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Mobile Sensing for Wind Field Estimation in Wind Farms

David J. Pasley, Marco M. Nicotra, Lucy Pao, Jennifer King, Christopher Bay

Abstract— This paper introduces a novel approach for esti-
mating the wind field over an entire wind farm using a mobile
sensor to collect limited amounts of data. The proposed method
estimates the boundary conditions of a simplified turbine
wake model by computing the model sensitivity matrix and
using a recursive least-squares algorithm to recover the model
parameters from the wind field measurements. To address the
fact that it is not practical to take measurements across the
entire wind farm, the proposed method classifies each area
on the map based on its sensitivity to parameter variations.
This classification is then used to generate a suitable path for
a mobile sensor, which is charged with collecting data for the
recursive least-squares algorithm. The proposed framework can
successfully estimate the model boundary conditions using just
the measurements collected along the path of the mobile sensor.
This preliminary result paves the way for using real-time wind
field estimates for the coordinated control of all the turbines
within a wind farm.

I. INTRODUCTION

Wind energy continually gains momentum as a clean and
competitive source of power for many communities world-
wide [1]. Efforts to reduce the levelized cost of energy from
wind farms have led to an active research community that
aims to increase energy output and reduce maintenance costs
[2], [3]. While approaches for improving power production
have focused on controlling single turbines, it has been
shown in high-fidelity simulation that coordinated control of
multiple wind turbines can yield over a 5% increase in power
production [3], [4]. A key obstacle for the implementation of
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coordinated control for wind farms is the absence of accurate
real-time measurements and estimates of the entire wind
field. Indeed, the current practice for wind field estimation
relies on a combination of: i) regional weather data provided
by radars and/or satellites, and ii) local measurements from
lidar sensors and anemometers deployed on the actual wind
turbines and/or fixed meteorological towers [3].

One possible way to improve accuracy is to incorporate
measured data into a wind field model to extrapolate the
behavior in unmeasured locations, and existing research has
shown that model-based estimation can provide accurate
flow-field estimates using a few local sensors [5]. However,
this result is impractical when using fixed sensors because
the optimal placement strategy varies based on the wind
conditions. This paper addresses the issue by developing an
accurate and flexible framework for flow field estimation in
wind farms using mobile sensors. Recent research has shown
the utility of mobile sensing in air quality monitoring [6], gas
tomography [7], the measurement of greenhouse gases [8],
and even the mapping of atmospheric phenomena [9].

This paper introduces a method for estimating wind con-
ditions in a wind farm using a mobile sensor. The method
employs a recursive least-squares algorithm to estimate the
boundary conditions of a reduced-order model using sparse
data. The data used in the estimator is selected on the basis
of an information density map (IDM), which classifies each
location based on its sensitivity to parameter variation. The
IDM is initially validated using a threshold strategy that
ignores locations with an IDM score below a certain value.
Then, the IDM is used to generate a path for the mobile
sensor. This work does not focus on optimization of mobile
sensor trajectories or sensing locations, but rather simply
seeks to demonstrate that mobile sensing is a viable method
for real-time estimation of wind conditions in wind farms.

II. METHODS

Existing literature provides numerous computational fluid
dynamics (CFD) models which specialize the Navier-Stokes
equations to wind turbine applications [10]. One well-known
method is the Simulator fOr Wind Farm Applications, which
uses CFD to generate high-fidelity simulations [11]. Such
models are too computationally expensive for real-time im-
plementation and are more suited for off-line validations. To
enable real-time implementation, this paper uses the FLOw
Reduction In Steady-State (FLORIS) model, which relies on
a simplified turbine wake approximation to provide estimates
of the wind field [12]. Recent studies validated the FLORIS
model for wind farm control and turbine layout optimization
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[13]–[16], and its potential as a real-time wind field estimator
is being investigated.

For the reader’s convenience, this paper is structured as
a series of incremental steps validating each underlying
concept. The first step demonstrates the ability to estimate the
boundary conditions of the wind field model, given access
to the complete set of measurements. This is achieved by
quantifying the sensitivity of the FLORIS model to parameter
variations, and using a recursive least-squares algorithm to
update the model parameters, given the current estimation
error. The second step quantifies the amount of useful in-
formation contained in each gridpoint of the estimated wind
field. This is achieved by combining the coefficients in the
sensitivity matrix to generate an information density map,
and validating the IDM by modifying the recursive least-
squares algorithm to only use measurements with an IDM
value above a threshold. The final step formulates a data
collection strategy, which is updated based on the current
model estimate. This is achieved by using the IDM as a
score map for a greedy path planner, and using the resulting
data for wind field estimation.

A. Sensitivity Matrix

The FLORIS model, available in [17], is implemented in
Python and requires a JavaScript Object Notation (JSON)
input to define the wind farm. The JSON input allows
users to define the layout of the field, the type of turbines
in use, the yaw of the turbines, the incoming wind speed
and direction, and other parameters. For this research, two
National Renewable Energy Laboratory (NREL) 5-MW ref-
erence turbines [18] were placed 800 meters apart along the
dominant downwind direction of the wind farm. The yaw
angles of the turbines are kept at 0◦. The output in use from
the FLORIS model is the flow field, or u field, a discretized
3D map of wind speeds throughout the wind farm. For this
work, only the 2D data at hub height was used. An example
output is shown in Fig. 1. The n×m flow field generated by
the FLORIS model is vectorized to u ∈ R`, with ` = nm,
and is modeled as the output of a function

u = f(v, θ), (1)

where v ∈ R+ is the average speed and θ ∈ (−π, π] is the
average direction of the incoming wind. The sensitivity of
the estimated u field with respect to parameter variation is
defined using the Jacobian

∇f(v, θ) =

[
∂f(v, θ)

∂v
,
∂f(v, θ)

∂θ

]
. (2)

Because the analytic expression for the partial derivatives is
not available, the Jacobian is computed numerically as

∂f(v, θ)

∂v
≈ f(v, θ)− f(v + εv, θ)

εv
(3)

∂f(v, θ)

∂θ
≈ f(v, θ)− f(v, θ + εθ)

εθ
, (4)

where εv and εθ represent small perturbations in the esti-
mates. Here, the Jacobian is used rather than other methods,

Fig. 1: Sample FLORIS u-field for a two-turbine windfarm

such as the Bayesian approach, to reduce computational
complexity to meet the real-time requirements of the system.

B. Recursive Least Squares

Given estimates v̂ and θ̂, consider the linear approximation

u = û+∇f(v̂, θ̂)

[
v − v̂
θ − θ̂

]
. (5)

By measuring u and computing û = f(v̂, θ̂), it is possible
to compute a local least-squares estimate of v and θ using
the Moore-Penrose pseudoinverse, ∇f(v, θ)†. This operation
can be repeated iteratively to account for the model nonlin-
earities, leading to the recursive least-squares algorithm[ v̂k+1

θ̂k+1

]
=
[ v̂k
θ̂k

]
+∇f(v̂k, θ̂k)†[u− ûk] (6)

where v̂k and θ̂k are the current wind speed and direction
estimates and ûk is the current u field based on those
estimates. Convergence properties for the recursive least-
squares method (given in [19]) require the assumption that
the function f(x) is Lipschitz continuous, locally bounded,
and strongly convex. As shown later in Section III-A, the
proposed method rapidly converges to the correct values,
v and θ as k → ∞, and thus these assumptions can be
made. However, equation (6) assumes that the entire u field
is available for measurement. The following subsections will
illustrate how to drop this assumption.

C. Information Density Map (IDM)

The objective of the IDM is to quantify the amount of
”useful information” contained in each node of the esti-
mated flow field and provide a metric for prioritizing data
collection points. In the presence of a single parameter,
the most straightforward choice is to prioritize the nodes
with the highest sensitivity. Given the parameters v and θ,
the individual sensitivities must be combined into a single
value; The IDM is generated by normalizing each column
of the Jacobian (2) to its highest value and performing a
point-wise multiplication. Figures 2 and 3 portray normalized
sensitivities with respect to the average wind speed, v, and
direction, θ. The resulting IDM is illustrated in Fig. 4.

This approach assigns a value in the range [0, 1] to
each location, where higher values imply an overall higher
sensitivity to parametric variations. The IDM serves as the
basis for performing parametric estimation with sparse data.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Fig. 2: Sensitivity map of v at v = 13 m/s, θ = 10◦

Fig. 3: Sensitivity map of θ at v = 13 m/s, θ = 10◦

D. Mask Matrix

To account for partial knowledge of the u field, we define
Mk as a diagonal ` × ` matrix, where each value on the
diagonal is either 1, if the corresponding measurement is to
be used, or 0. By modifying equation (6) into[ v̂k+1

θ̂k+1

]
=
[ v̂k
θ̂k

]
+∇fMk(v̂k, θ̂k)†Mk[u− ûk], (7)

with fMk(v, θ) = Mku, it is possible to study the behavior
of the method, given partial knowledge of the vector u.

Unlike static sensor placement strategies [5], [20], [21], the
mask matrix, Mk, can be updated at each iteration, depending
on the current estimates. Fig. 5 illustrates a masking strategy
where Mk is assigned by only taking into account the nodes
with an IDM score above a threshold, γ. As discussed in
Section III-B, this approach can be used to validate the
proposed IDM. The following subsection will illustrate how
the IDM can be used to generate a mobile sensing trajectory.

E. Path Planner

To take into account that a single mobile sensor cannot
take measurements across a wind farm instantaneously, a
path planning algorithm is used to generate a suitable trajec-
tory for the mobile sensor. The path traveled by the sensor
is then used to generate Mk. Since the purpose of this work
is to validate the proposed principle rather than obtain an
optimal path, we propose a greedy path planner.

The path planner assumes movement can only occur in
cardinal and ordinal directions, and a virtual boundary is
created around each turbine. The planner decides each step
based on immediate rewards and penalties.

Rewards
• Ii, the IDM score of the node being transitioned into

(miopic update);
• dIi/dT , the first derivative of the IDM score with

respect to the transition (gradient-based update);
• d2Ii/dT

2, the second derivative of the IDM score with
respect to the transition (Newton-based update);

Fig. 4: IDM at v = 13 m/s, θ = 10◦

Fig. 5: IDM threshold mask Mk at v = 13 m/s, θ = 10◦, γ = 0.5

• Di, normalized distance with respect to the node with
the highest IDM score with Di = 1 − disti

distMaxi
,

where dist is the Euclidean distance to the unvisited
and unplanned node with the highest IDM score, and
distMax is the maximum distance possible from that
node to any other point on the map (attraction-based
update).

Penalties
• β, the direction of transition with respect to the esti-

mated wind direction (promotes flying downwind);
• φ, the direction of transition with respect to the current

heading (promotes straight paths);
• λ, a depreciation applied to nodes which have been

visited within a defined number of steps
(promotes greater coverage).

Each reward and penalty has a separate weight, K, applied
to it, except for λ, which is itself applied as a weight raised
to the power of N , where N is the number of times a node
has been visited within Γ steps. The eight possible transitions
are thus scored as in (8). The greedy path planner chooses
transitions with the maximum S at each step. An example
of a path generated by the planner is shown in Fig. 6.

At the start of the algorithm, a planning horizon P0 is used,
and at least R0 ≤ P0 moves are made by the mobile sensor.
The first iteration of the recursive least-squares algorithm is
then performed to obtain the first iteration, v̂1, θ̂1, û1, and the
corresponding IDM. After that, the path planner generates
a plan horizon of P steps, and the mobile sensor moves
R ≤ P steps before recalculation. Up to Γ steps of the
mobile sensor’s actual path are retained in memory, and the
nodes in memory are used to define the mask matrix, Mk.

F. The Complete Algorithm

The algorithm is as shown in Algorithm 1.

III. RESULTS

The algorithm converges, even given a large initial error
and sparse knowledge of the ”actual” u field. The results

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Si=
(
KIIi +KdI

dIi
dTi

+Kd2I
d2Ii
dT 2

i

+KDDi −Kββi −Kφφi

)
λNi . (8)

Fig. 6: Path planning algorithm executing over the score map at v = 13m/s and θ = 10◦. The green path is planned, and the red path has been taken
by the mobile sensor.

Algorithm 1
1: Γ, P0, R0, R, P ← initialize planning parameters
2: v̂k, θ̂k ← initialize estimates v̂0, θ̂0;
3: for desired number of iterations do
4: ûk ← f(v̂k, θ̂k);
5: Calculate IDM using (3) and (4);
6: if 1st iteration then
7: PLAN ← P0, MOV ES ← R0

8: else
9: PLAN ← P , MOV ES ← R

10: for j = 1→ PLAN do
11: for i in set of possible transitions, T do
12: calculate Si for Ti using (8)
13: choose Ti with max(Si) and add to planned path
14: for MOV ES do
15: Follow planned path
16: Calculate Mk using path memory as mask
17: Calculate v̂k+1, θ̂k+1 using (7)

are presented incrementally in the following subsections.
First, we investigate the behavior of the algorithm with full
knowledge of u. Then, we introduce a strategy that generates
Mk by only using the nodes with an IDM score above a
given value, γ ∈ [0, 1]. Finally, we study the behavior of
the proposed estimator when Mk is generated using the
path planner described in Section II-E. These results were
obtained using the set values given in Table I.

A. Full knowledge

With full knowledge of u, the wind speed and direction
estimation errors (ev and eθ, respectively) converge to below
Ev and Eθ after five iterations of the algorithm. A plot of
the estimation error with no mask is given in Fig. 7.

TABLE I: Wind speed and direction values used in
simulation

Description Symbol Value
Initial speed estimate v̂0 8.0 m/s

Actual speed v 13.0 m/s
Target speed accuracy Ev 0.1 m/s

Initial direction estimate θ̂0 0.0◦

Actual direction θ 10.0◦

Target direction accuracy Eθ 0.1◦

B. Thresholding Method

The algorithm was tested with various values of the
threshold, γ. As expected, the rate of convergence decreases
as γ increases due to the fact that fewer nodes are available
to compute the estimate, and the algorithm fails as γ → 1.
Plots of the estimate errors are shown in Fig. 7. The map
coverage for each iteration is recorded as a percentages of the
total number of nodes on the map. The average, minimum,
and maximum percentage of nodes covered by the mask
are shown in Table II along with the associated time to
convergence.

C. Greedy Path Planner

To test the algorithm with the greedy path planner, we
use the memory of the sensor, Γ, as a way of measuring
the maximum coverage possible. To this end, Γ is expressed
in terms of a percentage of the total number of nodes on
the map. Note that setting Γ to 100% does not guarantee
100% coverage of the map because the mobile sensor may
revisit nodes along its path. Planning parameters are shown
in Table III, and transition score weights are presented in
Table IV. The convergence of ev and eθ as Γ is varied is
shown in Fig. 8 and the number of iterations to convergence
below Ev and Eθ are plotted against Γ in Table V.

Various values of P and R were tested with Γ = 100%
before settling on the values in Table III. At values of R
less than around 0.15Γ, the rate of convergence decreases,
though the processing time of the simulation remains fairly
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Fig. 7: Estimation error plots using unmasked (γ = 0) and IDM
thresholding (γ ∈ [0, 1]) in the recursive least-squares algorithm.

Fig. 8: Estimation error plots using a mobile sensor path as a mask for u.

constant. As R increases beyond 0.15Γ, the number of
iterations remains nearly constant, thereby only increasing
the processing time of the simulation. P = 2R is chosen in
order to mimic a real-world planning horizon, but P makes
no difference in the algorithm’s performance.

Keeping relatively high weights for KI and KD appears
to make the best gains in performance. A high value of KD

ensures the mobile sensor will travel to the unvisited area
with the highest information density, and a high KI results
in heavier coverage in areas with high IDM scores. Increases
in KdI and Kd2I increase the probability that the sensor will

TABLE II: Percent Coverage and convergence vs. γ

γ Maximum Minimum Average Steps to
coverage Coverage Coverage Target Accuracy

0.0- 100%- 100%- 100%-
0.2 23.33% 19.31% 21.25% 5
0.3- 18.33%- 14.44%- 17.01%-
0.61 8.89% 4.02% 6.39% 6

1Values of γ ≥ 0.7 do not lead to convergence upon correct values

TABLE III: Planning Parameters
P0 R0 R P
Γ 0.9Γ 0.15Γ 2R

TABLE IV: Transition Score Weights
KI KdI Kd2I KD Kβ Kφ λ
10 2 1 200 1 4 0.2

revisit a node to follow a trend of increasing IDM scores.
Lower weights often allow the mobile sensor to travel within
a few nodes of a high-value node without approaching it.

Lowering λ increases planner coverage, but changing λ
does not significantly affect convergence times. The chosen
value λ = 0.2 demonstrated the highest amount of coverage.

Increasing Kβ causes the mobile sensor to loiter down-
wind. The weight chosen was the highest integer value
that does not cause this behavior. This allows penalizing
for energy usage while allowing maneuvers not aligned
in the downwind direction. Increasing Kφ creates long,
straight trajectories. Increasing it much beyond the weight
chosen results in what appears to be less optimal coverage.
Decreasing it further results in highly jagged paths.

Both ev and eθ converge to within acceptable margins for
Γ ≥ 2%. Similar to the masked algorithm in Section III-B
the performance varies slightly by coverage, but simulation
data show that the mask generated by the mobile sensing
path converges with a lower amount of actual coverage, and
also converges faster. For instance, the average coverage of
the masked algorithm at γ = 0.3 is approximately 17%
and it converges in six steps. The path planning algorithm
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TABLE V: Percent Coverage and Convergence vs. Γ

Γ Maximum Minimum Average Steps to
Coverage Coverage Coverage Target Accuracy

100%- 56.94%- 48.75%- 53.25%-
70% 47.36% 41.67% 44.69% 4
60% 45.41%- 36.81%- 43.10%-
2% 1.8% 1.11% 1.41% 5

converges in five steps at Γ = 20%, with slightly over 16%
average coverage.

IV. CONCLUSION AND FUTURE WORK

The results of this proof-of-concept study indicate that
mobile sensing is a viable solution for wind estimation in
wind farms, and are being verified with the high-fidelity
Simulator fOr Wind Farm Applications [11].

The initial estimate errors used for this study are larger
than what would likely be encountered in practice, but
this study also assumes steady-state wind conditions. Future
research will evaluate the ability of the algorithm to track
changing wind conditions. Additionally, this study includes
only a single mobile sensor that utilizes a greedy path
planner based on the IDM described in Section II-C. Ongoing
research is investigating the use of multiple mobile sensors,
as well as optimization of mobile sensing trajectories and
the inclusion of vehicle dynamics. Existing methods for
optimization of sensing locations will also be explored.

The two-turbine simulations of this estimation algorithm
utilizing FLORIS can be run for more than 100 iterations
in under a minute on a typical personal computer running
Python. Simulations on larger wind farm layouts execute
similarly as fast. Though the algorithm may not be suitable
for tracking high-frequency changes in local wind conditions
such as gusts, when used in conjunction with current sensing
methods, it could help to better predict when those gusts
will reach downwind turbines, and could also be useful
for coordinated control techniques such as wake steering,
which are more dependent on lower frequency changes in
the wind field. More research is needed to fully understand
how mobile sensors could be used to reduce the levelized
cost of energy for wind farms.
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