
Autonomous Parking of Vehicle Fleet in Tight Environments

Xu Shen, Xiaojing Zhang, Francesco Borrelli

Abstract— The problem of autonomous parking of vehicle
fleets is addressed in this paper. We present a system-level
modeling and control framework which allows investigating
different vehicle parking strategies while taking into account
path planning and collision avoidance. The proposed approach
decouples the problem into a centralized parking spot allocation
and path generation, and a decentralized collision avoidance
control. This paper presents the hierarchical framework and
algorithmic details. Extensive simulations are used to assess
several allocation strategies in terms of total fleet parking time
and queue length. In particular, we observe that when parking
large vehicle fleets, a phenomenon similar to Braess’s paradox
occurs.

I. INTRODUCTION

Vehicle parking is becoming increasingly more challeng-
ing for drivers. According to the statistics in [1], drivers
in New York City spend an average of 107 hours a year
searching for parking spots. Increased population density
inevitably reduces parking availability. As a result, drivers
are having to deal with long queues and tighter spaces while
entering parking facilities [2]. This increases not only the
complexity of the parking maneuver, but also the choice of
the parking spot along the way [3].

The application of automated vehicles (AVs) technology
is becoming ubiquitous, including automated valet parking
system [4]. However, when a large fleet of AVs is trying
to park, the interaction among vehicles will become more
complex and parking allocation strategies need to be stud-
ied to guarantee system efficiency. In addition, Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) commu-
nication [5], [6], [7] has the potential to improve system
efficiency.

Researches have investigated the occupancy and waiting
time estimation problem in parking scenarios of AVs in the
past. In the majority of existing literature, the vehicles are
modeled as a service queue [8], [9] or traffic flow [10]
where individual kinematic constraints and the body geom-
etry are ignored. Although these simplifications facilitate
the study of macro-level traffic behavior, they suffer from
two major limitations: (i) The parking trajectories may be
dynamically infeasible for an actual vehicle; (ii) The inter-
vehicle interaction is neglected so that it cannot be adapted
to scenarios where vehicles have maneuvering constraints.
These limitations become significant when vehicles need to
follow complex trajectories to maneuver into narrow parking
spots. However, directly applying current path planning and

X. Shen, X. Zhang and F. Borrelli are with the Model Predictive
Control Lab, Department of Mechanical Engineering, University of Cal-
ifornia, Berkeley, USA. Email: {xu shen, xiaojing.zhang,
fborrelli} at berkeley.edu

collision avoidance methods [4], [11] will be computation-
ally infeasible with the time-varying nonconvex environment
configuration and vehicle interactions among the large fleet
AVs.

This paper addresses the limitations discussed above for
the parking of AVs fleet. In particular, the contributions are:

(i) A generic framework is proposed where the parking
spot allocation, path planning, and vehicle interaction
control are decoupled. A centralized coordinator is
only responsible for spot allocation decisions and path
generation, while collision avoidance is performed by
each vehicle in parallel.

(ii) A numerical efficient implementation of the proposed
approach is presented, which avoids the real-time path
planning and simplifies the computationally intense
safety evaluation among vehicles.

(iii) The proposed algorithm is used in extensive simulation
to assess several allocation strategies in order to evaluate
the total fleet parking time and queue length.

The paper is organized as follows. Section II introduces the
problem scenarios and assumptions; Section III establishes
the architecture design for a generic, computational tractable
solution for this type of problem; Section IV presents a
control algorithm implementation with allocation strategies,
offline path generation and collision avoidance on occupancy
grids; Section V shows the influence of allocation strategies
on the system efficiency using simulation result; Finally,
Section VI concludes the paper.

II. PROBLEM SETUP

A. Scenario Description

Center PathLane Division Occupied Vehicle

A

B

Y = 1

Y = 0

Y = 1

Y = 0

X = 0 X = 21

X = 22X = 43

1
2 3 4

5
6

7 8

9

10

11

12

1314

15

16

17

Fig. 1. Scenario Overview

The problem scenario is depicted in Fig. 1, where a
parking lot has an entrance gate at the lower-left corner, an
outlet gate at upper left corner, two driving lanes available,
and two blocks (A and B) offering 88 parking spots in total.
They are partially occupied and a fleet of vehicles is entering

ar
X

iv
:1

91
0.

02
34

9v
3

 [
ee

ss
.S

Y
]

 2
 M

ar
 2

02
0

from the entrance using two lanes. In this paper, we mainly
investigate the influence of incoming fleet and each vehicle’s
ultimate goal is to find a target parking spot and move into
it without colliding. A local (X,Y) frame along the driving
lanes is used to uniquely define the position of any parking
spot. The spots farthest from the gate are associated with
X = 0, while those next to the inner lane are associated
with Y = 0.

Referring to the above scenario, each autonomous vehicle
(AV) undergoes three modes during a complete parking task:
• Allocation mode: Upon entering, the vehicle’s driving

lane and the final target parking spot are determined,
as shown by vehicle 17 in Fig. 1. In human driving,
this decision is usually made by vehicle owner or a
coordinator of the parking lot;

• Queuing mode: The vehicle drives along the selected
lane and gradually moves to the target spot while
avoiding possible collisions on the way, as shown by
vehicles 5− 16 in Fig. 1;

• Maneuvering mode: The vehicle performs a parking
maneuver safely to end up with the specific position
and heading inside the designated spot, as shown by
vehicles 1− 4 in Fig. 1.

B. Assumptions

The following assumptions are used throughout this paper:
(A1) Each vehicle is fully-autonomous and instrumented

with a communication device to exchange information with
the central coordinator. The network bandwidth is sufficient;

(A2) The time required to compute the spot allocation and
vehicle paths is negligible;

(A3) There exists a low-level controller to track the
computed path perfectly with a specific speed profile.

III. HIERARCHICAL FRAMEWORK

We decompose the parking problem into the hierarchical
control architecture shown in Fig. 2:

(i) A central coordinator is in charge of allocating parking
spots to vehicles. Clearly the allocation strategy will
change the interaction among vehicles and the overall
traffic pattern.

(ii) A centralized path generating algorithm provides tra-
jectories for both queuing and maneuvering modes of
vehicle operation. While generating paths, inter-vehicle
collision avoidance is not addressed, which reduces the
complexity of planning and generalizes the results for
repetitive scenarios.

(iii) Vehicles avoid collision locally in a decentralized man-
ner until they reach the final goal. The safety constraints
are defined respectively for vehicles in queuing and
maneuvering mode.

IV. PROPOSED ALGORITHM

In this section we present an algorithm which follows the
architecture in Section III. The central coordinator allocates
vehicles to parking spots and generates paths from an offline
library. As for collision avoidance, vehicles make decisions

Allocation

Collision
Avoidance

Centralized

Vehicles
Entering

Finish
Parking

Path
Generation

Decentralized

Queuing

Maneuvering

Queuing

Maneuvering

Fig. 2. System Framework

by referring to a shared occupancy grid map, which is
distributed to each vehicle and modified synchronously for
the decentralized control.

A. Allocation Strategies Design

We assume that lane opening and spot assignment is
controlled at this level. Since two lanes are available in
the scenario we study (Fig. 1), the algorithm can decide to
open just one lane (1L) or both two lanes (2L) for incoming
vehicles. Regardless of the lane opening strategy, we design
three spot assignment policies. The first one is a random
baseline. The second and third search through all spots using
Algorithm 1 with input arguments denoted in this paper as
“search interval” ∆p, “initial location” X0, and “preferred
lane” Y0. The parameter NX is the total number of spots in
X direction when Y is fixed.

Algorithm 1: Spot Search
Input: ∆p, X0, Y0, NX
Output: Spot Assignment (x, y)

1 def SpotSearch(∆p,X0, Y0):
2 (x, y) = (X0, Y0);
3 while not all spots are assigned do
4 if x ≥ NX then
5 if [NX mod (∆p+ 1)] = 0 then
6 x← (x+ 1) mod NX
7 else
8 x← x mod NX
9 if Spot (x, y) is occupied then

10 (x, y)← (x, 1− y);
11 else
12 return (x, y);
13 if Spot (x, y) is occupied then
14 (x, y)← (x+ 1 + ∆p, Y0);
15 else
16 return (x, y);
17 end

Let the set A(k) = {1, 2, ...} contains the vehicle indices
at time k, ordered by arrival time. For vehicle i ∈ A(k) en-
tering the parking lot, the spot (xi, yi) is assigned according
one of the three polices:

(i) “Random Search” (RS): A free spot is randomly picked
without any preferences.

(ii) “Interval-first Search” (IS): Vehicles will prioritize a
spot at least ∆p away from the front vehicle. (xi, yi) =
SpotSearch(∆p,X0 = xi−1 + 1 + ∆p, Y0 = Y i0).

(iii) “Farthest-first Search” (FS): Vehicles will prioritize
the farthest available spot from the gate. (xi, yi) =
SpotSearch(∆p,X0 = 0, Y0 = Y i0).

where Y i0 is the Y value of the spots next to its driving lane.
When the search algorithm reaches X = NX , it will loop
back as described by line 4 - 8 of Algorithm 1.

Fig. 3 takes the region of X ∈ [0, 11] and 4 vehicles as
an example. When ∆p = 1, red circled numbers are spots
assigned to the corresponding vehicles under IS policy, and
red numbers without circles are assigned by FS policy.

Center PathLane Division Occupied Vehicle

AY = 1

Y = 0

Y = 1

Y = 0

X = 0 X = 21

X = 22X = 43

1
3

4
2

1

2

3 4
①

② ③

④

X = 11

Fig. 3. Spots Assignment under IS and FS

B. Path Generation

A complete path for a vehicle is generated sequentially
for two modes:

1) Path for Queuing Mode: The section of center line
from the entrance to an end point near the target spot is
selected as the operating trajectory.

2) Path for Maneuvering Mode: After reaching the end
point of the queuing mode, a dynamically feasible trajec-
tory starts from center line and leads the vehicle into the
designated target without intruding into other spots. These
“final leg” maneuvering paths are generated by the Hierar-
chical Optimization-Based Collision Avoidance (H-OBCA)
method [12], [13] with a large set of possibles parameters,
including the variation of starting positions and final poses.
The resulting trajectories and input sequences are stored in
an offline library for fast invoking when a certain maneuver
is requested.

According to the assumption (A3) in Section II, a vehicle
can be simplified to operate on the pre-planned path dis-
cussed above and modeled as the discrete-time linear model:

s[i](k + 1) = s[i](k) + v[i](k)∆t, ∀i ∈ A(k), (1)

where
[
v[i](k), s[i](k)

]
are longitudinal speed and position

of the i-th vehicle and ∆t is the sampling time.

C. Inter-vehicle Collision Avoidance

The vehicles evaluate inter-vehicular interactions and
avoid collisions using an occupancy grid map (Fig. 4) shared
among all vehicles. The occupancy grid is obtained by
discretizing the parking lot uniformly with grid size d. As
a result, the continuous space R2 is approximated by a grid
space Z2

+. In practice, the level of discretization is often
chosen in a trade-off between trajectory tracking tolerance
requirement, perception sensor precision, and network band-
width.

On the discrete grid, we denote by B(s[j](k)) ⊂ Z2
+ the

space occupied by the j-th vehicle at time k during the

d

k

l

Fig. 4. Occupancy grid map. Orange spots contain parked vehicles.

queuing mode (Fig. 5(a)). In maneuvering mode, we denote
by BM (s[l](k)) ⊂ Z2

+ the space to be occupied by the l-th
vehicle from time k till the end of the maneuver (Fig. 5(b)).
The distinction between the two modes is necessary since
vehicles require more space during their final parking ma-
neuver and the trajectories are more complex.

The detailed safety constraints are discussed next.
1) Safety in Queuing Mode: When vehicle i ∈ A(k) is in

queuing mode at time k, let D(s[i](k)) ⊂ Z2
+ represent the

forward reachable space, which contain all grids the vehicle
occupies if it continues to move until time k + ∆K, as
contoured by green lines in Fig. 5. ∆K is a design parameter.

At each time k, the vehicle i’s decentralized control makes
sure that D(s[i](k)) does not intersect with the shape of any
other vehicle j in queuing mode. In addition, the vehicle
i’s decentralized control ensures that D(s[i](k)) does not
intersect with the reachable space of vehicles l that arrives
earlier and already starts executing the final leg of a parking
maneuver. Compactly the constraints can be written as:

D(s[i](k)) ∩ B(s[j](k)) = ∅,∀j ∈ A(k)\i, (2a)

D(s[i](k)) ∩ BM (s[l](k)) = ∅,∀l ∈ A(k)\i, l < i, (2b)

where vehicle j, l are at s[j](k), s[l](k). Examples of con-
straint violations are illustrated in Fig. 5 so vehicle i must
yield in these situations.

ij

D(s[i](k))B(s[j](k))

(a) Constraint Eq. (2a)

D(s[i](k))

il

B(s[j](k))

(b) Constraint Eq. (2b)

Fig. 5. Safety Constraints in Queuing Mode

2) Safety in Maneuvering Mode: When vehicle i is in
maneuvering mode at time k, let DM (s[i](k)) ⊂ R2 represent
the forward reachable space from time k to the end of the
remaining maneuver, as contoured by green lines in Fig. 6.
The safety constraints can be compactly written as:

DM (s[i](k)) ∩ B(s[j](k)) = ∅,∀j ∈ A(k)\i, (3a)

DM (s[i](k)) ∩ BM (s[l](k)) = ∅,∀l ∈ A(k)\i, l < i. (3b)

Constraints (3a) and (3b) encode the fact that the maneuver
of vehicle i cannot interfere with either the body of any other

operating vehicle j in queuing mode, or final leg maneuvers
of other earlier-arrived vehicles l. The violation examples are
shown in Fig. 6 where vehicle i must yield.

i

j

DM(s[i](k)) B(s[j](k))

(a) Constraint Eq. (3a)

il

DM (s[i](k))BM (s
[l](k))

(b) Constraint Eq. (3b)

Fig. 6. Safety Constraints in Maneuvering Mode

Enforcing constraints Eq. (3a)-(3b) at all times will lead to
infeasible deadlock scenarios as the one depicted in Fig. 7(a)
, where Eq. (3a) is violated for both vehicles at the same
time:

DM (s[i](k)) ∩ B(s[j](k)) 6= ∅, (4a)

DM (s[j](k)) ∩ B(s[i](k)) 6= ∅. (4b)

By generating a new deadlock-free maneuver for vehicle
that arrives earlier, the situation can be resolved as Fig. 7(b).

i

j

DM(s[i](k)) B(s[j](k))

(a) Dead Lock

i

j

DM(s[i](k)) B(s[j](k))

(b) Resolved

Fig. 7. Deadlock and Resolution

D. Complete Control Algorithm

The complete control algorithm is described in Algo-
rithm 2. Every time a new vehicle arrives, it will be allocated
to a driving lane, assigned a target spot, and generated a
corresponding path to track. The algorithm is capable of
not only coordinating vehicles safely in both queuing and
maneuvering modes, but also resolving infeasible deadlocks
occurred. The speed v[i](k) of each vehicle i ∈ A(k) at time
k will be sent to the low-level controller.

Note that although this work mainly deals with the behav-
ior of incoming vehicles, departing vehicles can be analyzed
by “reversing” the trajectories in maneuvering mode and
exiting the parking lot in queuing mode. The constraints can
be kept.

V. SIMULATION RESULT AND DISCUSSION

A. Simulation Parameters

In this section, we illustrate Algorithm 2 on the parking
lot shown in Fig. 1. The parking lot has a length of 66m

Algorithm 2: Control Algorithm
Input: New Vehicle Arrivals
Output: v[i](k),∀i ∈ A(k) at each time k

1 Initialize occupancy grids;
2 Initialize time k = 0;
3 repeat
4 Reset occupancy grids;
5 Add new-arriving vehicles into A(k), allocate as

Section IV-A, and plan path as Section IV-B;
6 for ∀i ∈ A(k) do
7 Occupy the vehicle body B(s[i](k));
8 end
9 for ∀i ∈ A(k) do

10 if In maneuvering mode then
11 Check the safety constraints Eq. (3a)-(3b);
12 if Collision free then
13 Occupy the ongoing maneuver

BM (s[i](k));
14 end
15 for ∀i ∈ A(k) do
16 if In queuing mode then
17 Check the safety constraint Eq. (2a)-(2b);
18 else if In maneuvering mode then
19 Check the safety constraints Eq. (3a)-(3b);
20 if Collision free then
21 Proceed by outputting v[i](k) = vref ;
22 else
23 Yield by outputting v[i](k) = 0;
24 end
25 if Deadlock happens then
26 Resolve by regenerating a feasible maneuver;
27 for ∀i ∈ A(k) do
28 if Vehicle i has finished the parking task then
29 A(k + 1)← A(k)\i;
30 end
31 k ← k + 1;
32 until A(k) = ∅;

and a width of 16m, and each spot is of size 5m× 3m. We
assume that 48 spots out of 88 are available, whose locations
are randomly chosen. The vehicles are modeled as rectangles
of size 4.7m×2m. The grid size is chosen to be 1m×1m to
fit the parking lines and vehicle dimensions. When moving
forward, the reference speed is vref = 4m/s. The sampling
time is ∆t = 0.1s. The preview horizon, used to compute
the forward reachable space presented in Section IV-C.1,
is chosen as ∆K = 15 steps. Furthermore, we make the
following assumptions:

(i) Following the literature [14], the arrival times of the
vehicles are exponentially distributed with mean 1/λ;

(ii) If both lanes are open (denoted as “2L”), then the
vehicles randomly chose the lane they drive on. Vehicles
will not have choices if only one lane (“1L”) is open.

(iii) The final parking maneuvers are randomly chosen to be
either forward parking or reverse parking.

In the following, we consider arrival times with param-
eters 1/λ ∈ {1, 2, 4, 7}s. For the policies IS and FS, the
investigated search intervals are ∆p ∈ {0, 1, ..., 21}. This
results in a total of 360 possible combinations (4 arrival
rates; 2 lane opening choices; 3 assignment policies, where
FS and IS each has 22 ∆p values). We executed 100
simulations runs for settings that use the IS or FS policy,
and 2200 simulations runs with RS policy to marginalize
the randomness associated to the random spot assignment.
The demonstration of some chosen scenarios can be found
at http://bit.ly/fleetpark.

B. Simulation Results

We first focus on the scenario where only one lane (1L)
is open, and present results with two lanes later on. To
evaluate the effectiveness of the algorithms, we introduce
two metrics: Mean Task Time (MTT), and Maximum Queue
Length (MQL), which we describe next.

1) Mean Task Time (MTT): The Mean Task Time
tMTT (λ,∆p) is defined as the average time length a vehicle
spends to finish parking with respect to the specified arrival
rate and search interval. Formally,

tMTT (λ,∆p) =
1

N

N∑
i=1

(
t
[i]
f,λ,∆p − t

[i]
0,λ,∆p

)
, (5)

where t[i]0,λ,∆p, t
[i]
f,λ,∆p are the time that i enters the parking

lot and completes parking, and N is the total number of
vehicles. For the operator, it is desirable to keep MTT low
to finish the parking task as soon as possible. The results are
shown in Fig. 8, where lines are averages over all simulation
runs and shaded regions are the interquartile range.

(a) 1/λ = 1 (b) 1/λ = 2

(c) 1/λ = 4 (d) 1/λ = 7

Fig. 8. tMTT (λ,∆p) with one lane open (1L). Black dashes (-), red circles
(◦), and blue triangles (O) denote RS, IS, and FS policies respectively.
Subfigures use different scaling.

We make the following observations:
(i) The MTT is higher for higher arrival rates (i.e., when

1/λ is smaller). This is intuitive because the parking lot
is more congested when vehicles arrive at a faster rate,
reducing the free space the vehicles can maneuver in.

(ii) For all arrival rates, the FS policy always exhibits higher
MTT values than the IS policy, and even higher than
the random strategy RS. This is because, FS policy
does not guarantee an appropriate interval between two
consecutive vehicles (see vehicle 2, 3 in Fig. 3), and the
resulting conflicts will increase the parking time.

(iii) For all arrival rates, both IS and FS policies have the
highest MTT values when ∆p = 0 or 21. This is
intuitive because, in such scenarios, vehicles will spend
a lot of time either trying to avoid collisions, or simply
have to queue outside of the parking lot. Only a few of
them can execute the maneuver successfully at a time.

(iv) For all arrival rates, both IS and FS policies achieve the
lowest MTT when ∆p ≈ 4. This is because vehicles
need space while maneuvering, and we see from Fig. 1
that the space required approximately corresponds to
two spots. Therefore, ∆p ≈ 4 provides sufficient space
for adjacent vehicles to maneuver simultaneously.

2) Maximum Queue Length (MQL): We define the Max-
imum Queue Length tMTT (λ,∆p) as the maximum number
of vehicles waiting outside the parking lot with respect to
the specified arrival rate and search interval, from the first
arriving vehicle to the last one completing its parking task.
Formally,

lMQL (λ,∆p) = max
k≥0

∑
i∈A(k)

I(s
[i]
λ,∆p(k)) (6)

where I(s
[i]
λ,∆p(k)) = 1 if the the i-th vehicle is outside the

parking lot, and 0 else. From a “social” perspective, it is
desirable to keep MQL low as not to disturb surrounding
traffic. The simulation results are shown in Fig. 9 with
average value and interquartile range.

(a) 1/λ = 1 (b) 1/λ = 2

(c) 1/λ = 4 (d) 1/λ = 7

Fig. 9. lMQL (λ,∆p) with one lane open (1L). Black dashes (-), red circles
(◦), and blue triangles (O) denote RS, IS, and FS policies respectively.
Subfigures use different scaling.

We make the following observations:
(i) The higher the arrival rate, the higher is MQL, since

more vehicles then will wait to enter the parking lot.
(ii) When the arrival rate is high (e.g., 1/λ = 1), the FS

policy achieves lower MQL values than IS policy. This

http://bit.ly/fleetpark

is because the “farthest-first” characteristic of FS will
push more vehicles into the farthest end of parking lot
and reduce the queue length outside. As expected, this
effect becomes subtler when vehicles arrive at a slower
rate, i.e., when 1/λ is bigger.

(iii) In contrast to MTT, it is difficult to identify a unique
parameter for ∆p that achieves the lowest MQL for all
values of λ. However, averaged over the tested 1/λ, it
seems that ∆p = 4 is a reasonable choice, achieving
the best “overall” value.

Fig. 10 depicts the lowest MTT and MQL under different
arrival rates for the case when only one lane is open (1L):

t∗MTT(λ) = min
∆p

tMTT(λ,∆p), (7a)

l∗MQL(λ) = min
∆p

lMQL(λ,∆p). (7b)

It indicates that the IS performs better than the FS and the RS
policy. Specifically, in terms of MTT, IS achieves improves
upon RS up to 20%, hand up to 14% when compared to the
FS policy. Both IS and FS policies behave similarly in terms
of MQL, outperforming RS by up to 21%.

2 4 6
20

40

60

80

100 RS

IS

FS

(a) t∗MTT(λ)

1 2 3 4 5 6 7
0

10

20

30

40
RS

IS

FS

(b) l∗MQL(λ)

Fig. 10. Optimal Average Value with 1L

C. Two-Lane (2L) Scenario

In this section, we present results for the case when
both lanes are open (2L) and Fig. 11 shows t∗MTT(λ) and
l∗MQL(λ). Compared to the 1L case (green line), we see
that all three policies perform worse in terms of MTT,
i.e., vehicles do not park faster when both lanes are open.
Our conjecture is that, due to the tight geometry of the
parking lot, vehicles need to intrude into both lanes when
executing their maneuvers and others may yield more often
to avoid collision. Therefore, opening two lanes slows down
the parking process, similar to what is known as Braess’s
paradox [15] in road networks. In term of queue length, we
see from Fig. 11(b) that FS policy outperforms both the IS
and RS policy, improving upon RS by up to 53%, and results
in shorter queues compared to 1L. This is intuitive, as 2L has
more space than 1L and FS searches for the farthest spots,
hence can hold more vehicles inside the parking lot lanes.

VI. CONCLUSION

In this work, we studied the problem of autonomous
parking of a large fleet of vehicles inside a parking lot. We
proposed a hierarchical system-level framework that is able
to handle large numbers of vehicles in a computationally ef-
ficient way. Our algorithm solves the spot allocation and path

2 4 6
20

40

60

80

100 RS

IS

FS

1L

(a) t∗MTT(λ)

1 2 3 4 5 6 7
0

10

20

30

40
RS

IS

FS

1L

(b) l∗MQL(λ)

Fig. 11. Optimal Average Value with 2L. Green dash-dot line with
diamonds (♦) denotes the best possible performance with 1L (from Fig. 10).

generation centrally, while collision avoidance is tackled by
the vehicles individually in a decentralized fashion, enabling
scalability.

Extensive numerical simulations confirm our intuition that
different parking lot allocation strategies have significant
impact on the fleet parking time and the queue length. For
example, when the objective is to minimize the fleet parking
time, then opening one lane (1L) and selecting spots that are
far enough for vehicles to park simultaneously (IS policy)
leads to the best performance. On the other hand, if the
objective is to minimize queue length, then opening two lanes
(2L) and choosing parking spots that are in the farthest end of
parking lot (FS policy) gives the best solution, but comes at
the cost of higher parking time. Finally, our simulation results
reveal that Braess’s paradox applies to parking lots as well;
this observation should be taken into account when designing
parking lots and parking algorithms for large vehicle fleets.

REFERENCES

[1] K. McCoy, “Drivers spend an average of 17 hours a year searching
for parking spots,” 2017.

[2] H. Banzhaf, F. Quedenfeld, D. Nienhuser, S. Knoop, and J. M. Zollner,
“High density valet parking using k-deques in driveways,” IEEE
Intelligent Vehicles Symposium, Proceedings, no. Iv, pp. 1413–1420,
2017.

[3] D. P. Bertsekas, “Biased aggregation, rollout, and enhanced policy
improvement for reinforcement learning,” Lab. for Information and
Decision Systems Report, MIT, 2018.

[4] Y. Li, K. H. Johansson, and J. Martensson, “A hierarchical control
system for smart parking lots with automated vehicles: Improve
efficiency by leveraging prediction of human drivers,” 2019 18th
European Control Conference (ECC), pp. 2675–2681, 2019.

[5] J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and
automated vehicles: State of the art and future challenges,” Annual
Reviews in Control, vol. 45, no. May, pp. 18–40, 2018.

[6] V. Turri, Y. Kim, J. Guanetti, K. H. Johansson, and F. Borrelli,
“A model predictive controller for non-cooperative eco-platooning,”
Proceedings of the American Control Conference, pp. 2309–2314,
2017.

[7] C. Liu, C. W. Lin, S. Shiraishi, and M. Tomizuka, “Improving Effi-
ciency of Autonomous Vehicles by V2V Communication,” Proceed-
ings of the American Control Conference, vol. 2018-June, pp. 4778–
4783, 2018.

[8] R. Arnott and J. Rowse, “Modeling parking,” Journal of urban
economics, vol. 45, no. 1, pp. 97–124, 1999.

[9] H. Tavafoghi, K. Poolla, and P. Varaiya, “A Queuing Approach to
Parking: Modeling, Verification, and Prediction,” pp. 1–28, 2019.

[10] M. Pidd, F. De Silva, and R. Eglese, “A simulation model for
emergency evacuation,” European Journal of operational research,
vol. 90, no. 3, pp. 413–419, 1996.

[11] W. Wang, Y. Song, J. Zhang, and H. Deng, “Automatic parking of
vehicles: A review of literatures,” International Journal of Automotive
Technology, vol. 15, pp. 967–978, oct 2014.

[12] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-Based Collision
Avoidance,” pp. 1–27, 2017.

[13] X. Zhang, A. Liniger, A. Sakai, and F. Borrelli, “Autonomous Parking
Using Optimization-Based Collision Avoidance,” in 2018 IEEE Con-
ference on Decision and Control (CDC), pp. 4327–4332, IEEE, dec
2019.

[14] S. M. Ross, Introduction to Probability Models. Elsevier, 2010.
[15] J. Murchland, “Braess’s paradox of traffic flow,” Transportation Re-

search, vol. 4, no. 4, pp. 391 – 394, 1970.

	I Introduction
	II Problem Setup
	II-A Scenario Description
	II-B Assumptions

	III Hierarchical Framework
	IV Proposed Algorithm
	IV-A Allocation Strategies Design
	IV-B Path Generation
	IV-B.1 Path for Queuing Mode
	IV-B.2 Path for Maneuvering Mode

	IV-C Inter-vehicle Collision Avoidance
	IV-C.1 Safety in Queuing Mode
	IV-C.2 Safety in Maneuvering Mode

	IV-D Complete Control Algorithm

	V Simulation Result and Discussion
	V-A Simulation Parameters
	V-B Simulation Results
	V-B.1 Mean Task Time (MTT)
	V-B.2 Maximum Queue Length (MQL)

	V-C Two-Lane (2L) Scenario

	VI Conclusion
	References

