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Abstract

In this paper, a novel decentralized intelligent adaptive optimal strategy has been developed to solve the pursuit-evasion
game for massive Multi-Agent Systems (MAS) under uncertain environment. Existing strategies for pursuit-evasion games
are neither efficient nor practical for large population multi-agent system due to the notorious “Curse of dimensionality” and
communication limit while the agent population is large. To overcome these challenges, the emerging mean field game theory
is adopted and further integrated with reinforcement learning to develop a novel decentralized intelligent adaptive strategy with
a new type of adaptive dynamic programing architecture named the Actor-Critic-Mass (ACM). Through online approximating
the solution of the coupled mean field equations, the developed strategy can obtain the optimal pursuit-evasion policy even for
massive MAS under uncertain environment. In the proposed ACM learning based strategy, each agent maintains five neural
networks, which are 1) the critic neural network to approximate the solution of the HJI equation for each individual agent; 2)
the mass neural network to estimate the population density function (i.e., mass) of the group; 3) the actor neural network to
approximate the decentralized optimal strategy, and 4) two more neural networks are designed to estimate the opponents’ group
mass as well as the optimal cost function. Eventually, a comprehensive numerical simulation has been provided to demonstrate
the effectiveness of the designed strategy.

I. INTRODUCTION

Pursuit-evasion games have received increasing attention in multi-agent decision-making and control studies (e.g. [1], [2].
The problem can be widely found in numerous applications such as quadcopter flight control [3], ground vehicle tracking
[4], missile guidance system [5] etc. Recently, some of the researches explored a novel type of pursuit-evasion problem for
multiple pursuers and evaders due to the enormous gain from the larger population of agents. For instance, [6] studied the
pursue evasion problem with two pursuers and one evader; [7] used multiple pursuers, i.e. unmanned aircraft systems (UAS),
to capture the ground vehicle. The differential game formulation associated with the Hamilton-Jacobi-Isaacs (HJI) equation
is used in those studies to obtain the optimal strategies. However, there are two common limitations in these studies, 1) the
agent number cannot be large, 2) a high-quality and reliable communication system is needed for supporting information
exchange among distributed agents. In large scale Multi-agent Systems (MAS), these limitations cannot be ignored due to
the notorious “curse of dimensionality”, and unreliable communication network in practical (Fig. [I)).

To overcome these challenges, the emerging Mean Field Game (MFG) theory is adopted and engaged with pursuit-evasion
game to develop a decentralized strategy for massive MAS. The key feature of MFG is that a new mass function has been
constructed to approximate all the other agents’ states through their probability distribution [8]. Different than other mean
states based algorithm such as the “average consensus” algorithm [9] where the deterministic average states are observed,
the MFG estimates the stochastic distribution of all agents’ states by solving a Partial Differential Equation (PDE), named
Fokker-Planck-Kolmogorov (FPK) equation. The distribution (i.e. mass) is then used to represent the effect from all other
agents in the agent’s decision-making process. Lasry and Lions [8] first proved that by integrating the mass with the
Hamilton-Jacobi-Bellman (HJB) equation from optimal control theory [10], one can obtain the e— Nash equilibrium of the
game and further converge to the Nash equilibrium as the agent number goes to infinity. Since the mass is approximated by
a PDE which is independent on the agent number, the MFG can be used to tackle the communication limit and the “curse of
dimensionality”. In this paper, the pursuers and evaders are using two mass functions to represent the pursuer group density
and evader density during the game. Both mass function are integrated into the HJT equation to represent the influence from
other agents in the same group.

However, solving Mean Field Game (MFG) is computationally expensive due to the coupled HJI and FPK equations
especially with infinite-dimensional states. Meanwhile, the reinforcement learning and adaptive approximate dynamic pro-
gramming (ADP) techniques [10] have been successfully utilized to solve general HJI equations and learn optimal nonlinear
control. Therefore, we extend the ADP technique to a novel Actor-Critic-Mass (ACM) algorithm that can approximate the
coupled HJT and FPK equations simultaneously and further obtain the optimal pursuit-evasion strategy. Specifically, five
neural networks are designed to approximate the solutions of coupled two HIJI equations, two FPK equations, and the
optimal control.

The main contributions of this paper can be summarized as follows: 1) The pursuit-evasion game with massive multi agents
has been solved through integrating the Mean Field Game theory which tackles the “curse of dimentionality” problem as
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Fig. 1. An illustration of challenges and the proposed solution in massive multi-agent pursuit-evasion game, i.e. Massive UASs are tracking the ground
vehicles.

well as requires no communication or observation. 2) A novel reinforcement learning structure named Actor-Critic-Mass
(ACM) for differential games has been proposed to numerically solve the optimal strategy for pursuit-evasion game online.
The solution of coupled HJI and FPK equations can thus be approximated by ACM.

II. BACKGROUND AND PROBLEM FORMULATION

Consider a group of pursuers G; and a group of evaders G» with identical /N agents in each group being travelling in an [
dimensional space. The states of individual agent in G; and G, are denoted by x4 ; € R! and x4 ; € R, respectively. The
system dynamics for each agent are affected by other agents and can be described through a group of stochastic differential
equations (SDEs), i.e.:

dzg1i = [for (Tg1.6) + gg1 (Tg14) Ugn s (1)
+ ng (wgg) ] dt + Ugl7idwg17i
dgsj = [fg2 (2g25) + 9g2 (Tg2.5) g2 j 2

+ Gg1 (xg1) ] dt + 0g2 jdwga ;

where ug1; € R! is the control input of the ith agent, wg1,; denotes a set of independent Wiener processes representing
environment noise for agents in the group Gi, o41,; is the coefficient matrix of the Wiener process, the functions fg1,; (2g1,)
and gg1,; (x41,;) represent the intrinsic dynamics of the agents in the group Gi, and the Gy (x42) denotes the influence
from the group G,. The parameters in (2)) is similar to those in () but for group G,.

The objective for agents in the pursuer group G; are to intercept the evader at the fixed time 7" while the agents in the
evader group Go attempts to do the opposite.

Remark 1. Different than the conventional pursuit-evasion problem, which has very limited number of pursuers and evaders,
the pursuers’ and evaders’ groups in this problem has countably infinite number of agents, i.e., N — co. Moreover, the
agents in each group can neither communicate nor observe the other agents’ states, which indicates a decentralized control
problem.
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Next, two cost functions are constructed to evaluate the performance of agents in different groups. The cost function for
agents in the group G, is defined as:

Va1 (2g1,i(t), ugn,:(t), mg1, mg2) 3)
7 [ 201 Qg +uly i (T)Rg1itigri(T)
:/ +@g1 (mg1(2g1,i(7), 7), g1,i(T)) dr
0

=2 (Mg2(2g1,i(7), 7), 041,i(T))

where mg1(7) and mgyo(7) are defined as mass, which are the probability density function of group Gi’s and G,’s states,
respectively. ®g1 (mg1(2g1,i(7),7), 2g1,:(7)) and Pgo (Mmga(241,i(7),T), 241,:(7)) are the Mean Field coupling functions
that represent the influence on agent ¢ from group G; and Gs, respectively. @ and R are symmetric positive semi-definite
and symmetric positive definite matrices, respectively, with compatible dimensions.

Similarly, the cost function for agents in group G is given as:

“4)

Vo2 (242,5(t), tga (1), mg1, mgo
= +®@g2 (Mg2(2g2,;(T),7), 42,5 (7)) dr
—Pg1 (mg1 (22,5 (7), ), 22,5 (7))

Considering the two groups are competitive while the agents in the same group share the same goal (but non-cooperative),
the optimal strategy for one agent must satisfy two conditions: 1) the agent’s control input belongs to a joint action set
which is the saddle point of the groups’ cost function; 2) the agent’s control input must reach the Nash equilibrium with
other agents in the same group. The two conditions for the pursuers’ group G; are equivalent to the following equation:

)
v [ 2L, . Qorga; +uly (T)Ryougs ;(T)
/ 92,7 % 92+g92,j 92,7 g2%g2,5
0

Vg*l (xgl,i(t)vu;u(t)amglamgz)

. *
= mf sup Vql (xgl,i7 U’ql,i? mgl, mgg)
Ugl ugo :

< Vg1 (21,55 Ugt iy Mg1, Myg2) &)

with u7; ; € ug1. The optimal cost function and control input for agents in G can be similarly obtained as:

Vo (%24‘(75)7 Ups (1), M1, mg2)

. *
= inf sup Vo (xgzj, Uga js Mg, mgQ)
Ugl ugo

< Vo2 (mg2,5, ug2,5, Mg1, Mg2) (10)

*
where ug, ; € ugo.
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Fig. 2. The structure of the ACM algorithm for the pursuers

III. MEAN FIELD OPTIMAL STRATEGY FOR MASSIVE MAS PURSUIT-EVASION GAME

In this section, the ACM algorithm is introduced in detail. The structure of the proposed algorithm for pursuers is illustrated
in 2] To obtain the optimal strategies for the agents in two groups (i.e., (9) and (I0)), the Mean Field Game theory and
Adaptive Dynamic Programming (ADP) has been adopted. The Mean Field Game theory can estimate the mass in and
(@) by the Fokker-Planck-Kolmogorov (FPK) equation [8]. Inspired by the most recent mean-field game approach such as
[11] and [12] , a coupled HJI-mutli-FPKs equations has been constructed in (3)-(8) for obtaining the optimal strategy with
large population of multi-agent system. The H (-) functions in (5) and (7) are the Hamiltonian which can be represented as:

Hg1 (2g1,i, OVa (2,6, ug1,i))

= ®g1 (myg1, Tg1,i) — Pg2 (g2, Tg1,i)

T T .

+ 241, Qq1T g1, + ugr Rgriugri + Vo (Tg, 05 tg1i) Tgr,i (11)

Hgs (242,35, 0Va (Tgy 5, Ug2,5))

= Dg2 (Mmyg2,242,5) — Pg1 (Mg1, g2,5)

T T .

+ o jQg2% 2,5 + Uga Ry jugaj + OV (g, 5, g2 ) Tg2,5 (12)
where @41 (Mmg1,xg1,:) and @go (Mga, 42 ;) are the mean field function which calculates the affect from all other agents
in the same group.

It has been shown by numerous studies (e.g. [13]) that the solution of the coupled HJI-multi-FPKs equations yields the
e—Nash equilibrium, i.e.:

Va1 (Igl,i,uzu, Ug,—i) < Vg1 (Zg1,i5 Ugt,is Ugt,—i) + EN

Vo2 (%925, uga. jr ug2,—j) < Vg2 (225, Ug,j, Ug2,—j) + €N
where e is the error that goes to zero as N goes to infinity [13] thus yield (9) and (I0).

Similar to [14], the optimal control for agents in two groups can be solved separately as:

u;l,i(mglﬂ')

OViy1i (Tg1,6,Ug1,6,Mg1,Mg2)
8x917i

1__
= *5R9119§1 (g1,i) (13)

u;2,j (%ZJ‘)
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Remark 2. To obtain the optimal control, the coupled HJI-multi-FPKs equations need to be solved simultaneously. However,
the HIJI equations ((3) and (7)) as well as the FPK equation ((6) and (§)) are two complicate infinite-dimensional Partial
Differential Equations (PDEs) whose solutions are difficult to solve analytically. Therefore, inspired by adaptive dynamic
programming (ADP) and reinforcement learning techniques, a novel neural network based Actor-Critic-Mass algorithm has
been developed to learn the coupled HJI-multi-FPKs equations’ solution online in this paper.

IV. ACTOR-CRITIC-MASS BASED OPTIMAL PURSUIT-EVASION STRATEGY DESIGN
A. Optimal ACM estimator design

The proposed reinforcement learning ADP algorithm can be implemented into an Actor-Critic-Mass structure which
consists of five neural networks for individual agent. For the pursuer agents in the group Gi, the actor neural network is
utilized to approximate the solution of optimal control (i.e. (I3)); the critic is designed to approximate the solution of the
HIT equation (i.e. (3)), and the mass neural network is employed to approximate the solution of the FPK equation (i.e. (€)).
Except for the three neural networks for the group G, the pursuers also needs to estimate the optimal value function, mass,
and optimal strategy for evaders since the estimated states and optimal strategy of evaders are also considered in the cost
function symmetrically. Similarly, the evader agents in the group G, admits the same neural network structure and update
laws so we will use the agents in the group G; only to illustrate the controller design.

According to the universal approximation theory of neural network (NN) [15], the optimal cost function, decentralized
strategy and mass distribution function for pursuers can be approximated as:

Vor,i (Tg1,is Ugtis Mg i, Mg2,i)

= W\j/:gl,iqsv,gl,i (@g1,i, Mg1,iy g2,i)
dg1,i(xg1,6(t) = Wi i (8)bu,g1,i (Tg1,6,1i0g1,4, 1)
tg1i(Tg1it) = W 1 (0)Om.gri (Tgrit)

Besides estimating the evaders’ mass distribution required in (I3]), the pursuers also need to maintain two neural networks
for the evaders’ optimal cost function and mass distribution, i.e.,

15)

Vg2,i (fgz,z', ﬁgz,i, mgl,z’, mgQ,i)

= W\T/:gZid)V,gQ,i (@g2,i, g1,i g2,i)

Q2,1 (T2, (t) = W i (6)bug2,i (Tg2,i,1Mg2,:, )
Mg2,i(Tg2,irt) = Wh 1o i(6)m.g2.i (Tg2,i,1)

Substituting (I5) into (3)), (13), and (6), equations will not hold. The residual errors will be computed and used to tune
the actor, critic, and mass NNs along with time, i.e.

(16)

€EHJI,i = (I)gl,i (mgl,$g1,z‘) - (Dg2,i (mg27$gl,i)

+ W1 ()T gr (17)
€FPK1, = qu;,gl7i(t)\i/m,gl,i (18)
. R 1 .

Eulyi = an;,gl,i(t)¢u,g1,i($i,mut) + §Rgll(xi)8m¢v,g17i (19)
where

~ ~ 021 : ~ ~

Wy, = OePvgr,i + %awwﬁﬁv,gl,i — Hyv

A~ 021 . ~

\Ilm,gl,i = at¢m,gl,i - %a‘rm¢m,gl,i - div(¢m,gl,iDpH)

with qgvygl,i = Ov,g1,i (Tg1,i,Mg1,i, 1), H=H (xgl,i,81(W$7g17i¢;v,917i)> and Hyyy being the left term such that H =

wI  H
V,gl,i wv-
Next, submitting (I6) into and (T4), one obtains:

EHJI2;i = (I)g2,i (mg27 ng,i) - ‘I)gl,z' (mgh xg2,i)
+ WY g2 () Wy g2 (20)

€FPK2,i = Wz,gQ,i(t)\IJm,gQ,i 21



where \ifv’gg’i and \i/m’gg’i is similarly defined as in and .
By applying the the gradient descent algorithm, the ACM NNs’ update laws can be derived as

7 T
\I}V,QLZeHJILi

Critic NN-1: Wyrg1 = —apg1.i— 0 (22)
L+ [[ Wy g1f?
2 \if ’eT i
Mass NN-1: Wm,gl,i = —am,gl,iw (23)
L [[ Wi, g1,
: bug1.i(Tgri g1, t)ely
Actor NN-1: Wy, g1 = —uy g1i——— ' = ’ (24)
ot BT A g, i (T 91,6, 12910, ) ]|
. : Uvg2,i€ti 11,
Critic NN-2: Wy ga; = —op goi——F— = (25)
L4 [[ Wy, go,4]?
< \if 'eT i
Mass NN-2: Wm,gg)i = —am,gg)iw (26)

1+ [ Wi g2,
where au, g1,i, Qm,g1,i> Qu,gl,is Ch,g2,is Qm,g2,i» Qu,g2,; are the learning rates.

Theorem 1. (Closed-loop Stability) Given an admissible initial control input and let the actor, critic, and mass NNs weights
be selected within a compact set. Moreover, the critic, actor, and mass NNs’ weight tuning laws for pursuers in G; are
given as (22), 25), 24), (23), and (26), respectively. Then, there exists constants s g1,i» Qm,g1,is Qu,gl,is Qh,g2,is Cm,g2,i»
vy, g2,i» such that the system states x4 ;, actor, critic, and mass NNs weights estimation errors, Wy, 415, Wi g1,i» W g1,is
WV,QQJ', Wm7g27i, and Wu7g27i are all uniformly ultimately bounded (UUB). In addition, the estimated cost function, mass
function and control inputs are all UUB. If the number of neurons and NN architecture has been designed effectively, those
NN reconstruction error can be as small as possible and trivial. Furthermore, the system states x4y ;, actor, critic, and mass
NNs weights estimation errors, ngl,i, Wm,gu, Wu,gl,i, Wv’gzyi, Wm’gzyi, and W%gg’i will still be asymptotically stable.

Proof. Omitted due to page limitation. O

V. SIMULATION RESULTS

In this section, the proposed decentralized adaptive pursuit evasion strategy has been evaluated under the noised environ-
ment. The map we use is the 2-D map of the Yosemite valley in California. A total of 100 pursuer UAVs and 100 evader
ground vehicles were employed, with initial velocities set to zero, and positions randomly distributed on the map. The
pursuer UAVs intended to intercept the ground vehicles while the evader ground vehicles do the opposite In this paper, we
defined a successful interception as the overlap of the centers of the two groups (i.e. 3t € [0,T], s.t.% Zjvzl Tgo,;(t) =
N i TaLa(t).

To demonstrate the effectiveness of the proposed algorithm, we limit each agent’s observation ability so that only his own
states can be observed. Moreover, all agents are not allowed to communicate in this experiment set.

The nonlinear stochastic system dynamics functions for pursuers are selected as

fﬂx)—{ PR ] 9o (@) = m 27)

—§$1 — 53}2

where z = [z 72]T € R? represents the agent’s position.
The evaders’ affect function G2 (21392) is defined as the average position, i.e.,

1 N
Gon (22(t) = 5 D %92, (t) ~ E[mya] (28)
j=1

where m 9 is the mass function (i.e. probability distribution function of states) for evaders. When N — oo, the approximately
equal sign can be replaced by equal sign.
Next, the system dynamics functions for evaders are selected as

foala) = {xl i 2”"} L gp) = H (29)

2x1 + 22

Similarly, the pursuers’ affect function is defined as

N
1
G (g (t) = N ngl’j (t) ~ /@1 Tg1Mmg1da g (30)
j=1



(c) t = 70s (d) t = 100s

Fig. 3. Evolution of the overall trajectory at different times. The blue and red curves represent the trajectory of all pursuers and evaders respectively. The
magenta and yellow curve represent the average trajectory of pursuers and evaders respectively.

The diffusion rate in (I)) and (2) are set to 0.02 for all agents in both groups. The Mean Field coupling functions in (3)
and (@) are defined as

D g1 (mgr, Tg1,) = |91, — Elmgr(zg14,1)]||

Do (my2, Tga) = |92, — Elmga(zg,,1)]||”

where functions ®,4; and ®4» drive each individual agent to keep cohesion with their population center. The parameters in
the cost functions are selected as Qg1 = Qg2 = 2[5, and Ry = Rgyo = 21>.

The agents’ initial positions were randomly generated by a 2-variant normal distribution. Furthermore, to estimate the
solution of HJI equations (i.e., (8) and (7)), FPK equations (i.e., (6) and (8)), and optimal control input (i.e., (T3)), 2 critic
NNs, 2 mass NNs, and an actor NN are constructed. Additionally, a random noise is injected to the control input from 0Os
to 50s to increase the NN approximators’ exploration.

The overall trajectory of the pursuers and evaders at different time instants are shown in Fig. 3] The initial positions are
first shown in Fig. [3(a). Then the agents’ positions at 5s, 70s, and 100s are plotted in Fig. [B(b)-(d). From Fig. [3] it’s not
difficult to observe that the pursuers are able to track the evader and the evaders can escape successfully. However, after
70s, the distances between pursuers’ and evaders’ remain similar until the game ends. The reason is that the equilibrium
point between two groups (i.e. saddle point of cost function) is reached. We will further analysis the equilibrium point from
two aspects: 1) the distance between en two groups, 2) the coupled HJI-multi-FPKs equation error.

Firstly, the distance in x axis between pursuers and evaders are plotted in Fig. @ The distance in this figure is defined
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Fig. 4. States difference of pursuers and evaders. The red curve represent each agent’s distance and the green curve is the average distance

as:

Individual distance: &;(t) = xg1,:(t) — z42,:(t)
_ 1 1 &
Average distance: £(t) = N 1221 Tg1,i(t) — N j;%zj (t)

The green curve (i.e. average difference) in Fig. [d demonstrates that after 80s, neither the pursuers nor the evaders can
benefit their groups by changing the strategies. This stable point proves that the saddle point (i.e. Nash equilibrium) of the
cost function is achieved.

Secondly, the Nash equilibrium point is further examined by the error of the HJI equations (I7) (20). Due to the limit
of this paper’s size, we only plot pursuer 1 ’s HJI equation errors in Fig. [f] From Fig. [§] we can clearly observe that the
HII equation errors are bounded near zero after about 53 seconds. The convergence of HJI equation error indicates that the
optimal cost function (i.e. Nash equilibrium) is approximated by the critic NN successfully.

Finally, the mass NN’s performance is shown by the FPK errors (i.e. equation (I8) and 21)) plot in Fig. [5] Similarly to
the HJI equation errors, we only plot pursuer 1’s and evader 1°s HIJI error for convenience. Figure [5] shows that the FPK
equation error converges near zero after 55s for both agents. The convergence of both FPK equations and HJI equations
proves that a good approximation of the optimal cost function, group population distribution (i.e. mass) has been successfully
obtained by the proposed ACM algorithm. Moreover, both the distance and HJI-multi-FPKs equations’ error demonstrated
the e— Nash equilibrium point is reached. This proves the fact that the online ACM algorithm can effectively solve the
decentralized optimal control for massive multi-agent persuit-evasion games.

VI. CONCLUSIONS

In this paper, the decentralized optimal pursuit-evasion strategies with two large scale groups of pursuers and evaders has
been investigated. A novel online Actor-Critic-Mass (ACM) algorithm with five neural networks are designed for individual
agent to calculate the decentralized optimal strategy which satisfy the saddle point of the cost function between groups and
the e— Nash equilibrium in the group. The five neural networks can effectively approximate the solution of the HJI equation,
the population mass (i.e. the solution of FPK equation), the decentralized optimal control, estimate the mass of the other
group, and sample the value function of the opponent’s group. The proposed strategy can effectively tackle the “Curse of
dimentionality” as well as eliminating the problem of communication limitation for massive MAS. Moreover, a series of
numerical simulations has been conducted to demonstrate the optimality of the strategy. In the future, a pursuer group based
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Fig. 6. HII equation errors of pursuer 1

on massive UASs will be designed as a testbed to further evaluate the performance of the proposed decentralized optimal
pursuit-evasion strategy for massive MAS.

APPENDIX
PROOF AND DETAILS

We discuss the optimal ACM as a pursuer in this manuscript but the evaders can be similarly analyzed. A virtual evader
is considered in this manuscript and will be abbreviated as “evader”. Given the system dynamics:

Pursuers: dzg1; = [fgl (Xg1,i) + 9g1 (Tg1,i) ug1,s + Gg2 (a:gg)]dt + 0g1,idwgr ; 31
Evaders: duga ; = [fg2 (g2,5) + 992 (€g2,5) Ug2,j + Gg1 (Tg1) |dt + 042, jdwga,; (32)
Neural network representation:

Pursuer Critic NN: V1 ; (41,5, Ug1,i, Mg1,is Mg2,i) = W\;gl,ifﬁmgl,i (g1,i, Mg1,i, Mg2,i) + €I (33)
Pursuer Actor NN: ug1 ;(241,4(t)) = ngyi(t)gbu’glyi (Tg1,iyMg1,i,Mg25) + Emi (34)
Pursuer Mass NN: mq ;(241,i,t) = W£7g17i(t)¢m791,i (Tg1,ist) + €uti (35)
Evader Critic NN: Vo j (2g2.j, Ug2,j, M1, Mg2,5) = Wagz,j¢v’gg)j (@g2,5, Mg1,j,Mg2 ;) + EHII2,j (36)
Evader Actor NN: wgo j(242,;(t)) = WUTQJ- (t)Pu,g2,5 (€g2.5, Mg1,5,Mg2,5) + Em2 (37)
Evader Mass NN: mgo (242 5,t) = Wﬁgzj (t)Pm.g2.5 (Tg2,5:t) + €ua,j (38)

where €p 11,0, EFPK1,i> Eulyi> EHJII2,j» EFPK2,j, and €,2 ; are the reconstruction errors which are related to the NNs’
structures. Note that the evader actor NN is just for proof purpose, not maintained in implementation.
Neural network estimation representation:

Pursuer Critic NN: Vi (2g1,6, lig1,, 91,6, 11g2,6) = Wik g1, i0Vig1,i (Tg1i gti g2,:) (39)
Pursuer Actor NN: 4g1 ;(241,(t)) = Wlﬂ,i(t)éu’gl,i (@g1,i, Mg1,i, Mg2,i) (40)
Pursuer Mass NN: 741 (241,i,t) = Wgygl’i(t)ém,gl’i (g1, 1) (41)
Evader Critic NN: ng,j (Xg2,5, Ug2,j, Mg1,5, Mg2.5) = W‘;gg)jgf)v,ggd (Tg2.5,Mg1,5,Mg2,5) (42)

Evader Actor NN: dga,j (242, (t) = Wik (t)bu.g2.5 (Tg2,5,1091,5, 110g2,5) (43)



Evader Mass NN: 1ivga,j (22,5,t) = Wb 5 () bm.g2.j (Tg2,5, 1)

Estimation error:

where

with ]:]gl =

_ N . 3T i N X
e, = Pgri (M1, Tg10) — Py, (Myg2.i, Tg1.0) + Wy g1, () Wvig1i(Tg1i, Mg1iy Mg2,0)

EFPK1,i = W£7g17i(t)\11m,gl,i(xgl,i> Vgi,i)
. R R . 1__ S
€yl = W'yqy;,gl,i(t)gbu,gl,i(zgl,iamgl,ia Mg2,i) + iRgll(mgl,i)angl,i
er 2 = Py (Mo, Tga) — goj (Mg2.j, Tg2.5) + Wik o () Vv g2 5 (2g2.5, T2 5, g2,

erpi2; = Wi 020 W g2.5(Tg2.5, Vy2 ;)

. R ) ) 1 .
Cusj = Wi 4.5 (O)Pu g2, (92,5, Thga j, g2 5) + 53921(33g2,j)3z‘/g2,j

2
A ~ ag : ~ A
A ~ gl
Uy g1, (Tg1,i, Mgl ,is Mg2,i) = Ordvigli + ~5 Oza®v,g1,: — Hwv1
2
R N 5.6 Ugl’ia A A N
‘Ilm,gl,i Lgl,is ‘/gl,i = t¢m,gl,i - 9 ww¢m,g1,i - dlv(¢m,gl,iDpH)

Hg, (Igl,iv oV (Igl,ia“gl,i)) =®n (mglvmg% IgLi) — Qg0 (mglamg%xgl,i)

T T .
+ 241, Q1T g1, + Ugi Ry1,itgri + OV (g, 6, Ug1 i) Tg1,i

2
~ ~ g . ~ ~
A A 92,5
Uy 02,0 (g2, g1 iy Tgai) = Oy g2 + -5 Oz ®v.g2.j — Hwvo
2
. . - 05a. s .
Ving2,j (%925, Vo2 ) = Or0m.g2j — =5 Ouabmg2,j — div(dm,g2,; DpH)

Hyo (242,5, 0Vi (2,5, Ug2,5)) = Pg2 (Mg1, mga, T2 5) — Pg1 (mg1,mg2, Tg2,5)
T T .
+ 29 jQg2Tg2,j + Uga Ry2 juga j + OVy (g, 5, Ug2,5) Tg2,5

H

term such that ﬁgl = W‘;QMHWW, Hyy = Wagljﬁwvg.
The update law for neural networks:

\i’VgLiEII;JILz‘
(€7 e ——
L+ [[Wy,g1,:l?
\I’m,gl,iengu
Uy ————————
L+ [ Wm,g1,i12
¢u,g1,z‘($gl,i, mgl,iv mgz,i)efl,i
L+ [|@u,g1,i(Tg1,05 12g1,0) |2
a, ‘IIV,ngeEle,j
L+ [[Wy 62,52

Critic NN-pursuer: Wvgu = —

Mass NN-pursuer: megl,i = —

Actor NN-pursuer: W%gl}i = —ay

Critic NN-evader: WVQQJ' = —

\PM,927J'€£PK2,]‘
OéynA—2
L4 ([ W92,
Dug2.i(Tg2,5, g1 5, Mg2.5) e ;
L+ |fu,g2,i (22,5, g2, i) ||?

Mass NN-evader: W,,, go.; = —

Actor NN-evader: Wu7g2,j = —qy

(44)

(45)
(40)

(47)
(48)
(49)
(50)
(G

g1 (ﬂcgl,i,31(W\;gl,i</3v,g1,i)), Hyp = Hypo (ng,j;aw(W\z':QQ’jéV,gQ,j)) and Hyvi, Hwyo being the left

(52)

(53)

(54)

(55)

(56)

(57)

Because each agent is homogeneous, we drop the subscript of the agent number ¢ and make the following simplification
on the notation, Tgli — T1, fgl (-Tgl,i> — fl(.’[?l), gg1 (xgl,i) — gl(.’lﬁl), uglyiA—> U, qui — X1, WV7g1,i — Wy 1,
Wingti — Wnl, Woyg1s — Wul, ans — an, Mgy — M1, mgrs — mi, Vgio — Vi, Voo — Vi, g1 — da,
Ugl,i — UL, €HJI1,i — €HJI1> €uli —7 €uls EFPK1,i —7 €FPK1, EHJIli — €HJI1> €ul,i —7 €ul> EFPK1,i —7 EFPK1,
Ggl ($g1) — G4, Ogl,i = 01, dngi — dwq,

fgg (1‘927]‘) — fQ(.Z’Q), 9g2 (1‘927]') — gg(l‘g), Ug2,j — U, Tg2,j — T2, Wv7g27j — Wy 2, Wm,g2,j — Wn2, ngg,j —
Wu2, anj — ap, Mg j — M2, Mga; — ma, Voo ; — Vo, Vo i — Vo, lgoj — U2, uga; — U2, €HgJI2,j —> €HJI2,
€u2,j — €u2, EFPK2,j — €FPK2, EHJI2,j — EHJI2> €u2,j — Eu2s EFPK2,; — €FPK2, Gg2 (Tg2) = Ga, 0425 — 02,



d’wggd‘ — dwo,

Theorem 2. (Convergence of pursuer’s Critic NN weights and optimal cost function_estimations) Given the initial critic
NN weights, Wy, in a compact set, and let the critic NN weights be updated as Eq. shows. Then, when the critic NN
tuning parameters ¢, satisfies the condition, o, > 0, the critic NN weights estimation error WVl and the cost function
estimation error V; = Vi — V; will be uniformly ultimately bounded (UUB) where the boundedness can be negligible if the
NN reconstruction errors are trivial. While the number of neurons and NN architecture has been designed perfectly, the NN
reconstruction error can be as small as possible and trivial. Furthermore, the critic NN weights and cost function estimation
errors will be asymptotically stable.

Proof. Consider the following Lyapunov function candidate as:

1 - -
Lyi(t) = 5 e {WE (W (@) | (58)
Take the first derivative on the Lyapunov function candidate, one obtains:
. 1 ~ * 1 2 ~ ~ 2
Lya(t) = 5 e {WELOWn @) | + 5 e {WE OB 0 | = o (I 0OWn @) | (59)

Substitute the critic NN weights update law into (39), we get

Wy (21,100, 1700) € 51 }

1+ \i’\Tn (1,101, 709) Uy (1, 7701, 1712)

Lvl(t) = (p tr {W$1 (t) (60)

Let ® (1, 1701, 172) = Pg1i (1916, Tg1,0) —Pga,i (Mg2,6, Tg1,i), and D@1, m1, ma, 11, g) = (21,1701, 1702) — P (21, M1, M02).
Substitute ®(x1,m1,ma, My, m2) into critic NN’s error function (@3), we get
O (x1,mq,m2) + é(xl,ml, Mo, M, Ma) + ng(t)\ilVl (z1,Mm1,M92) = emin (61)
Since the correct estimated optimal cost function leads to the HJI equation equals zero, we have
O(x1,m1,m2) + Wg(t)\llm (x1,m1,ma) =0 (62)
Substitute (62)) into (6I)), we have
~WE@R) Oy (z1,m1,m2) — emyn + (1, M1, ma, 11, 102) — Wik () Uy (21,701, 79) = e (63)

Let WVl(t) =Wy (t) — WVl(t), and @Vl(xl,ml,mg,fnl,mg) = Uy (21, my,ma) — \izm(xl,mhm). After manipu-
lating terms in (63]), we obtain
— Wg(t) (\ilVl (x1,M1,m02) + ‘i’m(xh mi,msy, m17m2)>
—emgn + (21, my, ma, 1, he) + Wik () Wy (21,100, 172) = eman
D(21, M1, ma, 11, M2) — WEBv (21,1001, 112) — WEWvy (21, ma, ma, 1, he) — ey = emgn (64)
where g 571 is the error resulted from the reconstruction error.

Let’s further simplify the notatio~ns as: \ilv1 (.2?1, ma, mg) — \i/v1, \I/Vl(l‘l, mi, Mo, M1, Thg) — \I/Vl, Uy (1‘1, mi, mg) —

\IJV17 (b(xlamlvm27mlvm2) — P

Substitute (64) into (60),
. . N T
Wyq |:(P — qujv1 - quJVl - 5HJIl:|

Ly1(t) = aptr { WL (1)

1+ 9T Uy
= ‘i’m(i’T z ‘i’Vﬂi’T =
=y tr WT t)———————— — ayp tr WT t,\i‘{lw t
h { V1()1+\D€1\I,Vl h V1()1+\I]€1\pv1 vi(t)
=~ \iJVl\i/T = \iJVlET
—aptr{ Wik, (t) ——2—WTL (t) § — ap tr { WL, (1) — =L 65)
h { Vl()1+\11€1\11‘/1 Vl() h \/1()14_\1151‘1/‘/1 (

Apply Cauchy-Schwarz inequality on (63),

: . Ty &7 . Uy 07,
LVl(t) = Op tr W‘rl;l (t)% — Qp, tr W‘j;l (t)MWV1(t)
1 + ‘I,V1\I/V1



N Uy OF, y oL
— o tr{ Wiy (ﬂ%Wm(t) —aptr{ W, (t)M
1+ \I/Vl\I’\/l

o 2 . 2
\I/v1H 2 "PWH 2 Uy 0T
@ . o - -
< =S W) - s [ )+ ante § I (0
1+ \I/V1H 1+ '\IJVlH 1+ Wy, ¥va
o o |
a VlH < 2 < Uy U7
N 2 + ap, N 3 = Zh R 3 HWVl(t)H - ahtr{ng(t)‘ilT‘leVl(t)
el a o] e e
- - L2
T T .
B oY I k1 PV L1 (RN (PR S P
Qap, ~ + ap, ~ 1 - 3 Vl(t) ay tr WVl(t) s
1+ ‘I’V1H 1+ ‘I’V1H 1+ \I/V1H LTy, P
e e
. 2 N 2 (66)
1—|—H‘I’V1H 1+ ‘va1H
Combining terms in (66)),
. «a VlH ~ 2 a Wi ()0 ~ o} Wy (t) 0 ~
Lyy(t) < —Zhﬁ HWVl(t)H — Ah 5 v1(2) 2 B Ah , v1(2) vl ()5,
Lt Lt Lt
) § 2 & 2
o | %] 7] cronl
- Ah 3 V1(2) S —epan| +on —s tan — , H H{n” 3 (67)
L[] N Lt B L e d
—_———
EVHJII
Drop the negative terms in the right side of the inequality yields,
A 2 ~ 112 - 2
e o Ll e ] [
Lvi(t) = == —— H (t)H + ap, —— t o — 5 tevhII (63)
1+ \va1H 1+H\IJV1H 1+ \I/V1H

Assume that the coupling function ¢(x1,m1,ms), and the function Wy (x1,m1,my) are Lipschitz and the Lipschitz
constant are Lg, Lyy. (68) can be simplified as

L2
. ‘I/V1H . 2 2] {15701 72 |12
LVl(t)S_% R 2 HWV1(t)H + ayp, [L<I>+L\I/VHM/:V” ]2||m1m2|| +evagr
1+ \IJV1H 1+ \IIV1H
L2
o ‘I’V1H B 2
—*jﬁHWw(t)H + By () (69)
]

According to the Lyapunov stability analysis, the critic NN weight estimation error will be Uniformly Ultimately Bounded
(UUB) with the bound given as

. 401+ || Ty |2
Wyl < V WL D b ) = b 1) 0)
an | ¥yl

O

We also derive the bound of estimated optimal cost function as follows:
Let V; = V7 — V4, and substitute (33), (39), one obtains,

Vi(t) = WE (v — WE (H)dvi + enon
= W\zjl(t)(ngl + ¢A5V1) - WV1(75)T¢A5\/1 +emin
=W (O)dvi + Wi (Ovi + enan (71)




Assume the critic NN activation function is Lipschitz, and the Lipschitz constant is denoted as Lg4,. The value function
estimation error can be represented as:

IVi@t)[| = [[WE (t)dvi + Wi () dvi + emanl]
< W@ lllovall + Lo Wy i (@) || Imamia]| + llem sl
< bwv(®)l[¢vill + Loo [Wyr ()|l lmiamiz| + leminll = bva(t) (72)

Theorem 3. (Convergence of virtual evader’s Critic NN weights and optimal cost function_estimations) Given the initial
critic NN weights, Wy, in a compact set, and let the critic NN weights be updated as Eq.|55| shows. Then, when the critic
NN tuning parameters o, satisfies the condition, o, > 0, the critic NN weights estimation error WVQ and the cost function
estimation error Vi = V4 — V5 will be uniformly ultimately bounded (UUB) where the boundedness can be negligible if the
NN reconstruction errors are trivial. While the number of neurons and NN architecture has been designed perfectly, the NN
reconstruction error can be as small as possible and trivial. Furthermore, the critic NN weights and cost function estimation
errors will be asymptotically stable.

Proof. Similar to above. O

Theorem 4. (Convergence of pursuer’s Mass NN weights and mass function estimation): Given the initial mass NN weights,
Wm1(t), in a compact set, and let the mass NN weights be updated as Eq. shows. Then, when the mass NN tuning
parameter o, satisfies the condition, «,, > 0, the mass NN weights estimation error Wml and mass function estimation
error my = mq — ™y will be uniformly ultimately bounded (UUB) where the boundedness can be negligible if the NN
reconstruction errors are trivial. While the number of neurons and NN architecture has been designed perfectly, the NN
reconstruction error can be as small as possible and trivial. Furthermore, the mass NN weights and mass function estimation

errors will be asymptotically stable.

Proof. Consider the following Lyapunov function

1 - -
Lya() = 5 tr {Wﬁl(t)wml(t)} (73)
Take the first derivative on the Lyapunov function candidate, one obtains:
. 1 ~ Z 1 z ~ ~ B
Lt (1) = 5 e { Wi OWona(8)} + 5 b0 {WIL (W (0} = o0 { WL, ()W ()} (74)
Since the correct estimated optimal cost function leads to the FPK equation equals zero, we have
Wi ()W (21, V1) + eppr1 =0 (75)

Combine and (@6), we have
W ()1 (21, V1) — erprr — W ()W (21, ‘71) = eFpPK1 (76)

Let Wml(t) = Wpna(t) — Wml(t), and \ilml(xl, i, Vl) =V, (x1, V1) — \i/ml(xl, Vl) After manipulating terms in (76),
we obtain

- Wn7;1(t) (‘i’ml (961,‘71) + ‘i/ml(ﬂm Vl,V1)> — EFPK1 T+ Wyz:l(t)\i’ml (9517 Vl) = €FPK1
~ W0, (331> Vl) — WL U (21, V1, V1) — €rpr1 = €FPKL a7)

where eppg is the error resulted from the reconstruction error.
Let’s further simplify the notations as: Ut (xl, V1> — U1, ‘~I’m1($1, Vi, Vl) = U1, ot (1,V1) = Upn
Substitute into (74),
. . - T
U1 [—WZ;l\Ilml —WE U, — 5FPK1]
1+97 ¥,

. Uy 0T . ¥, 07 . el
= —amptr {Wrzﬂt)MWml(t)} — Qyp tr {qur:1 (t)l—i-\ilng/lW’”l(t)} — Qu tr {Wg;l (t)}EFPAKl}
m1l*ml ml*ml

Lml (t) = Oy, tr W};l (t)




Apply Cauchy-Schwarz inequality on (78),

L1 (t) = —u tr {ng(t)”l"ﬂwml(t)} — ap tr {WT (t)ml’”lel(t)}

14+ 9D v, 1+9T W, 4
T ®77 L
— Qpp tr ng(t)w
1+vl W,
. 2
‘I’mlH 2 ‘I’mlu 2 v 9T
(07 = (679 z T ml*mi
<o Bl o - e A 0 - e {0t
<-3 HQH )| - i 1O = em tr WL 2 W (1)
ml ml m
R B et PR L b
PN | it RSPV | Rt 77"72 HWml(t)H — oo tr { W (¢ )M
1+H\I/m1H mlH S 7 L+ W Uom
lerpitl® lerpiil®
AL+ g (79)
W ]
Combining terms in (79),
. Qm \I/m” . 2 Qm W, l(t)Aml 2
Lo (t) < =5 [ W (]| - ——g || S — WA (0T
WmlH 1+ H\I/ml
- 2 N 2 5
S LS e
& 1(2) L epprat| tam g, el (80)
mlH \IjmlH \I]mlH
ENFPK1
Drop the negative terms in the right side of the inequality yields,
- 2
e el
L (8) < =S W ()| + am— 5 +evrpra 81)
Lt o
Assume that the function W,,; (21, V1) are Lipschitz and the Lipschitz constant is L. @) can be simplified as
. 2
v 1’ 2 201177 112
. Qm m ~ Lym||Wn %
Lml(t)S*TﬁHWml(ﬂH + o ” A1” ”21” +enrpPi1
. 2
am \I/ml ’
<t L W ] + Bt (82)
|

According to the Lyapunov stability analysis, the mass NN weight estimation error will be Uniformly Ultimately Bounded
(UUB) with the bound given as

[Wona || < \/ mel(t) = by (t) (83)

O [|Wim1]?
O

We also derive the bound of estimated mass function as follows:
Let my = my — My, and substitute (34), @0), one obtains,

1 (t) = WE () pm1 — W 1 + erpica
= Wi (t)dm1 +erpri (84)



The PDF estimation error can be represented as:

71 (8)]| = Wiy (8) b1 + erpr
< Wit (&) [|ém1 || + llerpil]
S bwm Ol émill + llerprill = bma(t) (85)

Theorem 5. (Convergence of virtual evader’s Mass NN weights and mass function estimation): Given the initial mass
NN weights, ng (t), in a compact set, and let the mass NN weights be updated as Eq. shows. Then, when the mass
NN tuning parameter ., satisfies the condition, v, > 0, the mass NN weights estimation error ng and mass function
estimation error ms = mgy — Mo will be uniformly ultimately bounded (UUB) where the boundedness can be negligible
if the NN reconstruction errors are trivial. While the number of neurons and NN architecture has been designed perfectly,
the NN reconstruction error can be as small as possible and trivial. Furthermore, the mass NN weights and mass function
estimation errors will be asymptotically stable.

Proof. Similar to above. O

Theorem 6. (Convergence of pursuer’s Actor NN weights and optimal Mean Field type of control estimation errors): Given
the initial mass NN weights, Wy, ina compact set, and let the actor NN weights be updated as Eq. [54] shows. Then, when
the actor NN tuning parameter «,, satisfies the condition, a,, > 0, the actor NN weights estimation error W, and optimal
control estimation error @y = w1 — %1 will be uniformly ultimately bounded (UUB) where the boundedness can be negligible
if the NN reconstruction errors are trivial. While the number of neurons and NN architecture has been designed perfectly,
the NN Reconstruction error can be as small as possible and trivial. Furthermore, the mass NN weights and actor function
estimation errors will be asymptotically stable.

Proof. Consider the following Lyapunov function
Loi(t) = %tr {WhOWa(} (86)
Take the first derivative on the Lyapunov function candidate, one obtains:
L (t) = 5 o {WEOWa ()} + 3 o (WA T} = o0 {5 (W (1)} (87)
Since the correct estimated optimal cost function leads to the optimal control equation equals zero, we have

Vi (1,701, g)
8131

Let Wul(t) = Wul(t) — Wul(t), and &ul(ml,ml,mg,ml,mg) = ¢u1($1,m1,m2) — d)ul(ajl,ml,mg). Similar to the
critic and actor NNs, after manipulating terms, we obtain

1__
W () Gur (x1,m1,ms) + 5391191(131) +eur =0 (88)

1, Vi (z1, 1001, 1g)

Vihéu (x1,101, 1) = Wik o (w1, M1, ma, 100y, 12) — 5391 gl(xl)T — €yl = €yl (89)
1

where €, is the error resulted from the reconstruction error. _ ~

Let’s further simplify the notations as: d)ul (371, ml,mg) — (/bula ¢u1 (.%‘1, mi, Mg, ml,mg) — (bul’ ¢u1 (ﬂcl,ml,mg) —
¢u1

Substitute into (87),

. . - X T
. - Pul [*WuTlflsul —WEhou — %R;fgl(scl)‘g% - 5u1:|
Ly (t) = ag tr ¢ Wi (t)

1""_(&51(/;711
T éulégl T T éul@ggl
= —qut W Wu t — Qb W Wu t
a r{ ()1+¢ul¢u1 1()} o r{ ()1+¢ul¢u1 1()}
bur [* 191(961)8V1}T ;
—agtr { WL (1) o autr{WT (t)m} (90)
1+ (bul(bul 1+ ¢u1¢u1

Apply Cauchy-Schwarz inequality on (90),

: < Sur Pl < PurOL
Lui(t) = —a tr { W (1) —%22 W, — ay tr § Wi (1) —25—W,
1(t) o tf{ 1(t) T+ 0T, 1(”} o tf{ (t) T+ 0T, 1(”}



. AT
. Pul [lR_llgl(xl)%} . ;T
— ay tr { WE (1) 2 — on — Qg tr ng(t)d)*;“}
1 + ¢u1¢u1 1 + d)ul(/l)ul

~ 2 R 2 . . 1T
Pu1 . 2 Pu1 5 2 _ Put [lR}lm(ﬂcl)gZﬂ
<G ITe0] - [Tae] e i —=
L+ ’ Pu 1L+ |[Pur L+ ¢ P
HlR_lgl(m)aVl ’ “lR_191(331)8V1)’2 ‘fﬁ 1 ’ 2 2T
1 T 1 €z u u -~ =~ [
S st ] Sl S L W) —autr{Wfl(t)%Wul(t)}
1+ |du 1+ |éur 1+ ||éu L Guadu
_ s o2
Wh®én|  |WhE®S [ T
— - + ay - — %72 HWul(t)H autr{WuTl(t)gbu};“{}
L+ || pur L+ ||fur 1+ ||fur L+ ¢y 9u
lewal® [ERl
u —5 tay — oD
1+ ’ ¢u1 1+ (bul
Combining terms in (@T)),
Qyy ’(E)U1 2 Qi Wul(t)d)UI T 7 ’
L) < —St g W ()| - ——3 |2 — W (0du
1+ ‘ ¢u1 1+ (bul
- R 2
« Wi (t 1 oV
_ Tj . 11(2)¢u1 2Rg1 91(371)8 1
1+ ’ d)ul
2
~ R 2 -1 ovy
o Wa®é. Bt o) B al?
G 1(2)<l5 L +% it w4, le t|| i 92)
1+’¢u1 1+ ||Pu1 1+ ||Pu1
ENwul

Drop the negative terms in the right side of the inequality yields,

~ 2 .12
Pul 2 R_1191(€C1)%
Oy, ~ Oy g ox
Lu(t) < =St W@+ & —— e
1 + ¢u1 1 + ¢u1
.2
(bul 2 Ril 2 f/ 2
au T g z 1
< T N 3 HWul(t)H +Oéu|| gl 1( 1A)|| ||2 || + ENul
1 + ¢u1 1 + ¢u1
2
Qly ¢u1 ~ 2
< -2 W) + Buw) (93)
1 + ‘ ¢u1

According to the Lyapunov stability analysis, the actor NN weight estimation error will be Uniformly Ultimately Bounded
(UUB) with the bound given as

Wl < \/ Sl Y O — (94)

Q| fua [

O

We also derive the bound of estimated optimal control function as follows:
Similarly, let @3 = my — 44, and substitute (33), @4), one obtains,

W1 (t) = WE(t)bur + WE () hur + € (95)



The optimal control estimation error can be represented as:
[ ()] = Wi () ur + Wiy (8)dur + el
< Waur O @urll + LoulWer [[[[71m2]| + [lewal
< bwu(O)l|urll + Loul[War [ [mamiz|| + [[ew ]| = bur(2) (96)

where Ly, is the Lipschitz constant of the actor NN’s activation function.

Theorem 7. (Convergence of virtual evader’s Actor NN weights and optimal Mean Field type of control estimation errors):
Given the initial mass NN weights, Wy, in a compact set, and let the actor NN weights be updated as Eq. |57| shows. Then,
when the actor NN tuning parameter «,, satisfies the condition, «, > 0, the actor NN weights estimation error Wug and
optimal control estimation error iy = ug — U Will be uniformly ultimately bounded (UUB) where the boundedness can be
negligible if the NN reconstruction errors are trivial. While the number of neurons and NN architecture has been designed
perfectly, the NN Reconstruction error can be as small as possible and trivial. Furthermore, the mass NN weights and actor
function estimation errors will be asymptotically stable.

Proof. Similar to above. O
Before prove the closed-loop stability, a lemma is needed.

Lemma 1. Consider the system dynamics given in (B1), there exists an optimal mean-field type of optimal control, u}, such
that the closed-loop system dynamics, f1 (1) + g1 (1) u + G2 + o1 dwl

d
oA 4o (@) + Gt ;ﬁ] < —l? o7

where v; > 0 is a constant.

Lemma 2. Consider the system dynamics given in (32), there exists an optimal mean-field type of optimal control, u}, such
that the closed-loop system dynamics, f2 (x2) + g2 (z2) us + G1 + 09 d“’2

dw
xd [fz (z2) + ga (22) u* + Go + ozdtz] < —yelj@2|? (98)

where 2 > 0 is a constant.

Theorem 8. (Closed-loop Stability) Given an admissible initial control input and let the actor, critic, and mass NNs weights
be selected within a compact set. Moreover, the critic, actor, and mass NNs’ weight tuning laws for pursuers in G; are given
as (52), (53), (54), (33), and (56), respectively. Then, there exists constants v, Q. and oy, such that the system states
1, X2, actor, critic, and mass NNs weights estimation errors, WVl, Wml, Wul, Wvg, ng, and Wug are all uniformly
ultimately bounded (UUB). In addition, the estimated cost function, mass function and control inputs are all UUB. If the
number of neurons and NN architecture has been designed effectively, those NN reconstruction error can be as small as
p0531ble and trivial. Furthermore, the system states xi, xs, actor, critic, and mass NNs weights estimation errors, WVl,
Wints Wi, WVQ, ng, and W, w2 Will still be asymptotically stable.

Proof. Consider the Lyapunov function candidate as:

Loyom(t) = 5 tr {a] (21 (1)} e = {Wm( )va(t)} + 54 {ng ()W (¢ )} 401 {Wg(t)wul(t)}
+ B o a0} + 2 e W)} + i e (WL Woa ()} + 5 b w {WLOWa0) 9
According to the Lyapunov stability method taking the first derlvatlve of the selected Lyapunov function candidate
Leysm(t) = —tr {z{ (t)i1(t)} + —tr {#] (t)z1(t)} + —tr {Wm( HWy (t)} &tr {Wv1( )Wm(t)}

%tr{w 1<t>Wm1<t>} @tr{Wm1<t>Wm1<t>} @tr{v”v'ﬂ(t)v? (0} + @tr{m(t)ml(t)}

+ B faf aa0)} + D o)} + L [0 a0} + P (i 000}
+%tr{wiz<t>wm2<t>} T ~3;2<t>v~vm<>}+&tr{w OWa®)} + S (W50

HW,
= utr {x] ()i (t)} + Batr {W\% (t)ﬁ/m(t)} + Bstr { 7 } Batr { (t)ﬁ/ul(t)}



+ Bt {71 (Da2(8)} + Botr {WEa(O)Wa(®) } + Brox {W o0 Wna(0)} + Bstr WL (6 W 2 () } (100)
Recall to Lemmas [T} [} Theorems P}{7} and equations (69), (82), (93), (T00) can be represented as:
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dw1
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where g3, is the upper bound of ¢g?(x1), g3, is the upper bound of g3(z2)
Next, substituting (72) into (I0T), (I0I) can be represented as
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Note that the coefficient functions ky1, Km1, Kv1s Ku2, Km2, and kyo are all positive definite, and the terms ccr51
and o2 go to zero if the reconstruction errors € jr1, EFPK1, Eul> EHJII2, EFPK2, Eu2 g0 to zero. The meaning of
reconstruction error goes to zero means that the neural network structure and activation functions are perfectly selected.
In that case, the first derivative of the Lyapunov function is negative definite which means the closed loop system is
asymptotically stable. In the case where the reconstruction error is not zero, the closed loop system is Uniformly Ultimately

Bounded (UUB). O]

1+ |
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