that

V (y)α ≤ k‖Π∇V (y)‖

for all y ∈ B(x). If y ∈ Q, then Π∇V (y) = 0 whereby

V (y) = 0, which implies y ∈ C, a contradiction. Hence

Q ∩ B(x) = ∅.

Consider the value of q = infx∈Q V (x). If q = 0, then

there is a sequence {xk}∞
k=1 such that limk→∞ V (xk) = 0.

Since M is a closed manifold, the sequence {xk}∞
k=1 has a

subsequence which converges to some y ∈ M. Moreover,

V (y) = 0 whereby y ∈ C. For each ε > 0 there must

be a z(ε) ∈ Q (an element of the subsequence) such that

‖y − z(ε)‖ < ε. This contradicts Q ∩ B(y) = ∅. Hence

q > 0 and all trajectories that start in the level set {x ∈
M | V (x) < q} converges to C.

This result is similar to Proposition 7 in [6]. Note however

that our proof of local stability only makes use of the

properties of gradient descent flows of analytic function on

closed manifolds. To show that C is AGAS we also need to

consider the geometry and topology of M. In particular, C is

not an AGAS equilibrium manifold of (5) if M is a multiply

connected hypersurface such as a circle or a torus [8]. The

sufficient condition for AGAS established in this paper places

requirements on M that exclude such cases.

B. Main result

Our main result is establishes almost global convergence to

the consensus manifold if the following assumption holds:

Assumption 6: Suppose c satisfies

〈n(y), n(z)〉2 + 〈y−z,∇c(y)〉(∆c(y)−〈n(y),∇
2

c(y)n(y)〉)

‖∇c(y)‖
2 ≥ 1,

for all y, z ∈ M and with equality only if y = z, where

n : M → Sn−1
is the Gauss map and ∆ is the Laplace-

Beltrami operator, ∆c(y) = tr ∇2c(y).

Theorem 7: Let c be a real analytic function that satisfies

Assumption 6. The consensus manifold is an AGAS equilib-

rium set of the gradient descent flow

V = 1
2

∑

{i,j}∈E

aij‖xi − xj‖2,

ẋi = −∇iV

= (I − ∇c(xi)
‖∇c(xi)‖ ( ∇c(xi)

‖∇c(xi)‖ )⊤)
∑

{i,j}∈E

aij(xj − xi),

on the N -fold product of M = {y ∈ R
n | c(y) = 0}.

Since the proof of the main result is somewhat long, we

have broken it into parts. First, we need two definitions.

Definition 8: Let Σ be a dynamical system on S ⊂ R
n+1

whose solution Φ(t; x), Φ(0; x) = x exists for all t ∈ R and

all x ∈ S. The system Σ is said to be pointwise convergent

if for each x ∈ S there is exactly one ω-limit point

limi→∞ Φ(ti; x) for all (ti)
∞
i=1 such that limi→∞ ti = ∞.

Definition 9: An equilibrium point y ∈ R
n+1

of a dynam-

ical system ẋ = f (x) is said to be exponentially unstable



if the Jacobian matrix of f (x) evaluated at y has a strictly

positive eigenvalue.

For pointwise convergent systems, any set of exponen-

tially unstable equilibria have a region of attraction with

Riemannian measure zero [19]. The system (5) is pointwise

convergent due to being a gradient descent flow of an

analytic function on an analytic manifold [20]. The problem

of establishing almost global convergence has hence been

reduced to showing that all equilibria besides those belonging

to the consensus manifold are exponentially unstable.

C. Positive eigenvalues

Let L(x) ∈ R
N(n+1)×N(n+1)

denote the linearization matrix

of the gradient descent flow (5) at the point x ∈ MN
. Our

aim is to show that the eigenvalues of L(x) are positive for

all equilibria x < C. Note that L(x) is related to the Hessian

matrix H(x) ∈ R
Nn×Nn

of V as L(x) = −H(x) [17].

Proposition 10: Let M ⊂ R
n

be a hypersurface for

which Assumption 6 holds. The eigenvalues of the lineariza-

tion matrix of the gradient descent flow (5) have strictly

negative real parts at any equilibrium point except for those

belonging to the consensus manifold C.

Proof: The equilibria of the gradient descent flow (5)

are critical points of the optimization problem

min
x∈M

N
V (x) = 1

2

∑

{i,j}∈E

aij‖xj − xi‖
2. (8)

We will analyze (5) in an optimization framework, making

use of the associated techniques and terminology. Our ap-

proach is based on the Lagrange conditions for optimality in

equality constrained nonlinear programming [21].

Introduce the Lagrangian L : MN × R → R given by

L(x, λ) = V +
∑

i∈V

λic(xi)

= 1
2

∑

{i,j}∈E

aij‖xi − xj‖2 +
∑

i∈V

λic(xi),

where λ = [λi] ∈ R
N

. The optimal solutions to (8) are

critical points of L. The critical points of L are exactly the

eigenvalues of (5). Calculate the Euclidean gradient of L,

∇iL =
∑

j∈Ni

aij(xi − xj) + λi∇ic(xi),

∂
∂λi

L = c(xi).

The Hessian of L with respect to xi, xk is a N(n + 1) ×
N(n + 1) block matrix ∇2L, with the ki block given by

(∇2L)ki =











∑

j∈Ni
aijIn+1 + λi∇

2
i c(xi) if k = i,

−aikIn+1 if k ∈ Ni,

0 otherwise.

The nullspace ker ∇ci of the constraint gradients is the

image set of the symmetric matrix

Zi = In+1 − nin
⊤
i ,

where ni = n(xi) and n is the Gauss map. Let Z denote

the blockdiagonal matrix with Zi as the ii block. Form the

matrix H(x) = Z∇2LZ whose ki block is

Zk
∂

2
L

∂xk∂xi
Zi =











∑

j∈Ni
aijZi + λiZi∇

2
i cZi if k = i,

−akiZkZi if k ∈ Ni,

0 otherwise,

where we used that Z
2
i = Zi, which follows from Zi being

a projection matrix.

Let TMN
denote the tangent bundle of MN

,

TMN = {(x, v) | x ∈ MN , v ∈ TxMN }.

The matrix H(x) is the Riemannian Hessian operator H(x) :
TMN → TxM : (x, v) 7→ H(x)v of V on M [22]. It also

appears in the necessary second order optimality conditions

for equality constrained problems, with H(x) being positive

semi-definite on TMN
if x is an optimal solution to (8) that

satisfies some additional requirements [21].

Let L(x) = −H(x) be the linearization matrix of the gra-

dient descent flow [17]. Note that L is symmetric wherefore

its field of values

W (L) = {〈v, Lv〉 | v ∈ C
Nn} = {〈v, Lv〉 | v ∈ R

Nn}

is real. Consider the Rayleigh quotient R : TMN → R

given by R(x, v) = 〈v, L(x)v〉/〈v, v〉. Let α(x) denote

the spectral abscissa of L(x),

α(x) = max
v∈T

x
M

N
R(x, v).

Since L(x) is symmetric, α(x) equals the largest eigen-

value of L(x). It is bounded below as α(x) ≥ R(x, v)
for all v ∈ TxMN

by the min-max theorem. It follows

that −R(x, v) is an upper bound on the smallest eigenvalue

of H(x). If R(x, v) assumes a positive value for some

argument, then the H(x) cannot be positive definite and the

necessary optimality conditions fails to hold.

To obtain a lower bound for α(x), consider the tangent

vector v = [Π1u . . . ΠN u] = [Z1u . . . ZN u] for any u ∈
R

n
such that ‖v‖ = 1. The intuition for this step is that all

agents are located at some equilibrium x and that we perturb

all of them in the same direction, i.e., towards the consensus

manifold. Because all agents move towards the same region

of the consensus manifold, it is possible that cohesion is

increased whereby V decreases. We calculate the effect this

has on the quadratic term in the Taylor expanasion of V , i.e.,

the term that depends on H(x) = −L(x). The contribution

of the linear term is zero due to ∇V = 0 at any equilibrium.

Calculate the Rayleigh quotient,

R(x, v) =
∑

i∈V

〈u, (Lii(x) +
∑

j∈Ni

Lij)u〉

=
∑

i∈V

〈u, −(λiZi∇
2
i cZi +

∑

j∈Ni

aij(Zi − ZiZj))u〉.

Denote

M(x) = −
∑

i∈V

λiZi∇
2
i cZi +

∑

j∈Ni

aij(Zi − ZiZj).



Hence R(x, v) = 〈u, Mu〉. Let (µi, ui), where

‖ui‖ = 1, denote the eigenpairs of M. Take u =
∑n+1

i=1 ui/‖
∑n+1

i=1 ui‖ whereby v = Zu satisfies v ∈
Txi

M, ‖v‖ = 1 (note that
∑n+1

i=1 ui , 0 by linear

independence). Then

R(x, v) =
tr M(x)

‖
∑n

i=1 ui‖
.

It remains to show that tr M(x) ≥ 0.

For the sake of notational convenience, write

Ni = nin
⊤
i = ∇ic(xi)

‖∇ic(xi)‖ ( ∇ic(xi)
‖∇ic(xi)‖ )⊤.

whereby Zi = In − Ni. Rewrite

M = −
∑

i∈V

λi(In − Ni)∇
2
i c(In − Ni)+

∑

j∈Ni

aij(In − Ni − (In − Ni)(In − Nj))

= −
∑

i∈V

λi(∇
2
i c − Ni∇

2
i c − ∇2

i cNi + Ni∇
2
i cNi)+

∑

j∈Ni

aij(Nj − NiNj).

Solve ∇iL = 0 for

λi = 1

‖∇ic‖
2

∑

j∈Ni

aij〈∇ic(xi), xj − xi〉.

Note that λi is well-defined since M is nonsingular by

assumption, which implies ∇ic , 0. Note that tr Ni = 1.

Let ∆ic = tr ∇2
i c(xi) denote the Laplace-Beltrami operator

acting on c. Calculate

tr M = −
∑

i∈V

λi(∆ic − 〈ni, ∇2
i cni〉)+

∑

j∈Ni

aij(1 − 〈ni, nj〉2)

=
∑

i∈V

∑

j∈Ni

aij [−1 + 〈ni, nj〉2+

1

‖∇ic‖
2 〈xi − xj , ∇ic〉(∆ic − 〈ni, ∇2

i cni〉)]

The sum in the expression for tr M is positive if every

term is positive, i.e., if

〈ni, nj〉2 +
〈xi−xj ,∇ic〉(∆ic−〈ni,∇

2

i cni〉)

‖∇ic‖
2 ≥ 1

with equality only when xi = xj . This relation holds by

Assumption 6 on the geometry of M.

V. CONVEXITY

A. Convex sets

Assumption 6 allows for a geometric interpretation. Recall

that by the Jordan-Brouwer separation theorem, a compact

hypersurface M separates R
n

into two connected sets, one

interior set which is bounded, K, and one exterior set which

is unbounded (K ∪ M)c
. The inequality in Assumption 6

implies that K is convex, i.e., that M = ∂K is the boundary

of a convex set. To show this, we first need a lemma.

Lemma 11: Let M ⊂ R
n

be a nonsingular hypersurface

given by M = {y ∈ R
n | c(y) = 0}, where c is C1

. Take

any z ∈ R
n

. The vector v of shortest length ‖v‖ such that

y + v = z for some y ∈ M is parallel to the normal of M
given by ∇c(y).

Proof: The Lagrange conditions for optimality in the

nonlinear optimization problem

min
y∈R

n

1
2 ‖z − y‖2

subject to c(y) = 0

are necessary since M is nonsingular (i.e., all points on M
are regular). Form the Lagrangian function L(y, λ) = ‖z −
y‖2 + λc(y). The Lagrange conditions state that

z − y + λ∇c(y) = 0

from which it follows that v = z − y = −λ∇c(y).

Theorem 12: Suppose Assumption 6 holds and that M is

a closed manifold, then M is the boundary of a convex set.

Proof: Note that in order for Assumption 6 to hold,

since 〈n(y), n(z)〉2 ≤ 1, it is necessary that 〈y −z, ∇c(y)〉
and ∆c(y) − 〈n(y), ∇2c(y)n(y)〉 have the same sign. The

latter expression only depends on y wherefore the sign of

〈y − z, ∇c(y)〉 cannot vary with z, i.e., either

〈y − z, ∇c(y)〉 ≥ 0 (9)

or

〈y − z, ∇c(y)〉 ≤ 0 (10)

holds for all z ∈ M at any y ∈ M.

Recall that we have chosen the sign of c such that for all

y ∈ M, ∇c(y) points towards the exterior of the two sets

separated by M. Let K denote the interior set. Following the

negative normal −∇c(y) on a line segment from y through

the interior set K, we find another point z ∈ M (otherwise

the interior set would be unbounded). Note that y − z is

aligned with the normal at y. Hence 〈y − z, ∇c(y)〉 ≥ 0
wherefore we can exclude the case of (10).

By (9), for each y ∈ M, there is an affine hyperplane

through y with normal ∇c(y). This hyperplane divides

R
n+1

into a closed set containing M and an open set which

is disjoint from M. Let H(y) denote the closed half-space

which contains M, i.e.,

H(y) = {w ∈ R
n | 〈y − w, ∇c(y)〉 ≥ 0}.

Form

S = ∩y∈MH(y).

Since S is an intersection of convex sets, it is convex. We

will show that K = S.

Since M ⊂ H(y) for all y ∈ M, it follows that M ⊂
S. Hence K ⊂ S. To show S ⊂ K, suppose by way of

contradiction that there is a s ∈ S\K. There is a point y ∈
M which minimizes the Euclidean distance to s. By Lemma

11, this point satisfies s = y + λ∇c(y) for some λ ∈ R.

Because s < K and ∇c(y) points away from K at y, it must

be the case that λ > 0. Then

〈y − s, ∇c(y)〉 = −λ‖∇c(y)‖2 < 0.



This implies that s < H(y) and hence s < S, which

contradicts the assumption that s ∈ S\K.

B. Strongly convex functions

Conversely, we could assume that c is a convex function

on all of R
n

. However, c being convex does not imply that

Assumption 13 holds. A counter example is given by c :
R

2 → R : x 7→ ‖x‖2−r2
, which yields the Kuramoto model

on S1
. Consider the class of strongly convex functions. A

strongly convex function f with parameter m satisfies

f(z) ≥ f(y) + 〈z − y, ∇f(y)〉 + m
2 ‖z − y‖2

at all points y, z in its domain. That c is strongly convex on

M implies

〈y − z, ∇c(y)〉 ≥ m
2 ‖z − y‖2.

Equivalently, any continuous function f on a compact do-

main is strongly convex if mI � ∇2f(x) � MI.

Assumption 13: Let c be a strongly convex function,

mI � ∇2c(y) � MI.

Moreover, suppose that c satisfies

m((n+1)m−M)

(LK)
2 ≥ 2,

where n = dim M, L is a global Lipschitz constant of the

Gauss map n : M → Sn−1
, i.e.,

‖n(y) − n(z)‖ ≤ L‖y − z‖,

for all y, z ∈ M, and K = maxy∈M ‖∇c(y)‖.

Proposition 14: Assumption 13 implies Assumption 6.

Proof: Consider the last term in the inequality of

Assumption 6. Strong convexity of c implies that

〈y−z,∇c(y)〉(∆c(y)−〈n(y),∇
2

c(y)n(y)〉)

‖∇c(y)‖
2 ≥ m(nm−M)‖z−y‖

2

2‖∇c(y)‖
2 .

Since M is nonsingular by assumption, i.e., ∇c(y) , 0 for

all y ∈ M, the Gauss map

n : y 7→ ∇c(y)
‖∇c(y)‖

is locally Lipschitz on M. Since M is a closed manifold

there is a global Lipschitz constant L of n over all points

on M. It follows that

m((n+1)m−M)‖z−y‖
2

2‖∇c(y)‖
2 ≥ m((n+1)m−M)‖n(z)−n(y)‖

2

2L
2
K

2

where we also utilized the definition of K .

Let ϑ denote the angle between n(y) and n(z). For

Assumption (6) we find that

〈n(y), n(z)〉2 + 〈y−z,∇c(y)〉(∆c(y)−〈n(y),∇
2

c(y)n(y)〉)

‖∇c(y)‖
2 ≥

cos2 ϑ + m((n+1)m−M)‖z−y‖
2

2K
2 ≥

cos2 ϑ + m((n+1)m−M)‖n(z)−n(y)‖
2

2L
2
K

2 =

cos2 ϑ + m((n+1)m−M)(1−cos ϑ)

(LK)
2 =

cos2 ϑ + α(1 − cos ϑ) ≥ 1,

where α = m((n+1)m−M)

(LK)
2 , if α is sufficiently large.

Denote g(ϑ, α) = cos2 ϑ+α(1−cosϑ). We minimize this

expression with respect to θ to find the range of α for which

g(ϑ, α) ≥ 1 for all ϑ ∈ [0, π]. Hence

∂g(ϑ,α)
∂ϑ

= −2 sin ϑ cos ϑ + α sin θ = 0.

Either sin ϑ = 0 or cos ϑ = α
2 for α ∈ [0, 2]. In the first

case cos θ ∈ {−1, 1}, which results in either 1 + 2α ≥ 1 or

1 ≥ 1. The condition on α is α ≥ 0. In the second case

g(ϑ, α) = α
2

4 + α(1 − α
2 ) = α − α

2

4 ≥ 1,

which yields α ≥ 2. Hence we require
m((n+1)m−M)

(LK)
2 ≥ 2.
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