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Abstract— We show that for PWM-operated devices, it is
possible to benefit from signal injection without an external
probing signal, by suitably using the excitation provided by
the PWM itself. As in the usual signal injection framework
conceptualized in [1], an extra “virtual measurement” can be
made available for use in a control law, but without the practical
drawbacks caused by an external signal.

I. INTRODUCTION

Signal injection is a control technique which consists in
adding a fast-varying probing signal to the control input.
This excitation creates a small ripple in the measurements,
which contains useful information if properly decoded. The
idea was introduced in [2], [3] for controlling electric motors
at low velocity using only measurements of currents. It was
later conceptualized in [1] as a way of producing “virtual
measurements” that can be used to control the system, in
particular to overcome observability degeneracies. Signal
injection is a very effective method, see e.g. applications to
electromechanical devices along these lines in [4], [5], but it
comes at a price: the ripple it creates may in practice yield
unpleasant acoustic noise and excite unmodeled dynamics,
in particular in the very common situation where the device
is fed by a Pulse Width Modulation (PWM) inverter; indeed,
the frequency of the probing signal may not be as high as
desired so as not to interfere with the PWM (typically, it can
not exceed 500 Hz in an industrial drive with a 4 kHz-PWM
frequency).

The goal of this paper is to demonstrate that for PWM-
operated devices, it is possible to benefit from signal injection
without an external probing signal, by suitably using the
excitation provided by the PWM itself, as e.g. in [6]. More
precisely, consider the Single-Input Single-Output system

ẋ = f(x) + g(x)u, (1a)
y = h(x), (1b)

where u is the control input and y the measured output. We
first show in section II that when the control is impressed
through PWM, the dynamics may be written as

ẋ = f(x) + g(x)
(
u+ s0(u, tε )

)
, (2)

with s0 1-periodic and zero-mean in the second argument, i.e.
s0(u, σ+1) = s0(u, σ) and

∫ 1

0
s0(u, σ) dσ = 0 for all u; ε is

the PWM period, hence assumed small. The difference with
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usual signal injection is that the probing signal s0 generated
by the modulation process now depends not only on time, but
also on the control input u. This makes the situation more
complicated, in particular because s0 can be discontinuous in
both its arguments. Nevertheless, we show in section III that
the second-order averaging analysis of [1] can be extended
to this case. In the same way, we show in section IV that
the demodulation procedure of [1] can be adapted to make
available the so-called virtual measurement

yv := H1(x) := εh′(x)g(x),

in addition to the actual measurement ya := H0(x) := h(x).
This extra signal is likely to simplify the design of a control
law, as illustrated on a numerical example in section V.

Finally, we list some definitions used throughout the paper;
S denotes a function of two variables, which is T -periodic
in the second argument, i.e. S(v, σ+T ) = S(v, σ) for all v:
• the mean of S in the second argument is the function

(of one variable) S(v) := 1
T

∫ T
0
S(v, σ)dσ; S has zero

mean in the second argument if S is identically zero
• if S has zero mean in the second argument, its zero-

mean primitive in the second argument is defined by

S1(v, τ) :=

∫ τ

0

S(v, σ)dσ − 1

T

∫ T

0

∫ τ

0

S(v, σ)dσdτ ;

notice S1 is T -periodic in the second argument because
S has zero mean in the second argument

• the moving average M(k) of k is defined by

M(k)(t) :=
1

ε

∫ t

t−ε
k(τ)dτ

• O∞ denotes the uniform “big O” symbol of analysis,
namely f(z, ε) = O∞(εp) if |f(z, ε)| ≤ Kεp for ε
small enough, with K > 0 independent of z and ε.

II. PWM-INDUCED SIGNAL INJECTION

When the control input u in (1a) is impressed through a
PWM process with period ε, the resulting dynamics reads

ẋ = f(x) + g(x)M
(
u, tε

)
, (3)

with M 1-periodic and mean u in the second argument;
the detailed expression for M is given below. Setting
s0(u, σ) :=M(u, σ) − u, (3) obviously takes the form (2),
with s0 1-periodic and zero-mean in the second argument.

Classical PWM with period ε and range [−um, um] is
obtained by comparing the input signal u to the ε-periodic
sawtooh carrier defined by

c(t) :=

{
um + 4 w

(
t
ε

)
if −um

2 ≤ w
(
t
ε

)
≤ 0

um − 4 w
(
t
ε

)
if 0 ≤ w( tε ) ≤ um

2 ;
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Fig. 1: PWM: u is compared to c to produce upwm.
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Fig. 2: s0(u, ·) (top) and s1(u, ·) (middle) for u = 0, 0.2, 0.4;
w (bottom).

the 1-periodic function w(σ) := um mod(σ + 1
2 , 1) − um

2
wraps the normalized time σ = t

ε to [−um

2 , um

2 ]. If u varies
slowly enough, it crosses the carrier c exactly once on each
rising and falling ramp, at times tu1 < tu2 such that

u(tu1 ) = um + 4 w
( tu1
ε

)
u(tu2 ) = um − 4 w

( tu2
ε

)
.

The PWM-encoded signal is therefore given by

upwm(t) =


um if −um

2 < w
(
t
ε

)
≤ w

( tu1
ε

)
−um if w

( tu1
ε

)
< w

(
t
ε

)
≤ w

( tu2
ε

)
um if w

( tu2
ε

)
< w

(
t
ε

)
≤ um

2 .

Fig. 1 illustrates the signals u, c and upwm. The function

M(u, σ) :=


um if −2um < 4 w(σ) ≤ u− um
−um if u− um < 4 w(σ) ≤ um − u
um if um − u < 4 w(σ) ≤ 2um

= um + sign
(
u− um − 4 w(σ)

)
+ sign

(
u− um + 4 w(σ)

)
,

which is obviously 1-periodic and with mean u with respect
to its second argument, therefore completely describes the
PWM process since upwm(t) =M

(
u(t), tε

)
.

Finally, the induced zero-mean probing signal is

s0(u, σ) :=M(u, σ)− u
= um − u+ sign

(
u−um

4 − w(σ)
)

+ sign
(
u−um

4 + w(σ)
)
,

and its zero-mean primitive in the second argument is

s1(u, σ) :=
(
1− u

um

)
w(σ)−

∣∣u−um

4 − w(σ)
∣∣

+
∣∣u−um

4 + w(σ)
∣∣ .

Remark 1: As s0 is only piecewise continuous, one might
expect problems to define the “solutions” of (2). But as
noted above, if the input u(t) of the PWM encoder varies
slowly enough, its output upwm(t) =M

(
u(t), tε

)
will have

exactly two discontinuities per PWM period. Chattering is
therefore excluded, which is enough to ensure the existence
and uniqueness of the solutions of (2), see [7], without the
need for the more general Filipov theory [8]. Of course, we
assume (without loss of generality in practice) that f , g and
h in (1) are smooth enough.

Notice also s1 is continuous and piecewise C1 in both
its arguments. The regularity in the second argument was
to be expected as s1(u, ·) is a primitive of s0(u, ·); on the
other hand, the regularity in the first argument stems from
the specific form of s0.

III. AVERAGING AND PWM-INDUCED INJECTION

Section III-A outlines the overall approach and states the
main Theorem 1, which is proved in the somewhat technical
section III-B. As a matter of fact, the proof can be skipped
without losing the main thread; suffice to say that if s0 were
Lipschitz in the first argument, the proof would essentially
be an extension of the analysis by "standard" second-order
averaging of [1], with more involved calculations

A. Main result

Assume we have designed a suitable control law

u = α(η, Y , t)

η̇ = a(η, Y , t),

where η ∈ Rq , for the system

ẋ = f(x) + g(x)u,

Y = H(x) :=

(
h(x)

εh′(x)g(x)

)
.

By “suitable”, we mean the resulting closed-loop system

ẋ = f(x) + g(x)α
(
η,H(x), t

)
(4a)

η̇ = a
(
η,H(x), t

)
(4b)

has the desired exponentially stable behavior. We have
changed the notations of the variables with · to easily
distinguish between the solutions of (4) and of (7) below.
Of course, this describes an unrealistic situation:
• PWM is not taken into account



• the control law is not implementable, as it uses not only
the actual output ya = h(x), but also the a priori not
available virtual output yv = εh′(x)g(x).

Define now (up to O∞(ε2)) the function

H(x, η, σ, t) :=

H

(
x− εg(x)s1

(
α
(
η,H(x), t

)
, σ
))

+O∞(ε2), (5)

where s1 is the zero-mean primitive of s0 in the second
argument, and consider the control law

u = α
(
η,H(x, η, tε , t), t

)
(6a)

η̇ = a
(
η,H(x, η, tε , t), t

)
. (6b)

The resulting closed-loop system, including PWM, reads

ẋ = f(x) + g(x)M
(
α
(
η,H(x, η, tε , t), t

)
, tε

)
(7a)

η̇ = a
(
η,H(x, η, tε , t), t

)
. (7b)

Though PWM is now taken into account, the control law (6)
still seems to contain unknown terms. Nevertheless, it will
turn out from the following result that it can be implemented.

Theorem 1: Let (x(t), η(t)) be the solution of (7) starting
from (x0, η0), and define u(t) := α

(
η(t), H

(
x(t)

)
, t
)

and
y(t) := H

(
x(t)

)
; let (x(t), η(t)) be the solution of (4) start-

ing from
(
x0 − εg(x0)s1

(
u(0), 0

)
, η0

)
, and define u(t) :=

α
(
η(t), H

(
x(t)

)
, t
)
. Then, for all t ≥ 0,

x(t) = x(t) + εg
(
x(t)

)
s1

(
u(t), tε

)
+O∞(ε2) (8a)

η(t) = η(t) +O∞(ε2) (8b)
y(t) = H0

(
x(t)

)
+H1

(
x(t)

)
s1

(
u(t), tε

)
+O∞(ε2). (8c)

The practical meaning of the theorem is the following. As
the solution

(
x(t), η(t))

)
is piecewise C1, we have by Taylor

expansion using (8a)-(8b) that u(t) = u(t)+O∞(ε2). In the
same way, as s1 is also piecewise C1, we have

s1

(
u(t), tε

)
= s1

(
u(t), tε

)
+O∞(ε2).

As a consequence, we can invert (8a)-(8b), which yields

x(t) = x(t)− εg
(
x(t)

)
s1

(
u(t), tε

)
+O∞(ε2) (9a)

η(t) = η(t) +O∞(ε2). (9b)

Using this into (5), we then get

H
(
x(t), η(t), tε , t

)
= H

(
x(t)− εg

(
x(t)

)
s1

(
u(t), tε

))
+O∞(ε2),

= H
(
x(t)

)
+O∞(ε2). (10)

On the other hand, we will see in section IV that, thanks
to (8c), we can produce an estimate Ŷ = H(x) +O∞(ε2).
This means the PWM-fed dynamics (3) acted upon by the
implementable feedback

u = α(η, Ŷ , t)

η̇ = a(η, Ŷ , t).

behaves exactly as the “ideal” closed-loop system (4), except
for the presence of a small ripple (described by (8a)-(8b)).

Remark 2: Notice that, according to Remark 1, H0

(
x(t)

)
and H1

(
x(t)

)
in (8c) may be as smooth as desired (the

regularity is inherited from only f, g, h, α, a); on the other
hand, s1

(
u(t), tε

)
is only continuous and piecewise C1. Nev-

ertheless, this is enough to justify all the Taylor expansions
performed in the paper.

B. Proof of Theorem 1

Because of the lack of regularity of s0, we must go back
to the fundamentals of the second-order averaging theory
presented in [9, chapter 2] (with slow time dependence [9,
section 3.3]). We first introduce two ad hoc definitions.

Definition 1: A function ϕ(X,σ) is slowly-varying in
average if there exists λ > 0 such that for ε small enough,∫ a+T

a

∥∥ϕ(p(εσ) + εkq(σ), σ
)
− ϕ

(
p(εσ), σ

)∥∥ dσ ≤ λTεk,
where p, q are continuous with q bounded; a and T > 0 are
arbitrary constants. Notice that if ϕ is Lipschitz in the first
variable then it is slowly-varying in average. The interest of
this definition is that it is satisfied by s0.

Definition 2: A function φ is O∞(ε3) in average if there
exists K > 0 such that

∥∥∫ σ
0
φ
(
q(s), s

)
ds
∥∥ ≤ K ε3σ for all

σ ≥ 0. Clearly, if φ is O∞(ε3) then it is O∞(ε3) in average.
The proof of Theorem 1 follows the same steps as [9,

chapter 2], but with weaker assumptions. We first rewrite (7)
in the fast timescale σ := t/ε as

dX

dσ
= εF (X,σ, εσ). (11)

where X := (x, η) and

F (X,σ, τ) :=

(
f(x) + g(x)M

(
α
(
η,H(x, η, σ, τ), τ

))
a
(
η,H(x, η, σ, τ), τ

) )
.

Notice F is 1-periodic in the second argument. Consider also
the so-called averaged system

dX

dσ
= εF (X, εσ). (12)

where F is the mean of F in the second argument.
Define the near-identity transformation

X = X̃ + εW (X̃, σ, εσ), (13)

where X̃ := (x̃, η̃) and

W (X̃, σ, τ) :=

(
g(x̃)

0

)
s1

(
α
(
η̃, H(x̃, η̃, σ, τ), τ

)
, σ
)
.

Inverting (13) yields

X̃ = X − εW (X,σ, εσ) +O∞(ε2). (14)

By lemma 1, this transformation puts (11) into

dX̃

dσ
= εF (X̃, εσ) + ε2Φ(X̃, σ, εσ) + φ(X̃, σ, εσ); (15)

Φ is periodic and zero-mean in the second argument, and
slowly-varying in average, and φ is O∞(ε3) in average.



By lemma 2, the solutions X(σ) and X̃(σ) of (12)
and (15), starting from the same initial conditions, satisfy

X̃(σ) = X(σ) +O∞(ε2).

As a consequence, the solution X(σ) of (11) starting
from X0 and the solution X(σ) of (12) starting from
X0 − εW (X0, 0, 0) are related by X(σ) = X(σ) +
εW
(
X(σ), σ, εσ

)
+ O∞(ε2), which is exactly (8a)-(8b).

Inserting (8a) in y = h(x) and Taylor expanding yields (8c).
Remark 3: If s0 were differentiable in the first variable, Φ

would be Lipschitz and φ would be O∞(ε3) in (15), hence
the averaging theory of [9] would directly apply.

Remark 4: In the sequel, we prove for simplicity only the
estimation X̃(σ) = X(σ) +O(ε2) on a timescale 1/ε. The
continuation to infinity follows from the exponential stability
of (4), exactly as in [1, Appendix].

In the same way, lemma 2 is proved without slow-
time dependence, the generalization being obvious as in [9,
section 3.3].

Lemma 1: The transformation (13) puts (11) into (15),
where Φ is periodic and zero-mean in the second argument,
and slowly-varying in average, and φ is O∞(ε3) in average.

Proof: To determine the expression for dX̃/dσ, the
objective is to compute dX/dσ as a function of X̃ with two
different methods. On the one hand we replace X with its
transformation (13) in the closed-loop system (11), and on
the other hand we differentiate (13) with respect to σ.

We first compute s0(α(η,H(x, η, σ, εσ), εσ), σ) as a func-
tion of X̃ = (x̃, η̃). Exactly as in (10), with (x̃, η̃) replacing
(x, η), and (14) replacing (9), we have

H(x, η, σ, εσ) = H(x̃) +O∞(ε2).

Therefore, by Taylor expansion

α(η,H(x, η, σ, εσ), εσ) = α(η̃, H(x̃), εσ)

+ ε2Kα(X̃, σ),

with Kα bounded. The lack of regularity of s0 prevents
further Taylor expansion; nonetheless, we still can write

s0

(
α(η,H(x, η, σ, εσ), εσ), σ

)
=

s0

(
α(η̃, H(x̃), εσ) + ε2Kα(X̃, σ), σ

)
.

Finally, inserting (13) into (11) and Taylor expanding, yields
after tedious but straightforward computations,

dX

dσ
= εF (X̃, εσ) + εG(X̃)sα,+0 ( ·̃ )

+ ε2F (X̃, εσ)G(X̃)sα1 ( ·̃ )
+ ε2G′(X̃)G(X̃)sα1 ( ·̃ )sα,+0 ( ·̃ ) +O∞(ε3); (16)

we have introduced the following notations

( ·̃ ) := (X̃, σ, εσ)

sαi
(
·̃
)

:= si
(
α(η̃, H(x̃), εσ), σ

)
,

sα,+0

(
·̃
)

:= s0

(
α(η̃, H(x̃), εσ) + ε2Kα(X̃, σ), σ

)
∆sα0 ( ·̃ ) := sα,+0 ( ·̃ )− s0( ·̃ )

G(X) :=

(
g(x)

0

)
F (X, εσ) :=

(
f(x) + g(x)α

(
η,H(x), εσ

)
a
(
η,H(x), εσ

) )
.

We now time-differentiate (13), which reads with the
previous notations

X = X̃ + εG(X̃)sα1 ( ·̃ ).

This yields

dX

dσ
=
dX̃

dσ
+ εG′(X̃)

dX̃

dσ
sα1 ( ·̃ ) + εG(X̃)∂1s

α
1 ( ·̃ )dX̃

dσ

+ εG(X̃)sα0 ( ·̃ ) + ε2G(X̃)∂3s
α
1 ( ·̃ ), (17)

since ∂2s
α
1 = sα0 . Now assume X̃ satisfies

dX̃

dσ
= εF (X̃, εσ) + εG(X̃)∆sα0 ( ·̃ ) + ε2Ψ( ·̃ ), (18)

where Ψ( ·̃ ) is yet to be computed. Inserting (18) into (17),

dX

dσ
= εF (X̃, εσ) + εG(X̃)∆sα0 ( ·̃ ) + ε2Ψ( ·̃ )

+ ε2G′(X̃)F (X̃, εσ)sα1 ( ·̃ )
+ ε2G′(X̃)G(X̃)∆sα0 ( ·̃ )sα1 ( ·̃ )
+ ε2G(X̃)∂1s

α
1 ( ·̃ )F (X̃, εσ)

+ ε2G(X̃)∂1s
α
1 ( ·̃ )G(X̃)∆sα0 ( ·̃ )

+ εG(X̃)sα0 ( ·̃ )
+ ε2G(X̃)∂3s

α
1 ( ·̃ )

+O∞(ε3). (19)

Next, equating (19) and (16), Ψ satisfies

Ψ( ·̃ ) = [F ,G](X̃, εσ)sα1 ( ·̃ ) +G′(X̃)G(X̃)sα0 ( ·̃ )sα1 ( ·̃ )
−G(X̃)∂1s

α
1 ( ·̃ )F (X̃, εσ)− G(X̃)∂3s

α
1 ( ·̃ )

−G(X̃)∂1s
α
1 ( ·̃ )G(X̃)∆sα0 ( ·̃ ). (20)

This gives the expressions of Φ and φ in (15),

Φ( ·̃ ) := [F ,G](X̃, εσ)sα1 ( ·̃ ) +G′(X̃)G(X̃)sα0 ( ·̃ )sα1 ( ·̃ )
−G(X̃)∂1s

α
1 ( ·̃ )F (X̃, εσ)− G(X̃)∂3s

α
1 ( ·̃ ),

φ( ·̃ ) := ε2Ψ1( ·̃ ) + εG(X̃)∆sα0 ,

with

Ψ1( ·̃ ) := −G(X̃)∂1s
α
1 ( ·̃ )G(X̃)∆sα0 ( ·̃ ).

The last step is to check that Φ and φ satisfy the assump-
tions of the lemma. Since sα0 , sα1 , ∂1s

α
1 and ∂3s

α
1 are periodic

and zero-mean in the second argument, and slowly-varying



in average, so is Φ. There remains to prove that φ = O∞(ε3)
in average. Since ∆sα0 is slowly-varying in average,∫ σ

0

‖∆sα0 ( ·̃ (s))‖ ds ≤ λ0σε
2.

with λ0 > 0. G being bounded by a constant cg , this implies∥∥∥∥∫ σ

0

εG(X̃(s))∆sα0 ( ·̃ (s)) ds
∥∥∥∥ ≤ cgλ0σε

3.

Similarly, ∂1s1 being bounded by c11, Ψ1 satisfies∥∥∥∥∫ σ

0

ε2Ψ1( ·̃ (s)) ds
∥∥∥∥ ≤ c2gc11λ0σε0ε

3.

Summing the two previous inequalities yields∥∥∥∥∫ σ

0

φ( ·̃ (s)) ds
∥∥∥∥ ≤ λ0cg(1 + c11cgε0)σε3,

which concludes the proof.
Lemma 2: Let X(σ) and X̃(σ) be respectively the solu-

tions of (12) and (15) starting at 0 from the same initial
conditions. Then, for all σ ≥ 0

X̃(σ) = X(σ) +O∞(ε2).
Proof: Let E(σ) := X̃(σ)−X(σ). Then,

E(σ) =

∫ σ

0

[dX̃
dσ

(s)− dX

dσ
(s)
]
ds

= ε

∫ σ

0

[
F (X̃(s))− F (X(s))

]
ds

+ ε2

∫ σ

0

Φ( ·̃ (s)) ds+

∫ σ

0

φ( ·̃ (s)) ds

As F is Lipschitz with constant λF ,

ε

∫ σ

0

∥∥∥F (X̃(s))− F (X(s))
∥∥∥ ds ≤ ελF ∫ σ

0

‖E(s)‖ ds.

On the other hand, there exists by lemma 3 c1 such that

ε2

∥∥∥∥∫ σ

0

Φ( ·̃ (s)) ds
∥∥∥∥ ≤ c1ε2

Finally, as φ is O∞(ε3) in average, there exists c2 such that∥∥∥∥∫ σ

0

φ( ·̃ (s)) ds
∥∥∥∥ ≤ c2ε3σ.

The summation of these estimations yields

‖E(σ)‖ ≤ ελF
∫ σ

0

‖E(s)‖ ds+ c1ε
2 + c2ε

3σ.

Then by Gronwall’s lemma [9, Lemma 1.3.3]

‖E(σ)‖ ≤
(
c2
λF

+ c1

)
eλFσε2,

which means X̃ = X +O∞(ε2).
The following lemma is an extension of Besjes’ lemma

[9, Lemma 2.8.2] when ϕ is no longer Lipschitz, but only
slowly-varying in average.

Lemma 3: Assume ϕ(X,σ) is T -periodic and zero-mean
in the second argument, bounded, and slowly-varying in

average. Assume the solution X(σ) of Ẋ = O∞(ε) is
defined for 0 ≤ σ ≤ L/ε. There exists c1 > 0 such that∥∥∥∥∫ σ

0

ϕ(X(s), s) ds

∥∥∥∥ ≤ c1.
Proof: Along the lines of [9], we divide the interval

[0, t] in m subintervals [0, T ], . . . , [(m − 1)T,mT ] and a
remainder [mT, t]. By splitting the integral on those intervals,
we write∫ σ

0

ϕ(x(s), s) ds =

m∑
i=0

∫ iT

(i−1)T

ϕ(x((i− 1)T ), s) ds

+

m∑
i=0

∫ iT

(i−1)T

[
ϕ(x(s), s)− ϕ(x((i− 1)T ), s)

]
ds

+

∫ σ

mT

ϕ(x(s), s) ds,

where each of the integral in the first sum are zero as ϕ is
periodic with zero mean. Since ϕ is bounded, the remainder
is also bounded by a constant c2 > 0. Besides

x(s) = x((i− 1)T ) +

∫ s

(i−1)T

ẋ(τ) dτ

= x((i− 1)T ) + εq(s),

with q continuous and bounded. By hypothesis, there exists
λ > 0 such that for 0 ≤ i ≤ m,∫ iT

(i−1)T

‖ϕ(x(s), s)− ϕ(x((i− 1)T ), s)‖ ds ≤ λTε

Therefore by summing the previous estimations,∥∥∥∥∫ σ

0

ϕ(x(s), s) ds

∥∥∥∥ ≤ mλTε+ c2,

with mT ≤ t ≤ L/ε, consequently mλTε+ c2 ≤ λL+ c2;
which concludes the proof.

IV. DEMODULATION

From (8c), we can write the measured signal y as

y(t) = ya(t) + yv(t)s1

(
u(t), tε

)
+O∞(ε2),

where the signal u feeding the PWM encoder is known. The
following result shows ya and yv can be estimated from y,
for use in a control law as described in section III-A.

Theorem 2: Consider the estimators ŷa and ŷv defined by

ŷa(t) :=
3

2
M(y)(t)− 1

2
M(y)(t− ε)

k∆(τ) :=
(
y(τ)− ŷa(τ)

)
s1

(
u(τ), τε

)
ŷv(t) :=

M(k∆)(t)

s2
1

(
u(t)

) ,
where M : y 7→ ε−1

∫ ε
0
y(τ)dτ is the moving average

operator, and s2
1 the mean of s2

1 in the second argument (cf
end of section I). Then,

ŷa(t) = ya(t) +O∞(ε2) (21a)
ŷv(t) = yv(t) +O∞(ε2). (21b)



Recall that by construction yv(t) = O∞(ε), hence (21b) is
essentially a first-order estimation; notice also that s2

1

(
u(t)

)
is always non-zero when u(t) does not exceed the range of
the PWM encoder.

Proof: Taylor expanding ya, yv , u and s1 yields

ya(t− τ) = ya(t)− τ ẏa(t) +O∞(τ2)

yv(t− τ) = yv(t) +O∞(ε)O∞(τ)

s1

(
u(t− τ), σ

)
= s1

(
u(t) +O∞(τ), σ

)
= s1

(
u(t), σ

)
+O∞(τ);

in the second equation, we have used yv(t) = O∞(ε). The
moving average of ya then reads

M(ya)(t) =
1

ε

∫ ε

0

ya(t− τ)dτ

=
1

ε

∫ ε

0

(
ya(t)− τ ẏa(t) +O∞(τ2)

)
dτ

= ya(t)− ε

2
ẏa(t) +O∞(ε2). (22)

A similar computation for kv(t) := yv(t)s1

(
u(t), tε

)
yields

M(kv)(t) =
1

ε

∫ ε

0

yv(t− τ)s1

(
u(t− τ), t−τε

)
dτ

= yv(t)
(
s1

(
u(t)

)
+O∞(ε)

)
+O∞(ε2)

= O∞(ε2), (23)

since s1 is 1-periodic and zero mean in the second argument.
Summing (22) and (23), we eventually find

M(y)(t) = ya(t)− ε

2
ẏa(t) +O∞(ε2).

As a consequence, we get after another Taylor expansion
3

2
M(y)(t)− 1

2
M(y)(t− ε) = ya(t) +O∞(ε2),

which is the desired estimation (21a).
On the other hand, (21a) implies

k∆(t) = yv(t)s
2
1

(
u(t), tε

)
+O∞(ε2).

Proceeding as for M(kv), we find

M(k∆)(t) =
1

ε

∫ ε

0

yv(t− τ)s2
1

(
u(t− τ), t−τε

)
dτ

= yv(t)
(
s2

1

(
u(t)

)
+O∞(ε)

)
+O∞(ε2)

= yv(t)s2
1

(
u(t)

)
+O∞(ε2).

Dividing by s2
1

(
u(t)

)
yields the desired estimation (21b).

V. NUMERICAL EXAMPLE

We illustrate the interest of the approach on the system

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = u+ d,

y = x2 + x1x3,

where d is an unknown disturbance; u will be impressed
through PWM with frequency 1 kHz (i.e. ε = 10−3) and
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(a) State x1, reference xref
1 , and virtual measurement yv .
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(d) State x3, zoom on (c).

Fig. 3: States x1, x2, x3 with ideal and actual control laws.

range [−20, 20]. The objective is to control x1, while reject-
ing the disturbance d, with a response time of a few seconds.
We want to operate around equilibrium points, which are
of the form (xeq

1 , 0, 0;−deq, deq), for xeq
1 and deq constant.

Notice the observability degenerates at such points, which
renders not trivial the design of a control law.

Nevertheless the PWM-induced signal injection makes
available the virtual measurement

yv = ε
(
x3 1 x1

)0
0
1

 = εx1,

from which it is easy to design a suitable control law, without
even using the actual input ya = x2+x1x3. The system being
now fully linear, we use a classical controller-observer, with
disturbance estimation to ensure an implicit integral effect.
The observer is thus given by

˙̂x1 = x̂2 + l1
(
yv
ε − x̂1

)
,

˙̂x2 = x̂3 + l2
(
yv
ε − x̂1

)
,

˙̂x3 = u+ d̂+ l3
(
yv
ε − x̂1

)
,

˙̂
d = ld

(
yv
ε − x̂1

)
,
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Fig. 4: Control input u and its modulation upwm; full view
(top), zoom (bottom).
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Fig. 5: Measured output y (top); full view (top), zoom
(bottom).

and the controller by

u = −k1x̂1 − k2x̂2 − k3x̂3 − kdd̂+ kxref
1 .

The gains are chosen to place the observer eigenvalues at
(−1.19,−0.73,−0.49±0.57i) and the controller eigenvalues
at (−6.59,−3.30 ± 5.71i). The observer is slower than the
controller in accordance with dual Loop Transfer Recov-
ery, thus ensuring a reasonable robustness. Setting η :=
(x̂1, x̂2, x̂3, d̂)T , this controller-observer obviously reads

u = −Kη + kxref
1 (24a)

η̇ = Mη +Nxref
1 (t) + Lyv (24b)

Finally, this ideal control law is implemented as

upwm(t) =M
(
−Kη + kxref

1 , tε
)

(25a)

η̇ = Mη +Nxref
1 + L ŷvε , (25b)

where M is the PWM function described in section II, and
ŷv is obtained by the demodulation process of section IV.

The test scenario is the following: at t = 0, the system start
at rest at the origin; from t = 2, a disturbance d = −0.25 is
applied to the system; at t = 14, a filtered unit step is applied
to the reference xref

1 . In Fig. 3 the ideal control law (24), i.e.
without PWM and assuming yv known, is compared to the

true control law (25): the behavior of (25) is excellent, it
is nearly impossible to distinguish the two situations on the
responses of x1 and x2 as by (8a) the corresponding ripple is
only O∞(ε2); the ripple is visible on x3, where it is O∞(ε).
The corresponding control signals u and upwm are displayed
in Fig. 4, and the corresponding measured outputs in Fig. 5.

To investigate the sensitivity to measurement noise, the
same test was carried out with band-limited white noise
(power density 1× 10−9, sample time 1× 10−5) added to y.
Even though the ripple in the measured output is buried in
noise, see Fig. 6, the virtual output is correctly demodulated
and the control law (25) still behaves very well.
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Fig. 6: Measured output y with and without noise; full view
(top), zoom (bottom).
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Fig. 7: xref
1 , x1, and ŷv in the presence of noise.

CONCLUSION

We have presented a method to take advantage of the
benefits of signal injection in PWM-fed systems without
the need for an external probing signal. For simplicity, we
have restricted to Single-Input Single-Output systems, but
there are no essential difficulties to consider Multiple-Input
Multiple-Output systems. Besides, though we have focused
on classical PWM, the approach can readily be extended
to arbitrary modulation processes, for instance multilevel
PWM; in fact, the only requirements is that s0 and s1 meet
the regularity assumptions discussed in remark 1.
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