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Model-Free Primal-Dual Methods for Network Optimization with
Application to Real-Time Optimal Power Flow

Yue Chen!, Andrey Bernstein!

Abstract—This paper examines the problem of real-time
optimization of networked systems and develops online algo-
rithms that steer the system towards the optimal trajectory
without explicit knowledge of the system model. The problem
is modeled as a dynamic optimization problem with time-
varying performance objectives and engineering constraints.
The design of the algorithms leverages the online zero-order
primal-dual projected-gradient method. In particular, the pri-
mal step that involves the gradient of the objective function
(and hence requires networked systems model) is replaced by
its zero-order approximation with two function evaluations
using a deterministic perturbation signal. The evaluations are
performed using the measurements of the system output, hence
giving rise to a feedback interconnection, with the optimization
algorithm serving as a feedback controller. The paper provides
some insights on the stability and tracking properties of this
interconnection. Finally, the paper applies this methodology to
a real-time optimal power flow problem in power systems, and
shows its efficacy on the IEEE 37-node distribution test feeder
for reference power tracking and voltage regulation.

I. INTRODUCTION

This paper considers the problem of real-time optimization
of networked systems, where the desired operation of the
network is formulated as a dynamic optimization problem
with time-varying performance objectives and engineering
constraints [8], [18], [31]. To illustrate the idea, consider the
following time-varying model that describes the input-output
behaviour of the systems in the network:

Y(t) = he(z(1)) (1)

where x(t) € R™ is a vector representing controllable inputs;
y(t) € R™ collects the outputs of the network; and h(-) :
R™ — R™ is a time-varying map representing the system
model. Suppose that the desired behaviour of the system is
defined via a time-varying optimization problem of the form

wEX(f)y (e )ft( ) (2)
where X(t) is a convex set representing, e.g., engineering
constraints; and f; : R™ — R is a convex function repre-
senting the time-varying performance goals. For simplicity
of illustration, we assume that the performance is measured
only with respect to the output y.
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In an ideal situation, when infinite computation and
communication capabilities are available, one could seek
solutions (or stationary points) of (2) at each time ¢ by, e.g.,
an iterative projected-gradient method:

ak+1) :Proj;‘((t){g'c — a(J{) Yy fi (b (k)))}’ ®)

where & = 0,1,... is the iteration index; Jgk) =
Jh,(x®)) is the Jacobian matrix of the input-output map
h;; Projy(z) := argmingecx ||z — x||2 denotes projection;
and o > 0 is the step size. In practice, this approach might
be infeasible. First, running (3) to convergence might be
impossible due to stringent real-time constraints. Second, (3)
requires the functional knowledge of the input-output map
h; or an approximation thereof in real time. The latter is
absent in typical network optimization applications, such as
the power distribution system example considered here.

To address the first challenge, we adopt the measurement-
based optimization framework of [8], [15], [16], [22], [23],
wherein (3) is replaced with a running (or online) version:

2D —Projy {2 — a(TO)V, OGP}, @

in which the iteration index & is now identified with a discrete
time instance tj at which the computation is performed;
X0 = X(ty), JH) = Ty, (@), f*) = f,; and g*)
represents the measurement of the network output hy, (x(*))
at time t;. Note that (4) represents a feedback controller
that computes the input to the system based on its output;
however, the implementation of this controller requires the
real-time model information in the form of J*).

This paper sets out to address the second challenge, and
tackle situations in which J® is not available for real
time optimization. This is motivated by networked systems
optimization problems, such as the optimal power flow in
power systems considered in Section V, wherein the topol-
ogy and parameters of the network, as well as exogenous
inputs, might change rapidly due to variability of working
conditions, natural disasters, and cyber-physical attacks. To
address this challenge, we leverage a zero-order approxima-
tion of the gradient of the objective function. In particular,
we replace the gradient of' F'¥)(x) := f*)(h;, (x))

VEW (@) = (Jn,, (®))'Vyf P (hy, (@) (5)

with the two function evaluation approximation:

VF®) (€, ¢) = ié [FO @+ e€) - FM (@ - €)] (6)

'A more direct approach is to estimate the Jacobian matrix with a zero-
order approximation. This direction is a subject of ongoing research.



where £ € R” is a perturbation (or exploration) vector, and
e > 0 is a (small) scalar. Observe that this modification
requires now measurements of the output at two (rather
than one) inputs: (*) + €€ at each time step k. With this
modification, algorithm (4) can be carried out without any
knowledge of the map h;.

While the stylized algorithm (4) and approximation (6)
is used here for an illustration of the main ideas, the paper
considers a more general convex constrained optimization
framework, and develops model-free primal-dual methods
to track the optimal trajectories. Using a deterministic explo-
ration approach reminiscent to the quasi-stochastic approx-
imation method [5], this paper provides design principles
for the exploration signal &, as well as other algorithmic
parameters, to ensure stability and tracking guarantees. In
particular, we show that under some conditions, the iterates
x(*) converge within a ball around the optimal solution of
(2). Finally, we apply the developed methodology to the
problem of distributed real-time voltage regulation and power
setpoint tracking in power distribution networks.

Much of the analysis is restricted to the case in which the
model map h; is linear. Extensions to nonlinear models is
a topic of current research.

Literature Review

Zero-order (or gradient-free) optimization has been a
subject of interest in the optimization, control, and machine
learning communities for decades. The seminal paper of
Kiefer and Wolfowitz [25] introduced a one-dimensional
variant of approximation (6); for a d-dimensional prob-
lem, it perturbs each dimension separately and requires 2d
function evaluations. The simultaneous perturbation stochas-
tic approximation (SPSA) algorithm [34] uses zero-mean
independent random perturbations, requiring two function
evaluations at each step. In [10], [30], the SPSA algorithm
was extended to deterministic perturbations, to improve
convergence rates under the assumption of a vanishing step-
size and vanishing quasi-noise.

Analysis of the zero-order methods based on two function
evaluation (similar to (6)) has been recently a focus of several
papers [17], [20], [21], [29]. In these papers, a stochastic
exploration signal £ is used (typically, Gaussian iid) and
convergence analysis of (projected) gradient methods and
various variants of the method of multipliers is offered.

In the theoretical machine learning community, “bandit
optimization” refers to zero-order online optimization algo-
rithms based on a single or multiple evaluations of the objec-
tive function [3], [13], [19]. These algorithms typically have
high variance of the estimate if the evaluation is performed
using one or two function evaluations [14]. Finally, the
gradient-free technique termed ‘“‘extremum-seeking control”
(ESC) [2] leverages sinusoidal perturbation signals and single
function evaluation to estimate the gradient. Stability of the
ESC feedback scheme was analyzed in, e.g., [27], [35]. These
algorithms typically require additional filters to smooth out
the noise introduced by the perturbations.

In terms of zero-order network optimization, our work is
closely related to the recent work [21], wherein a multi-agent
optimization of a class of non-convex problems is considered.
The paper then develops distributed algorithms based on the
zero-order approximation of the method of multipliers. In
contrast to our paper, [21] considers a stochastic exploration
signal for the gradient estimation, and typically requires
N > 2 function evaluations to reduce the estimation variance
[21, Lemma 1]; see also [5] for the detailed analysis of
the advantage of deterministic vs stochastic exploration.
Moreover, it considers a static optimization problem.

Contrary to much of the previous work (with the sole
exception of perhaps [21]), we consider a constant step-
size algorithm, necessitated by our application in a time-
varying optimization problem. Moreover, since the problem
we consider here is a constrained optimization problem, it
leads to the extension of the gradient-free methods to novel
model-free primal-dual algorithms. Due to the real-time
nature of our application, we resort here to computationally-
light online gradient-descent methods rather than variants of
methods of multipliers which typically require solving an
optimization problem at each time step.

Organization: The rest of the paper is organized as
follows. Section II introduces the general network optimiza-
tion problem. Section III proposes the model-free primal-
dual algorithm to solve the problem in Section II. The
convergence of the algorithm is analyzed in Section IV.
Section V introduces the power systems application and the
simulation results are presented in Section VI. Section VII
concludes the paper and proposes future works.

II. NETWORK OPTIMIZATION FRAMEWORK

Consider the general network optimization problem [8],
wherein at each time step k € N, the goal is to optimize the
operation of a network of IV systems:

N
min 70 0@)+ 310 @ (72)
subjectto: x; € XM i=1... N (7b)
iy (@) <0,j=1,....M (7o)
where Xi(k) C R"™, with Zfil n; = n, are convex sets

representing operational constraints on the control input x;
of system ¢; and y(’“)(w) is an algebraic representation of
some observable outputs in the networked system. In this
paper, much of the analysis is restricted to the linear case’

y¥(x) .= Cx + Dw™® e R™ (8)

where C € R™*"™ and D € R™ % are given model
parameters, and w*) € R™ is a vector of time-varying
exogenous (uncontrollable) inputs. For example, in the power
systems case considered in Section VI, y*)(x) represents
the linearized power-flow equations.

2However, the developed algorithms, as well as our numerical results in
Section VI, are not restricted to the linear case.



Further, the convex function f{*(y®(z)) : R* - R
represent the time-varying performance goals associated with
the outputs y*)(z); whereas fi(k)(:ci) : R — Ris a
convex function representing performance goals of system <.
Finally, gj(-k) (y*® (x)) : R™ — R are convex functions used
to impose time-varying constraints on the output y(k)(a:).

Observe that (7) is naturally model-based — in order to
solve it, the knowledge of the (linearized) system model (8)
and the exogenous input w*) is required. This problem will
be used next to define the desired operational trajectories for
the networked system; in Section III, we propose a model-
free algorithm to track these desired operational trajectories.

We define the following shorthand notation:

g Y @) = [o W @)..... ol 0 @)]

@) =3 1 ()

n0 (@) = 1O (@) + 137 (" ().

Setting A € RY as the vector of dual variables associated
with (7c), the Lagrangian function at step k is given by:

L9 (2, ) = h¥ (2) + Ag® (yP(z).  (©9)

Finally, the regularized Lagrangian function is given by [26]:

k P d
L)@, N) = 20 (@2 + Dl - SINE - 10)
where p > 0 and d > 0 are regularization parameters.
With this notation at hand, consider the saddle-point problem

. . (k).
associated with £ ":
(,A\) keN 11

. k
max min L(U)l
AeDR) gex k) P

where X(F) .= Xl(k) X .o.oX XJ(Vk) and D™ is a convex
and compact set that contains the optimal dual variable of
(11); see, e.g., [8] for details. Hereafter, the optimal trajectory
Z(R) = (k) SR of (11) represents the desired
trajectory. It is clear that E;’Z(m, ) is strongly convex in @
and strongly concave in X; thus, the optimizer z**) of (11)
is unique. However, z(***) might be different from any saddle
point of the exact Lagrangian £(*) (2, X), and the bound on
the distance between z(***) and the solution of (7) can be
established as, e.g., in [26].

To proceed, we list the assumptions that will be imposed
on the different elements of (7).

Assumption 1. Slater’s condition holds at each time step k.

Assumption 2. The functions fék) (y) and fi(k)(a:i) are
convex and continuously differentiable. The maps V f(*) (x),
Vfék) (y), and V2 ék) (y) are Lipschitz continuous.

Assumption 3. For each ;7 = 1,...,M, the function
g](-k) (y) is convex and continuously differentiable. Moreover,

Vg§k)(y) and V2g§k) (y) are Lipschitz continuous.

Assumption 4. There exists a constant ey such that for all
k and x,y:

V1§ ) = VI V@)l < e,

IV * (@) = V(@) < ey,

Vg () — Vg V)l < ey, j=1,...,M.
III. MODEL-FREE PRIMAL-DUAL METHOD

A measurement-based primal-dual method was introduced
in [8] to track the desired trajectory {z(**)}; we present the
method here for convenience:

2+ — Pron<k>{(1 — ap)w(k) — a(me(k)(w(k))

M
+ 0V PGP+ Y AP eV aM)) a2
j=1

ARD — proj ) {(1 — ad)A® + ag® @(’“))} (12b)
where a > 0 is a constant step size, and ﬂ(k) is a (possibly
noisy) measurement of y*) (2(¥)) collected at time step k
(see Assumption 5 below). The main advantage of (12) is
that it avoids explicit computation of (8) at each time step,
and thus does not require knowledge or estimation of the
uncontrollable input w(*) appearing in (8). Note that since
the method is gradient-based, it relies on the availability of
the network model matrix C. However, in many practical
applications, including the power system example of Sec-
tion VI, C is time-varying (e.g., due to network topology
variation) and its exact value is unavailable.

We next propose a model-free variant of (12). As in the
celebrated gradient-free stochastic approximation algorithm
of Kiefer and Wolfowitz [25], the general idea is to use few
(online) evaluations of the objective function to estimate the
gradient. The gradient approximation is justified through a
Taylor series expansion as explained next.

Let F': R® — R be a C? function, whose first and second
derivatives are globally Lipschitz continuous (cf. Assumption
2). For given € R", this variable is perturbed by +e&, with
& € R™ and € > 0. According to Taylor’s theorem, for any
x cR” and r € R,

2
F(z+1€) = F(x) + 1§ VF(2) + TV F(@)§ + O()
Taking » = €, r = —¢, and then subtracting yields:
F(x +e€) — Flx —e€) = 26’ VF(z) + O(e®)  (13)

This approximation is summarized in Lemma 1 that fol-
lows, with the following shorthand notation:

@F(w;&e) = 2%{ [F(x+€€) — F(x —€£)]. (14)

Lemma 1. Let F : R" — R be a C® function, with Lipschitz

continuous VF and V*F. Then,
VEF(x;€,€) = ££TVF () + O(c?) (15)

Note that O(e?) = 0 if F is a quadratic function.



In applying Lemma 1 to algorithm design, the vector £ is
updated at each iteration of the algorithm. Let {& (k)} denote
a deterministic exploration signal, with & ®) e R It is
assumed in this paper that the exploration signal is obtained
by sampling the sinusoidal signal

&i(t) =

with w; # w; for all © # j; other signals are possible
provided that they satisfy Assumption 6 below.

The following gradient-free variant of the primal-dual
algorithm (12) is well motivated by Lemma 1.

V2sin(wit), i=1,...,n, (16)

Model-Free Primal-Dual Algorithm

At each time step k, perform the following steps:

[S1a] (forward exploration): Apply mf) =) et *) 1o

the system, and collect the measurement @f) of the output
k

y® ().

[S1b] (backward exploration): Apply z*’ ) — g™

) of the output

=k
to the system, and collect the measurement ﬂ(f
y® ().
[S1c] (control application): Apply =(*) to the system, and
collect the measurement ' of the output y*) (z*)).
[S2a] (approximate gradient): Compute the approximate
gradient for the primal step

VLE) = v, f*) (k)

+ 56 [10@0) - 10 @)

+ 5 €0OO) (gD ) - g™ E®)] . a7
[S2b] (approximate primal step): Compute
25D = Proj {(1 —ap)x® — avL® } (18)
[S3] (dual step): Compute
ARFD — Proj ) {(1 —ad)A® ozg(k)@(k))} . (19)

The following remarks are in order.

Remark 1. Lemma 1 alone is not enough to obtain conver-
gence guarantees since the matrix ££' is semi-definite but not
strictly definite. We formulate conditions for convergence in
the next section.

Remark 2. The algorithm allows distributed implementa-
tion. This point is illustrated in a power system optimization
example described in Section VI

Remark 3. The algorithm requires three measurements of
the output: ysr ,y(_k), and ﬂ(k) In fact, the third mea-
surement can be replaced with, e.g., an average y(k) =
0.5(y5r) + Q(k)) provided that y( ) satisfies Assumption 5
below.

IV. CONVERGENCE ANALYSIS

For the purpose of the analysis, we assume bounded
measurement error.

Assumption 5. There exists a scalar e, < oo such that the
measurement error can be bounded as

sup [[§*) — y® (@™, <e,,
k>1
sup G —y®@P))2 < ey,

k k
sup [ - y® @)z < .
k>1

The exploration signal plays an important role in the
convergence of the ];roposed algorithm. Recall that the
exploration signal £(k is sampled from a continuous-time
signal £(t). Recent work on quasi-stochastic approximation
[5], [33] and extremum seeking control [1] has shown that
certain deterministic exploration signals can help reduce the
asymptotic variance and improve convergence, in comparison
to random exploration (see Fig. 1 of [33]). We impose the
following assumption on the exploration signal.

Assumption 6. The exploration signal is a periodic signal
with period 7', and

t+T
7] emeera -1

for all ¢, where I is the identity matrix.

(20)

It can be shown that the signal defined in (16) satisfies
Assumption 6 with 7" being a common integer multiple of
the sinusoidal signal periods.

This strong assumption is imposed to simplify the proofs
that follows. It is enough to have the approximation:

in which Eg is positive definite, and the 1/7 bound for the
error term is independent of ¢ (this is the assumption used
in [5]). An example is the signal defined in (16) in which
the frequencies may not have a common multiple.

We first show that the primal step (18) is approximately
equivalent to an averaged primal step, where the singular
“gain matrix” £€¢" is replaced with the identity matrix (20).
This analysis is performed for the algorithm defined in
continuous time, which is justified using standard ODE
approximation techniques from the stochastic approximation
literature [S], [11] or more recent literature on optimization
[32], [37]. We then apply the results of [8] to the resulting
approximate primal-dual algorithm to show tracking of the
desired trajectory {z(**)} defined by (11).

Ydr = 3 +0(1/7)

A. Averaged Primal Step

In this section, we provide some preliminary results on the
asymptotic properties of the primal iteration (18); a detailed
analysis is the subject of ongoing work.



To that end, consider a C® strongly convex strongly
smooth function F' and the associated projected gradient
descent method:

z* ) = Proj, {a:(k) - aVF(a:(k>)} RS
The corresponding gradient-free method reads
2D = Projy {2 — aVF(@M;e® 0} 2

Our goal in this section is to explain conditions for conver-
gence of (22).

We cannot expect convergence of {z(*)} to a limit as
k — oo. We might expect something like the ergodic
steady-state obtained for stochastic approximation with fixed
stepsize [11]. In this section, we are content to simply obtain
bounds on the error ||2*) — *||, where =* is the minimizer
of F'. Under appropriate assumptions, for a continuous time
model we obtain

limsup ||z(t) — 2*|| = O(a + €?) (23)
t—o0
See Remark 4 at the close of this section.
According to Lemma 1, the continuous-time analogue of
(22) is given by

&(t) = Projr, (z1)) {aB(t z(t))}

where, Ty (x) is the cone of tangent directions of X' at =
(or for short, the tangent cone of X’ at ), and for any ¢ and
Z,

(24)

Blt,x) == —EEX) VF(x) + O(e?).

The function 3 is Lipschitz continuous in &, uniformly in ¢.

Analysis of the continuous projection in (24) is a topic
of research. We consider here a simplification in which the
projection is only applied at integer multiples of the period 7.
At stage K + 1 of the algorithm, we have computed x(KT),
and with this initial condition, {x(¢) : KT <t < (K+1)T'}
is defined as the solution to the ODE without projection:

(25)

x(t) = af(t, (1)) (26)
We then define x((K + 1)T') =
(K4+1)T
ProjK{az(KT) + /KT B(r,z(7)) dT} 27)

where the projection is onto the set of states corresponding
to constraints on x(KT).

This recursion admits an approximation by a projected
gradient descent algorithm:

Lemma 2. Suppose F is C3, and that both VF and V*F
are globally Lipschitz continuous. Suppose moreover that
Assumption 6 holds. Then, the solutions to (26) admit the
approximation:

z((K+ 1)T) =Projg {x — oT(VF(x) + sk (x))} (28)
where x = x(KT), and s () = O(a + €2).

Proof. 1t is enough to approximate the integral appearing in
(27). Under the Lipschitz conditions and boundedness of &,

there exists a constant by < oo such that for all KT < 7 <
(K+1)T,

() — 2(KT)[| < boTa,
18(r, ®(7)) — B(r,x(KT))|| < boTex.

Consequently, for 7 in this range,

B(r,x(r)) = B(r, 2(KT)) + O(a)
= —&(n)&(r)" VF(x(KT)) + O(e*) + O(a)

Under Assumption 6, it follows that

(K+1)T
[ Bnatrir = ~T [VF(@(KT) + Ofa+ )]

which completes the proof. O

Remark 4. If ||VF|| is coercive, then techniques used to
establish stability of gradient descent can be used to show
that the solution to (26) is ultimately bounded [28]. If F' is
L-smooth and p-strongly convex then we obtain the uniform
bound (23), independent of the initial condition.

B. Tracking of the Desired Trajectory

We note that Lemma 2 suggests that the primal iteration
(18) can be viewed as an approximate projected gradient
descent iteration on the primal variable provided that: (i) «
and e are chosen small enough, and (ii) the projection is
performed periodically, every 71" time instances. In that case,
iteration (18)-(19) is equivalent to:

kD) = Projk{w(k) — a(Vmﬁgz(z(k))
+O0(a+€ +ep+ ey)>} (29a)
AEED = Projpay {(1 = ad)A® + ag® )}, 29)

where where z(®) := {(®) A"} and Proj,, is the projec-
tion onto X*®) for k a multiple of 7'/At (At is the time
discretization step). We note that the additional term O(e,)
in (29) is due to the use of measurements in (18) instead
of the exact system output (cf. Assumption 5). Finally, the
additional term O(ey) is due to the time-variability of the
Lagrangian over the period of 7' time instances as quantified
by Assumption 4.

We next analyze the tracking properties of (29). To this
end, quantify the temporal variability of the desired trajectory
2(+F) yvia

o) i |2 _ (R, (30)
In addition, let
k)
RN Val,a(2) 31
O g0y ) 1 ax ey

denote the primal-dual operator associated with (11). The
following holds (see, e.g., [8, Lemma 5]).

Lemma 3. There exist constants 0 < ng < Ly < 0o such
that, for every k € N, the map ¢*)(z) is strongly monotone



over X¥) x D& with constant n¢ and Lipschitz over X ) x
D®) with coefficient Ly.

Finally, let

k) Vmﬁz(ﬁ(z) +O0(a+€*+ef +ey)

Z
—gM(@") +dx

<)

, (32)

denote the approximate primal-dual operator associated with
(29). Using [8, Lemma 4], the following result follows.

Lemma 4. There exists a constant €, = O(a+€*+ef+ey)
such that

~ (k)

‘¢<’“><z<k>>—¢ )| < e

2

VE=1,2,... (33)

We use [8, Theorem 4] to show that the approximate
time-varying primal-dual algorithm (18)—(19) exhibits the
following tracking performance.

Theorem 1. Suppose that the step size « is chosen such
that 0 < o < 21/ Li. Moreover, suppose that there exists
a scalar ¢ < oo such that sup,~, c*) < o. Then, the
sequence {z)} converges Q-linearly to {z**)} up to an
asymptotic error bound given by:

limsup ||z — 2R, < acpt o (34)
c

k—o0 1-

where ¢ := \/1 —2amy + 2L < 1and ey = Oa + € +
ef+ey).

V. MODEL-FREE REAL-TIME OPTIMAL POWER FLOW

The application considered in this paper is real-time
optimization of the power injections of distributed energy
resources (DERs) in a distribution system. The following
objectives are pursued: (i) feeder head/substation power
is following a prescribed signal, and (ii) the voltages are
regulated within prescribed bounds. This is achieved via
formulating an optimal power flow (OPF) problem of the
form (7) and seeking its solutions in real time using the
model-free primal-dual framework introduced in Section III.

Consider a distribution system that is described by a set
of nodes N' = {0,...,n}, where node 0 denotes the feeder
head (or substation) with fixed voltage; the rest are PQ
nodes. In this work, we focus on controlling the batteries and
PV systems in the distribution system interfaced via power
inverters; however, the proposed framework can be easily
extended to include other types of DERs. Let Ny, and N,
be the number of batteries and PVs, respectively. So the total
number of DERs Nye, = Ny + Np,.

A. Notation

For notation brevity, in this section, we drop the algorithm
iteration superscript (*) from variable names, unless other-
wise specified.

The distribution system is described by the AC power-flow
equations, defining input-output relationship of this physical
system. In particular:

e x € R2Nder collects all decision variables, where each
DER has real and reactive power ; = {x; ;,, Z; 4};

o £ € R?" collects the active and reactive power of
uncontrollable loads (the “noise”);

e v(x,£) € R™ collects the voltage magnitudes at every
PQ node; and

e Py(x,£) € R is the power flow at the feeder head.

The (non-linear) maps (v(x, £), Py(x, £)) exists under some
conditions and are defined by the power-flow equations [9].
The goal is to control the output (v(x,¥£), Py(x,£)) by
controlling x.

In order to formulate a convex target OPF (7), an approxi-
mate linearized relationship between the output y := (v, )
and the input (x, £) is leveraged. In particular, at each time
step k, the output is approximated as

y=Cx+ Dl + y; (35)

see, e.g., [9]. We would like to emphasize that the relation-
ship (35) is used only to define the desired trajectory via (7)
and (11); the actual simulation below is performed using the
exact (nonlinear) power-flow equations.

B. Objective Function

The objective function (7a) consists of two parts:

fo(@) =(Py(,£) — Pg)* (362)

fi(xs) :Ci,pmzz,p + Ci,qwzz,q + cipe (Tip — m;,p)2 (36b)

where c¢; 5, ¢; 4, and ¢; pe are weighting parameters for the
DER . The global cost (36a) drives the substation real power
Py to follow the reference power Fg, which is usually time-
varying. The local DER cost (36b) penalizes the control
effort and the difference between the control and its desired
reference power. For a PV system, the reference power 7,
is the real-time maximal PV power generation; for a battery
system, the reference «? , is the power to reach the preferred
state of charge (SOC), which is usually set as the middle
point of SOC to allow maximal operation flexibility.

C. Constraints

Constraints associated with the OPF are summarized be-
low.
1) Voltage: Each node needs to maintain a stable voltage

magnitude within a certain range. For any node i € NV,
Vi<vi(z, ) <V; (37)

2) Battery: Battery limits are imposed on battery control
variables to enable feasible operations. Each battery has its
power and energy limits:

Xip<wi,<X;, SOC;<S0C;<50C;

where SOC; represents the SOC of battery .
Consider the battery charging/discharging dynamics

soctY = soc® + ) At



where At is the time step in one iteration. The energy limit
can be rewritten as power constraints
soc, - soc*tV 4 soC, - soc*tY
<zl <
At - P At

Letting

o (k+1)
X! = mas (X1, SOC; — SOC!
K] ) At

AA (k+1)
= i (T, SO0 3005 )

we obtain following constraints for battery i:

XV <ai, <XV, @l 4z, < (S (40)

where S % is the upper bound of battery apparent power.

3) PV: Driven by time-varying solar radiation, PV sys-
tems have time-varying limits. Let P?" and S?" denote the
available activate power and apparent power, respectively.
The following constraints are imposed on PV 1¢:

0<mi, <Py, @, +,<(S7")" @D

D. Distributed Algorithm Implementation

The OPF associated with cost function (36) and constraints
(37), (40), (41) can be reformulated as a saddle-point prob-
lem of the form of (11), which can then be solved using the
model-free primal-dual algorithm proposed in Section III.

In fact, the Lagrangian (10) can be decomposed with
respect to each DER. The cost function (36b) and constraints
(40), (41) are concerned with only local DER informa-
tion. They have an explicit form of gradient with respect
to each local DER control/dual variables. In addition, the
measurement-based global information fo(y,) and fo(y_)
that is associated with (36a), as well as the constraint
function g(y) that is associated with (37), can be broad-
cast to each DER in real time. Therefore, each DER has
necessary information to locally update its control and dual
variables. This gather-and-broadcast control architecture was
previously considered in, e.g., [7], [16], in the model-based
context.

One practical concern in the distributed implementation is
the asynchronicity in the control signals and measurements.
At each time step, it is possible that DERs do not implement
their control signals at the same time, and the measurements
might not capture the system response after all local control
implementations. It is particularly true for fast communica-
tion and control. In fact, the asynchronicity can be modeled
as an additional noise source, and can be analyzed similarly
to, e.g., [6]. In the next section, we numerically evaluate the
sensitivity of our approach to different levels of noise.

VI. NUMERICAL STUDY

A. Simulation Setup

Numerical experiments were conducted on a modified
IEEE 37-node test feeder to demonstrate the proposed model-
free OPF. We used a single-phase variant of the original test
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® ® 701
742 713 704
p————— ® 720
705 702
714
» 706
729 744 727
i 718
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736
733 775
710 ®734
T740
735 «———o
737 738 71 741

Fig. 1. Modified IEEE 37-node test feeder: PV and battery nodes are
labeled by circles and squares, respectively.

TABLE I
CONFIGURATION OF DERS

Node PV Battery Capacity
Capacity SOC Active Power | Apparent Power
(kVA) (MWh) MW) (MVA)

703 N/A [0 30] [ [-10 10] | 12
709 200 N/A

711 200 N/A

712 200 N/A

713 100 N/A

724 100 N/A

730 200 N/A

734 200 [0 30] [ [-10 10] | 12
740 200 N/A

feeder [24], with DERs connected at different locations. Fig.
1 shows the feeder diagram. Table I provides the configu-
ration for these DERs, and the efficiency of the batteries is
assumed to be 0.9.

In simulation, the load and PV data were obtained from the
real data in California [4]. They were smoothed and scaled
to an appropriate magnitude for the considered distribution
system. The total demand and available PV generation in a
typical day are given in Fig. 2.

The described distribution system was simulated using
Matpower [38], from where the feeder head active power
and node voltages are obtained as system outputs. The output
measurements were obtained by adding Gaussian noises to
the simulated outputs; in particular,
5=y sy

K2 K2

(42)

where the random variable W follows the normal distribution
N (0, 0?). In simulations, unless otherwise stated, o = 0.001,
which is consistent with the standard phasor measurement
units noise values [12], [36].



TABLE I
ALGORITHM PARAMETERS USED IN THE SIMULATION.

Coefficients in the cost function (36b) cf’ 1;) cf; cf’ 1;0. cffp ci?fp ci’fp.
Value 1x107% | 1x107° | 1x1073 | 1/6 x 10~ | 1/6 x 10~* | 1/6 x 10~
Step sizes (control variables) afz) af; a?fp affq
Value 2 2 12 12
: : pY PV pY bt bt bt
Step sizes (dual variables) | ag ay % B a p a, g s aj’p al’s
Value 10 | 10 | 1x1073 | 1x1073 | 1x1073 | 2x107% | 2x10~* | 1 x 1073
60
Feeder head
40 F | ceennnns Reference i
20 | .
=
0 | | | = 0t 4
0 6 12 18 24 30 30 50 —— 50
Available PV power 20 20 —[’—— 40| : 20| N
15 T T :
Total 10 —k-———— 10 30| ; 30
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Fig. 3.  Performance of feeder head power tracking achieved by the

Fig. 2. Total load and available PV generation in one day, and an example
of available PV generation at one node.

Algorithm parameters were configured as shown in Table
II. For each local controller, the sine signal was chosen as
the perturbation signal:

&n(t) = V2sin(2m fut),

where the time step At = 1 second; € = 0.001v/2 Spases
with base power Spqse = 23.04 MVA; and the frequency f,
was uniquely chosen from the range [1/7.1, 1/26] Hz.

t €0 24hr]

B. Simulation Results

The results described here are based on the 24-hour
simulation with the load and PV data given in Fig. 2. It
is observed from Fig. 3 that the feeder head power nicely
tracks the desired reference power and the DERs can respond
quickly to unforeseen changes of the reference signal. The
subplots on the bottom of Fig. 3 show the detailed response
when the reference signal was changed. The power tracking
is less accurate during [15, 21] hours, because the power
tracking was conflicting with another objective of voltage
regulation.

The performance of voltage regulation is illustrated in Fig.
5, which provides the comparison of node voltages with
and without voltage regulation. The voltage lower limit was
set to 0.96 p.u. At the time around 15 hours, when some
node voltages dropped below the limit, they were recovered
quickly to normal values. In contrast, without regulation (no
voltage limit), some node voltages stayed below 0.96 p.u.
for the next 6 hours.

gradient-free approach.

These grid services were provided through the control
of battery and PV systems, whose behaviors are presented
in Fig. 4 and Fig. 6, respectively. The feeder head power
was controlled using the active power of DERs, mainly

Real power

Battery 1

Battery 2

Time / Hour

Fig. 4. Control results of two battery systems. The dashed lines represent
hard physical constraints imposed on batteries. Corresponding to each
hard constraint, the soft constraint is slightly more conservative than the
hard constraint, shown as the dotted lines. Soft constraints enable smooth
transition of control signals to avoid hard-constraint projections.
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Fig. 5. Improvement of voltage profile by the proposed model-free OPF algorithm.
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Fig. 7. The performance is impacted by the measurement noise.
Fig. 6. Results of PV power control.

from batteries. The PV systems have its main objective of
curtailment minimization, so the active PV power was merely
increased because it is already near the maximal generation.
But the active PV power can be largely curtailed when the
system requested less power generation (e.g., at time 10, 15
hours). Because the active power of DERs is determined to
track the reference feeder head power, the voltage regulation
is mainly accomplished by the reactive power of DERs. At
the time around 15 hours when some node voltages dropped
below the lower limit, the reactive power from both batteries
and PVs acted quickly to recover these voltages to the normal
range.

To study the impact of the measurement noise, we tested
the proposed algorithm with different levels of noise, dis-
tinguished by the standard deviation of the noise signal in
(42). Two metrics are used to quantify system performance.
The normalized root mean squared error (NRMSE) is used
to define power tracking performance:

K 2

(k) _ pe(k)
1 P — P}
NRMSE = , | ;;1 00

P()'(k)

The average voltage violation (AVV) is used to define voltage
regulation performance:

where N and K are the number of nodes and simulation
time steps, respectively; the operator [ |+ projects a negative
value to zero.

Fig. 7 shows simulation results of NRMSE and AVV. As
the noise signal increases and crosses the point of o
1.6 x 1073, the control performance degrades significantly.
It is because large measurement noise can suppress the ex-
ploration output and leads to inaccurate gradient estimation.
One idea to address this issue is to increase the exploration
signal to a reasonable magnitude. But the improvement space
is limited because of practical system considerations. In that
case, we can apply state estimation techniques to filter out
measurement noises. It is beyond the scope of this paper and
left to our future work.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a model-free primal-dual
method to track desired trajectories of networked systems.
The algorithm leverages the zero-order deterministic esti-
mation of the gradient with two function evaluations. We
provided preliminary stability and tracking results, and il-
lustrated an application of the method to real-time OPF in
power systems.

Analysis of the exact iteration (18)-(19), with the projec-
tion performed at every time step, remains an interesting
research topic. The promising direction here is to analyze
the time-varying projected dynamics of the form (24). Also,
analysis of the asynchronous model-free algorithm is impor-
tant from the practical perspective. Finally, on the application



side, it would be interesting to show the performance of the
algorithm on a more dynamic scenario, including topology
reconfigurations (e.g., due to natural disasters and attacks on
the grid).
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