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Abstract—This article investigates optimization of wind
farms using a modifier adaptation scheme based on Gaussian
processes. In this scheme measurements are used to identify
plant-model mismatch using Gaussian process regression, which
are then used to find the optimal plant control inputs. However,
for systems with many agents and a large control input
space, the identification of the input-output map of the plant
is challenging. Therefore, the paper proposes a distributed
learning approach, in which sub-parts of the plant are identified
with individual GP regression models. Afterwards, all of these
are used to build a model of the overall plant-model mismatch,
which is then used in the optimization. In the wind farm case the
sub-parts are the individual turbines. The distributed learning
approach clearly outperforms the original central learning
approach in numerical illustrations of wind farm test cases.

I. INTRODUCTION

The wind energy production in the last few decades has
grown rapidly. The development is driven by high renewable
energy targets in the US, Europe, and China, where wind
energy will be a significant factor in achieving these goals
[1]. On the other hand wind energy has become competitive,
with the cost of energy (CoE) significantly reduced, to levels
comparable to those of conventional fossil-fueled power
plants [2]. The deployment of wind turbines in a farm
reduces the overall CoE due to, e.g. reduced deployment
costs of turbines and electrical grid, reduced maintenance
costs and smaller land use [3]. However, it also decreases the
power production compared to the same amount of individual
turbines [4], and increases the turbulence intensity with depth
in the farm causing larger load fluctuations on the turbines
[5].

Currently, turbines in a wind farm are typically operated at
their individual optimal operating point, even though it is
well established and shown in several studies that this leads
to suboptimal performance, e.g. [4], [6]-[9]. Consequently,
a wind farm control design coordinating the wind turbines
and considering the aerodynamic interactions through wakes
between turbines has great potential to increase to overall
performance of the farm.

Two common approaches for wake control are axial induc-
tion control, e.g. [10]-[15] and wake steering control, e.g.
[16]-[20]. In axial induction control the blade pitch and
generator torque are controlled operating the upwind turbine
sub-optimally causing a smaller wake deficit and increasing
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e.g. the overall energy production of multiple turbines. In
wake steering control the yaw angle of the upwind turbine
is changed to deflect the wake and improve the performance
of multiple turbines.

Many wind farm control approaches are model-based. Con-
sequently, models of the wind farm that have a low com-
putational cost while describing the necessary dynamics to
sufficient accuracy, are required. These engineering wake
models often estimate the steady-state situation for a given
wind speed and direction assuming the same wind inflow
characteristics for the entire farm. Even though engineering
models are simple, it was shown that they can estimate
the wind speed deficit in the far wake region [21]-[23].
Moreover, new models are developed to further enhance
wind farm control [24]-[26]. Nevertheless, a plant-model
mismatch still exist since the engineering models can only
roughly approximate the complex dynamics of the wake [27].
Hence, purely model-based optimization may be unable to
reach plant optimum.

Real-time optimization (RTO) methods adapt the model-
based optimization problem using process measurements to
drive the plant to optimal performance while guaranteeing
constraint satisfaction [28]. The most intuitive RTO strategy
is the two-step approach, which consist of repeated parameter
estimation and optimization [29], [30]. However, this method
cannot guaranty plant optimality upon convergence if the
model is structurally mismatched [28]. In contrast, modifier
adaptation (MA) is an RTO method that corrects the cost and
constraint functions of the optimization problem directly and
reaches, under suitable assumptions, plant optimality upon
convergence [31]. It requires, however, the estimation of the
plant gradients [32].

In this article the recently proposed combination of MA and
Gaussian process (GP) regression [32], [33] is applied to
wind farm optimization. GP is a probabilistic, non-parametric
modelling technique well known in the machine learning
community [34]. In the context of MA the modifiers are
replaced with GP regression functions that estimate the plant-
model mismatch. Bayesian Optimization, which is a purely
data driven approach using GP regression models, is used
in [20]. In contrast, the approach proposed here exploits
prior knowledge given by a model of the system and just
corrects the model. Moreover, a distributed learning strategy
is proposed, which considerably improves the identification
of the input-output map by the GP regression model for large
wind farms.

The article is organized as follows: In Section II an overview
over the optimization problem, the MA approach and GP



regression is given, followed by an introduction of the
distributed learning MA-GP approach in Section III. The
performance of the approach is illustrated in Section IV. The
article ends with a conclusion.

II. PROBLEM FORMULATION AND PRELIMINARIES

The power production optimization problem of the steady-
state wind farm can be formulated as:

N
u, = arg min Pp(u) := pr,i(ui) (1a)

ueU, uz[ulT,ug,...,uIT\,]T, (1b)

where u € R™ denote the plant input variables; u; € R are
the inputs to the turbines of the plant; P, : R" X R"™ — R
is the cost function to be minimized, which is the power
production in this article; the power production at each agent
is also the output y, ; € R™ of the plant; and U C R™ is
the control domain, e.g. box constraints on the control inputs.
A wind farm consist of N interconnected wind turbines,
which contribute to the objective function. The inputs u; to
each turbine are the thrust coefficient Cr ; and the yaw angle
vi. Inequality constraints are omitted in the formulation, but
can be easily included.

The formulation (1) assumes that P, of u is known perfectly.
However, in any practical application the exact input-output
map of the plant is unknown and instead a model of the
system is exploited for the optimization:

N
u" =arg muin P(u) := Zp,-(u,-) (2a)

T . T

uel, u=[ul,ul,. .. uf]", (2b)

where @ refers to the quantities in (1) as output of the model.
RTO takes advantage of the available measurements to
compensate for plant-model mismatch and adapt the model-
based problem (2) to reach plant optimality.

MA adds for our optimization problem a first-order cor-
rection term to the cost function to match the necessary
conditions of optimality upon convergence [31]. Iteratively
the following modified optimization problem is solved:

(3a)
(3b)

0y, =arg min P(u) +(A) u
ueuU,

where ﬁz + is the optimal solution at iteration k + 1, and /l]‘:J
is the first-order modifier for the cost. The correction term
is given by:

opP opP
@AD" = - (we) = - (u), “)

It is recommended to filter the input update @, to avoid
excessive correction and reduce sensitivity to noise [28]:

Uy = U + L(0gy —ug), ®)

with L = diag(ly,...,l,), i € (0,1] where /; may be
reduced to help stabilize the iterations.
The MA scheme requires the estimation of the plant gradients

at each RTO iteration, which is experimentally expensive
and the main bottleneck for the MA implementation [28].
In this article a wind farm without inequality constraints
is considered. Inequality constraints can be easily added
to the MA approach. In addition, other cost functions, e.g.
including turbine loads can be incorporated.

A. Gaussian processes

In this section GP regression is briefly introduced. GPs are

based on kernel methods that aim to describe the unknown
function f : R™ — R using the training set 9 consisting
of M input vectors U = {u j}j”i , and corresponding noisy
outputs y = {yj}jj‘i , [34]. We assume that the noise is
additive, independent and Gaussian such that the relationship
between function f(u) and the observed noisy outputs y
are given by y; = f(u;) + v;, where v; ~ N(0,02)
is the variance of the noise [35]. Placing a zero mean
Gaussian process prior on the latent function f(u;) we get
a multivariate Gaussian distribution on a finite subset of
latent variables [36]. In particular the function values behave
according to p(f|U) = N'(0,K), where £ = [fi,..., fu]” is
a vector of latent function values, f; = f(u;) and K is a
covariance matrix.
The covariance matrix is constructed from a covariance
function, K;; = k(u;,u;), which express some prior notion
of smoothness of the underlying function [36]. In this work,
we use the auto relevance determination (ARD) squared
exponential (SE) covariance function [34]

1
k(u;,u;) = oy exp _E(“i —up)T A —u))|, (6

where o, is the covariance magnitude and A =
diag(Ay,...,4,,) is a scaling matrix.
The predictive distribution is the marginal of the normalized
joint prior times the likelihood. Since both factors in this
integral are Gaussian, the integral can be evaluated in closed
form. The distribution at an arbitrary input point u condi-
tioned on the observed data and hyperparameters ¥ has the
mean

p(u.D.¥) =ky (K+ 07Dy, )

and variance
v(u, D, ¥) = kyy — KL (K + 021) 7 'ky), (8)

where [Ky]m = k(u;,, u) and kKyy = k(u, u). The GP is a non-
parametric model. The training data are explicitly required at
the test time to construct the predictive distribution. For the
above expression a matrix of size m X m must be inverted,
which prohibits large data sets.

Essential for a good performance of the GP is the choice
of the unknown hyperparameters ¥ := [0, 0y, A1, ..., Ay, |,
which are usually inferred from the log marginal likelihood

In p(y|U):
1 r -1y L . m
L(P) = —5Y (K+o,D)7 'y - 5 In|K+0o,I| - ) In2nr, (9)
with the maximisation problem

P =mllz‘1xL(‘P). (10)



III. METHODOLOGY
A. Modifier Adaptation with Gaussian processes

The use of GPs in a MA approach to overcome the
limitation of estimating the plant gradients was first proposed
by [32]. The idea is to replace the first-order modifier of the

cost in (3) with GP regression term
w7 (0, D,9). (11)

The new optimization problem of the MA scheme with GP
modifiers (MA-GP) is

(12a)
(12b)

N . Pp-P
Uy = argmin P() +44, "~ (0, Dy, W)
ueU,

where the plant-model mismatch of cost function is modelled
by uPr=P. Similar to the original MA scheme the optimal
input of (12) may be filtered with (5) to reduce the step-size
and help stabilize the MA-GP scheme [33]. The whole MA-
GP scheme is presented in Algorithm 1.

It is not strictly necessary and for large input dimensions
and data sets this may even be impractical to update the
hyperparameters ¥ of the GP in every iteration. In Algo-
rithm 1 HypOpt represents a condition when to update the
hyperparameters.

Moreover, to avoid overfitting and numerical difficulties in
constructing the GPs caution has to be taken when updating
the data sets 9. [32] recommended a limited number of
historical records in the data set D, which can be achieved by
either using only N nearest-neighbors to the new operating
point ug4 or rejecting or substituting the current iterate U
if it is within a given radius to an existing point in the data
sets D [33].

Algorithm 1: Basic MA-GP scheme [33]

Initialisation: GP regression model (GP)"»~F, and
hyperparameters WY° optimization with
data sets Dy

for k = 0,1,... do

Solve modified optimization problem (12);

Filter new operating point ug,; with (5);

Obtain measurements of cost function P, (Ux41);

Update the data set Dy with measurements ;

Update GP regression term (GP)F»~F with data

set D1 ;

if HypOpt then

Update hyperparameters Wi, with new data
set Dyt

end
end

B. Distributed learning for plant-model mismatch

Let us assume we like to optimize a distributed system
consisting of N agents, which interact with each other and
contribute to the overall objective function @, e.g. a wind
farm with N wind turbines. In the basic MA-GP approach the

overall objective function is modified with a GP regression
model of the plant-model mismatch. However, in problems
with, e.g. large input dimensions, the correct identification
of the regression model may be difficult. In such a situation
we propose to learn the plant-model mismatch of each agent
individually before solving the RTO problem.

The MA-GP scheme with distributed learning becomes

N
et = argmin P(w) + 0% (w, DL W) (130)

i
wuel, u=[ul,uy,....uf]", (13b)
where ,uz ’;.’i_p " are the mean predictions of the GP regression

terms of the plant-model mismatch of the individual turbines.
The optimal input of (13) may again be filtered with (5). In
fact, the only difference to the basic MA-GP scheme is the
GP training, which consist of N GPs (Fig. 1).

The inputs u; used to identify the individual turbines

may be a subset of the plant inputs because either from
the system structure it is known that the excluded inputs do
not influence the turbine, e.g. control inputs of downstream
turbines do not influence the output of upstream turbines, or
only limited communication between turbines is allowed, e.g.
only nearest-neighbor communication. The former does not
influence the quality of the model while for the latter parts
of the explanatory variables are neglected, which usually
decreases the performance of the model.
For the distributed learning approach N GPs have to be
trained instead of one for the cost function. This is a con-
siderable amount of additional computational work, which,
however, can be parallelized. Distributed learning can also
be applied to constraints if present and the constraints have
a similar form as the cost function presented. Indeed, not
every global constraint is suitable for distributed learning.

IV. CASE STUDY

In this section we apply the basic MA-GP scheme and the
MA-GP scheme with distributed learning to a wind farm.
The wind turbines are represented using the actuator disc
theory to couple the power and thrust coefficient, Cp and
Cr [37], [38]

Cp=4a(l - a)z,
Cr =4a(l1 - a),

(14)
5)

where a is the axial induction factor. The axial induction
factor indicates the ratio of wind velocity reduction at the
turbine compared to the upstream wind velocity. The stead-
state power of each turbine under yaw misalignment is given
by [39]

1
P = —pACp cos y*v, (16)

2
where A is the rotor area, p the air density and « a correction

factor and v is the wind velocity. In the actuator disc theory

IThe wind farm picture is by Erik Wilde from Berkeley,
CA, USA https://www.flickr.com/photos/dret/
24110028330/, Wind turbines in southern California 2016, https:
//creativecommons.org/licenses/by-sa/2.0/legalcode
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Fig. 1: The basic idea of the distributed MA-GP scheme for a wind farm !.

k = 3 [37]. However, based on large-eddy simulations, the
turbine power yaw misalignment has been shown to match
the output when x = 1.88 for the NREL SMW turbine [40],
which is used in the article.

The Gaussian model proposed by [41] and extended for yaw
misalignment by [42] is used to model the aerodynamic in-
teractions between turbines. The three-dimensional far wake
velocity v(x,y, z) of a yawed turbine can be calculated with

YE D _y  0pm05(-8)/0)? g-05(=2) 102 (17
Voo ’

Cr cosy
C=1-,[1- ————,
\J 8(oyo/d?)

where v is the upwind velocity, Cr is the thrust coefficient,
v is the yaw angles, which is assumed positive in clockwise
direction, zj is the tower height, ¢ is the wake deflection,
and o, and o are the wake widths in lateral and vertical
directions, respectively. For more details about the model the
reader is referred to [38], [42].

The control inputs u of the wind farm are the yaw y; and
thrust coefficients Cr ; of the N turbines. Consequently, a
farm has in total 2N control inputs. The objective is maxi-
mizing the power production P;,; = }; P; of the wind farm.
Only box constraints on the control inputs, Cr ; € [0,0.95],
v; € [0,2/orr], are implemented. The yaw misalignment is
constraint to clock-wise rotations. The Gaussian wake model,
which is used to represent the model and plant in this article,
is symmetric. Therefore, the algorithm would not be able
to differentiate between clockwise and counter-clockwise
rotations. Training on more more accurate data would prevent
this behavior [43].

In the following the basic MA-GP scheme and the MA-
GP scheme with distributed learning are compared on wind
farms with different complexity. For the turbine dimensions
the NREL 5-MW wind turbine is used [44]. The plant is
modelled with the Gaussian model presented, while for the
model in the MA-GP scheme several parameters of the

(17b)

actuator disc and wake model were changed resulting in a
nonlinear behaviour of the plant-model mismatch. Both the
plant and the MA-GP model still represent a behaviour of a
wind farm.

The identified model (model plus correction) is compared to
the plant model on a test set. The root-mean square error
(RMSE) is used as performance index

M
1
=437 2P = Pp). (18)
i
where P, and P, are the corrected model and plant power
production and M is the size of the test set. The performance
of the overall MA-GP approach is given by the percentage
of relative error in power production

N
*

b~

0 = 100
PP

; (19)

where P}, and P are the optimal power production of the
plant and MA-GP approach, respectively.

A. Three turbine case

In this case a row of three turbines is simulated. The
turbines face the wind and the spacing between turbines
is 5D, where D is the turbine diameter. Three cases, a
zero noise, small noise and large noise case, are tested with
differently large initial training data sets. The small noise
has a standard deviation of about 0.5% to 0.8 % and the
large noise of about 5 % to 8 % with respect to the nominal
power signal of each turbine. The same noise is applied to
the central and distributed approach. In case of the central
learning approach the sum of the three measurement noises
of the single turbines is taken to get the overall noise of
the power signal. The optimization and training is run for
100 iterations for both the centralised training and distributed
training approach.

The simulation results are summarized in Tab. I. It can
be seen that the performance of the distributed learning ap-
proach is superior to the central learning approach. However,



TABLE I: The root-mean square error I'n7o and I'njp0 of the identified
model on the same test set after initial training and 100 iterations; and the
relative performance error ® of the MA-GP approach after 100 iterations.
The MA-GP updates hyperparameters and data set in each iteration. The
initial training set consist of either N= 60, 120 or 180 operation points,
and the standard deviation of the noise is either 09 = 0W, o = 5kW or
o) = 50kW.

N I'no [101 Tnioo [1104] 0 [%]

60 2.57 2.17 0.016

oy 120 1.67 127 0.019

180 0.98 0.95 0.012

_ 60 3.00 272 0.180
g o 120 1.90 1.67 0.044
d 180 1.57 1.31 0.032
60 7.01 6.34 1.450

oy 120 5.64 5.12 0.965

180 592 4.40 0.734

60 1.89 1.62 0.045

oy 120 1.04 0.95 0.020

180 0.73 0.70 0.013

9 60 1.87 171 0.071
Z o 120 121 113 0.033
2 180 0.94 091 0.027
e 60 6.05 5.30 0.822
oy 120 4.09 3.90 0.450

180 3.55 351 0.372

for the noise-free case the optimization error is slightly better
even though the RMSE error of the identified model is larger.
Noise increases the RMSE and the optimization error. More
initial training data points are extremely beneficial for the
large noise cases.

Including the new operation points of each iteration in the
GP data set is beneficial and reduces the RMSE. It has to be
noted that the 100 new operation points contain small amount
of information since the algorithm approaches the optimal
operation point within a few iterations and afterwards stays
there. In fact, it also shows that the algorithm is relatively
robust to overfitting. However, we observed that in many test
cases the smallest optimization error was reached within 6 to
20 iterations® and afterwards the error slightly deteriorated.
In addition, the performance of the approach was tested if
only the operation points are added to the GP data set without
updating the hyperparameter and the case without updating
data set and hyperparameters. For the former case only slight
changes in the RMSE and optimization error are observed.
However, for the large noise case with small initial data
set the RMSE and optimization error increases drastically.
The hyperparameters, especially the noise term, are not well
identified with the small data set and cause large overfitting
problems when new almost identical operation points with
different outputs are added. Not updating the GP data set
causes usually a larger RMSE at the end of the 100 iterations.
The optimization error changes slightly compared to the case
where both data set and hyperparmeter are updated. For
larger initial data sets the optimization error sometimes even
decreases.

2Faster convergence can be achieved with a larger filter constant, which
was set to k; = 0.4.

B. Ten turbine case

In this case a row of ten turbines facing the wind is
simulated. The spacing is 5D, where D is the turbine
diameter. The same noise classes as in the previous test case
are used. The MA-GP algorithm is run for 25 iterations and
20 runs are performed of each test case.

The results of different test runs are summarized in Fig. 2,
where the mean error and standard deviation of the 20 test
runs of each test case are shown. Again, a larger initial
training set improves usually the performance of the MA-
GP approach. For the noise-free central learning approach
the test case with a training set of 200 data points converges
to a smaller error than the case with 400 data points. This is
an exception but was already observed in the three turbine
test case. The optimization results with a small initial training
set have usually the largest variance. Consequently, their
performance is stronger dependent of the data in the training
sets. However, the variance of the optimization error for the
noise-free central learning approach is almost independent
of the training set size.

Comparing Fig. 2a and 2b we notice that the distributed
learning approach clearly outperforms the central learning
approach. Even the large noise cases of the distributed
learning approach show better performance than the noise-
free central learning approach. In fact, the performance
of the central learning approach decreases strongly under
influence of noise while the distributed learning approach
is less affected by noise. The performance of the small
noise case o and the noise-free case are almost identical
indicating robustness of the approach. Moreover, the error of
the distributed learning approach increases only slightly from
the three to the ten turbine case while a significant increase
is observed for the central learning approach. It indicates that
the input-output map between control inputs and total power
production becomes more difficult to identify as the input
space increases. The sensitivities between control inputs and
total power production are small especially considering that,
e.g. derating and yawing a turbine decreases the power
production of the turbine itself but increases the power
production of the downwind turbines. The information of
power production of the individual turbines, which is used in
the distributed learning approach, improves the identification
of the input-output map, and makes the approach more
suitable for large wind farms.

Limited communication decreases the performance of the
MA-GP approach for the noise-free and small noise cases
(Fig. 2c). This is not surprising since part of the energy flow
in the plant is neglected and cannot be explained by the
model. For the cases with large noise 0%, on the other hand,
the limited communication case considering turbines only in
a radius of two times the turbine spacing (two upwind and
two downwind turbines - in total the control inputs of five
turbines are considered in the model) converges to a very
similar error as the full communication case. The influence of
turbines further away is within the noise range and cannot be
correctly identified by the GP-model. Therefore, neglecting
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Fig. 2: The optimization error ® in dependency of the size of the initial training set for the ten turbine test case. Red color and round marker indicate case
with noise o, blue color and asterisk marker indicate case with noise oy, and green color and square marker indicate case with noise 0.

them is reasonable and may be positive for the overall
performance of the MA-GP approach. Still the RMSE is first
similar to the full communication case when turbines in the
radius of three times the turbine spacing are used.

Indeed, for other sizes of the initial training set the cases
with large noise and with communication in a radius of three
times the turbine spacing usually showed at least similar or
even better performance than the full communication case.
In contrast, the root-mean square error ['nyo5 of the full
communication case is in all cases smaller than with limited
communication.

In general, smaller computational times for the optimizations
of the hyperparameters or finding new operation points
were not observed for the limited in comparison to the full
communication case.

V. CONCLUSION

This article proposes the use of the MA-GP approach
for wind farm control. The approach connects real-time

optimization with machine learning. A distributed learning
approach is proposed in which the objective functions of
the individual turbines are learned prior to the optimization
of the plant inputs. This approach uses more information
about the plant than the central learning approach and
clearly outperforms it. The benefits of the distributed learning
approach become increasingly important for plants with
many turbines and large control input spaces. The better
performance comes with the cost of identifying as many GP
regression models as turbines in the plant in comparison to
one GP regression model for the central learning approach.
Indeed, the distributed learning process can be completely
parallelized, which negates this drawback.
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