
HAL Id: hal-02871352
https://hal.science/hal-02871352

Submitted on 17 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Optimal Scheduling of Combined Chemo-and
Immunotherapy: Considerations on Chemotherapy

Detrimental Effects
Kaouther Moussa, Mirko Fiacchini, Mazen Alamir

To cite this version:
Kaouther Moussa, Mirko Fiacchini, Mazen Alamir. Robust Optimal Scheduling of Combined Chemo-
and Immunotherapy: Considerations on Chemotherapy Detrimental Effects. ACC 2020 - American
Control Conference, Jul 2020, Denver (online), United States. �10.23919/ACC45564.2020.9147869�.
�hal-02871352�

https://hal.science/hal-02871352
https://hal.archives-ouvertes.fr


Robust Optimal Scheduling of Combined Chemo- and
Immunotherapy: Considerations on Chemotherapy Detrimental

Effects

Kaouther Moussa∗, Mirko Fiacchini∗ and Mazen Alamir∗

Abstract—In this paper, we investigate a mathe-
matical model describing interactions between cancer
and the immune system. In this model, we take into
account the detrimental effects of chemotherapy on
both populations (cancer and immune cells) and in-
corporate the beneficial effects of the immune system
in controlling the tumor growth. The problem of
cancer treatment scheduling is considered as a robust
optimal control problem (ROCP) in the sense that
we derive statistically optimal combined strategies
of chemo- and immunotherapy treatments, assuming
the knowledge of the probability distribution of the
chemotherapy killing parameter (effects on the im-
mune population). Furthermore, we add in the ROCP
a health constraint on the minimal allowed immune
cells density.We use the moments optimization frame-
work, which allows to consider uncertainties on model
parameters implicitly.

I. Introduction
In the last decades, researchers had been interested

in modeling the interaction dynamics between cancer
and the human body in order to better understand
and to analyse the behavior of these phenomena. Since
the dynamics of cancer growth are extremely complex,
we can find many different models in the literature,
depending on the therapies that are used, for example, or
the different phenomena that occur in the human body.
According to [5], for the specific case of cancer-immune
interactions, the mathematical modeling of the entire
immune system can be a very complex task, that is one
of the reasons that researchers focus on the elements of
the immune system that are known to be significant in
controlling the tumor growth.

Several works had been done on modeling the inter-
action of chemotherapy with the tumor growth process,
for instance, [16], [20] and [1]. Moreover, there are some
models considering specific phenomena, for instance [4],
where authors took into account the influence of nutri-
ents on the drug effect or [10], where authors considered
the common phenomenon of cancer cells resistance to
chemotherapy. Furthermore, with the development of
new cancer therapies such as immunotherapy and an-
tiangiogenic therapy, other recent models describing the
interaction of these drugs with the tumor growth have
been developed. In particular, the recent advances in
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genetics led to considerable progress in experimental and
clinical immunology [9] and many researches on modeling
the immune system dynamics had been carried out. The
readers interested in tumor-immune interactions model-
ing can refer to [6], [8], [9] and references therein.

This progress in cancer dynamics modeling motivated
researchers to apply control approaches in order to sched-
ule cancer treatments using sometimes optimal control
strategies. We can find in the literature many works
regarding the application of optimal control approaches
on cancer treatment problems. For instance, [21] and [7],
where optimal protocols for anti-angiogenic therapy were
investigated, or [6] where quadratic and linear controls
were designed for a tumor-immune interactions model
with chemotherapy delivery. However, only few works
addressed the problem of handling parametric uncertain-
ties. We cite for example, [2] where a robust feedback
scheme is proposed to schedule antiangiogenic treatment
combined with chemotherapy, [12] where an H∞ based
robust control was applied to the same model and [3]
where a general framework for probabilistic certification
of cancer therapies was proposed.

As an extension of our work in [19], where we derived
robust optimal control strategies for combined chemo-
and immunotherapy treatments, considering uncertain-
ties description on the tumor growth rate and the rate
of immune cells influx, in this paper, we investigate the
consequences, in the drug scheduling, of adding a new
term standing for the effect of chemotherapy on immune
cells. Furthermore, we consider that this parameter is
uncertain and described by a probability distribution. We
propose to formulate robust optimal control problems in
the moment optimization framework. Since the problem
is reformulated in the space of probability measures,
it is straightforward to define states and parameters
as random variables characterized by their probability
distributions. The resulting infinite-dimensional problem
is solved using truncations known as finite-dimensional
semidefinite (SD) hierarchies [13], providing a converging
sequence of lower bounds on the optimal solution.

In Section II, we present the dynamical model that
we used for numerical simulations. Section III recalls
the basic concepts of the generalized moment problem
for optimal control. The optimal control problems to be
solved and simulation results are presented in Section IV.
Finally, in Section V, we discuss the main advantages
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Fig. 1: A scheme showing the interactions in model (1),
between the tumor and the immune system

and limitations of this approach and we present some
perspectives for future works.

II. Dynamical model
According to [15], mathematical models for tumor

immune interactions have a long history dating back to
Stepanova’s model [23]. The latter gives the advantage
of a minimally parametrized model that nevertheless
includes the main aspects of cancer-immune interactions.
The model presented in [23] had been intensively used in
the literature with different growth functions, in order
to investigate its equilibria and propose some optimal
control strategies. However, the effect of the cytotoxic
agent on the immuno-competent cell’s density was ne-
glected. We cite for instance [22], where authors proposed
a multiple model predictive control scheme for a model
with gompertzian tumor growth rate.

Let’s consider the following dynamics:

ẋ1 =µCx1 −
µC
x∞

x2
1 − γx1x2 − κXx1u1,

ẋ2 =µIx1x2 − βx2
1x2 − δx2 + κY x2u2 − ηu1x2 + α,

(1)
where x1 and x2 denote, respectively, the number of

tumor cells and the density of effector immune cells
(ECs), u1 and u2 are, respectively, the delivery profiles
of a cytotoxic agent and an immunostimulator. Fig. 1
presents a scheme describing the different interactions
between the tumor and the immune system.

Similarly to the model that we investigated in [19], we
consider in this paper a modified version of Stepanova’s
model [23], where we replace the exponential growth
term by a logistic one

(
f(x1) = µCx1

(
1− x1

x∞

))
,

since the logistic term allows to consider a limited tumor
volume which is more realistic than the exponential
growth. Unlike the model considered in [19], we added in
model (1) the term −ηu1x2 in the dynamics ẋ2, which
stands for the direct detrimental effects that chemother-
apy has on the immune system. Table I summarizes
the definitions of the other model parameters and their
numerical values.

As shown in Fig. 2, the uncontrolled model (1) has two
locally asymptotically stable equilibria. The macroscopic
malignant equilibrium is (xm, ym) = (735.9, 0.032) and
the benign one is (xb, yb) = (34.98, 0.53). The trajectory

TABLE I: Numerical values and definitions of the pa-
rameters used in model (1) [8]

Parameter Definition Numerical value

µC tumor growth rate 0.5599 ·107 cells/day
µI tumor stimulated 0.00484 day−1

proliferation rate
α rate of immune 0.1181 day−1

cells influx
β inverse threshold 0.00264
γ interaction rate 1 ·107 cells/day
δ death rate 0.37451 day−1

κX chemotherapeutic 1 ·107 cells/day
killing parameter

κY immunotherapy 1 ·107 cells/day
injection parameter

x∞ fixed carrying capacity 780 ·106 cells

in black represents the evolution of uncontrolled states
starting from the initial condition x0 = (500, 0.5).

It is important to notice that the treatment perfor-
mance depends highly on the initial conditions, since
there is coexistence of macro- and microscopic equilibria.
The initial states of system (1) can be estimated with
some uncertainties, before designing the drug injection
schedules. The objective of cancer treatment can be
formulated as to drive the state initial conditions from
the region of attraction of the malignant equilibrium to
the region of attraction of the benign equilibrium.
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Fig. 2: Phase portrait of model (1).

III. Overview on generalized moment problem
for optimal control

In this section we will present an overview on the
main key points of the generalized moment problem
for solving optimal control problems. This approach,
developed by Lasserre [13], is based on the fact that
polynomial optimization problems (which are a class of
nonconvex finite dimensional problems) are equivalent,
in the space of measure, to infinite dimensional prob-
lems, under mild assumptions. Those infinite dimensional
problems are nevertheless linear and can be solved using



relaxations (known as Lasserre hierarchy [13]) which
provide a converging sequence of lower bounds on the
global optima, under some compactness assumptions.
Therefore, generating and solving these relaxations allow
to approach the exact solution of the original polynomial
optimization problem with arbitrary precision.

This approach has been extended recently to opti-
mal control problems with a polynomial structure and
bounded constraints [14], for which suboptimal solutions,
converging to the exact optimal control, can be obtained
by solving sequences of convex problems. Moreover, as
the linear infinite dimensional problems are defined in
the space of measures, this approach allows to address
optimal control problems which involve probability dis-
tributions as states and parameters.

Consider the following polynomial optimal control
problem:

inf
u(·)

∫ T

0
L(t, x(t), u(t)) dt+ Φ (x(T ))

s.t. ẋ(t) = f(t, x(t), u(t)),
x(t) ∈ X, u(t) ∈ U, t ∈ [0, T ],
x(0) ∈ X0, x(T ) ∈ XT ,

(2)

where x ∈ Rn is the state, u ∈ Rm is the input, functions
f : R × Rn × Rm → R, L : R × Rn × Rm → R and
Φ : Rn → R are polynomials and the constraints sets
X0, X,XT and U are compact basic semi-algebraic sets,
i.e. defined as the union of finitely many intersections of
closed polynomial superlevel sets. The optimum of (2)
is the same as the optimum of a linear infinite dimen-
sional optimization problem defined over the space of
probability measures (given below), under an additional
assumption on the convexity of the set f(t, x, U) for all
t and x.

For this, we introduce briefly the definitions of mea-
sure and moments, the reader interested in more details
regarding this topic is referred to the related literature,
e.g. [13] and [14].

Given a compact set X ∈ Rn and the Borel σ-
algebra B(X), which is a particular set of subsets of X
containing all the open subsets of X, a Borel measure
µ on X is a function that associates a real value to
every element of B(X). A measure is nonnegative if it
takes only nonnegative values, is a probability measure
if it is nonnegative and µ(X) = 1. An example of a
positive measure is the Dirac measure δw(X) with w ∈ X
which assigns the value 1 to every subset of X which
contains w and 0 otherwise. The spaces of measures
and positive measures are denoted M(X) and M+(X),
respectively. Measures can also be defined as the space of
linear functionals acting on the space of functions which
are continuous on X, i.e. by the action they have over
the elements of the dual space C(X) through integration

〈v, µ〉 =
∫
X

v(x)µ(dx),

for all v ∈ C(X). The following linear problem in the
space of measures

inf
µ0,µ,µT

〈L, µ〉+ 〈Φ, µT 〉

s.t.
∫

[0,T ]×X×U

(
∂v(t, x)
∂t

+∇x(v(t, x))′f(t, x, u)
)
dµ

= 〈v, µT 〉 − 〈v, µ0〉, ∀v ∈ C1([0, T ]×X)
µ0 ∈M+({0} ×X0), µT ∈M+({T} ×XT )
µ ∈M+([0, T ]×X × U),
〈1, µ0〉 = 1,

(3)
is infinite dimensional and has the same optimum value
as the original optimal control problem (2), under mild
assumptions, see [14]. This problem remains highly com-
plex, however, Lasserre hierarchy [13] of relaxed LMI
problems can be determined to obtain suboptimal solu-
tions that converge to the optimal solution of the original
optimal control problem, under some compactness and
convexity assumptions. In order to obtain the relax-
ations, one has first to consider the relation between the
measure µ0, µ and µT and their moments. Given x ∈ Rn
and σ ∈ Nn, the moment of order σ ∈ Nn of µ ∈ M(X)
is defined as:

yσ =
∫
X

xσµ(dx) = 〈xσ, µ〉, (4)

where xσ =
∏n
k=1 x

σk

k . LMI conditions can be given in
terms of the moments of µ that are equivalent to the con-
straint µ ∈M+(X), conditions that still involve infinite
dimensional matrices which are functions of the infinitely
many variables yσ for all σ ∈ Nn. The relaxations
consist in considering the matrix structures obtained by
appropriately truncating the vector of moments to a
finite maximal degree (r) and imposing in (3) constraints
over polynomials of a finite maximal degree in spite of
all v ∈ C1([0, T ]×X). This leads to a hierarchy of finite-
dimensional semidefinite programming problems whose
solutions converge to the solution of the optimal control
problem as the relaxation degree grows.

The interesting feature of this approach is the fact
that, even in case of deterministic dynamical systems,
the initial state as well as the final one and the state
along trajectories, are dealt with by defining measures
on the state space, see (3). The same holds for the input.
For instance, if x0 = x(0) ∈ X0 is a singleton, then the
initial measure µ0 in (3) should be imposed by fixing, for
all σ ∈ Nn, its moments given as:

〈tιxσ, µ0〉 =
{
xσ0 if ι = 0
0 if ι ∈ N+\{0}

Therefore, this method is suitable for dealing with states
and inputs that are characterized by probability distri-
butions, simply by imposing the moments of the related
probability distribution functions.

In the particular case under study, we want to design a
robust optimal control for a dynamical model describing



interaction between cancer and the immune system, the
parameter which is supposed to be not perfectly known is
the chemotherapy-induced damage on immune cells. This
lack of knowledge can be modeled through an uncertain
parameter characterized by a probability distribution,
with compact support. Then, in practice, it is sufficient to
define an extended state containing tumor and immune
cell populations in addition to the uncertain parameter,
i.e. η, see (1), and to impose its time invariant charac-
teristic through the dynamics η̇(t) = 0. Thus, supposing
that ν(η) denote the probability distribution of η, the
optimal control problem (3) to be solved should have
as initial condition µ0(t, x1, x2, η) = δ0(t) × δx1(0)(x1) ×
δx2(0)(x2)×ν(η), imposed through moments of the initial
measure.

IV. rocp for cancer therapy design
We will first consider a nominal value of η and solve the

optimal control problem, then we will define η as an un-
certain parameter, with a given probability distribution,
and solve the robust optimal control problem. Finally, we
compare the effect of both profiles (nominal and robust)
on dynamics, in order to infer on the consequences of
adding the chemotherapy-induced damage term and to
highlight the importance of considering it in the therapy
scheduling design.

Let’s consider that the initial condition is (x10, x20) =
(500, 0.5), we can see in Fig.2 that without control, the
trajectory corresponding to this initial state converges to
the malignant equilibrium.
A. Nominal optimal control problem

We consider that the maximum drug dose is 1 for both
chemotherapy and immunotherapy. Furthermore, we add
constraints on the immune cells density and the number
of tumor cells in order to ensure the compactness of the
state set X. We also impose a constraint on the final tu-
mor size in order to drive the tumor to the benign region
and a constraint on the minimal immune cells density,
recommended to prevent the body from any weakening
of the immune system. The nominal (i.e. considering a
nominal value of η) optimal control problem that we
propose to solve for t ∈ [0, 60] (days) is the following:

min
u1(·),u2(·)

J(x1, x2, u1, u2)

s.t. ẋ1 = µCx1

(
1− x1

x∞

)
− γx1x2 − κXx1u1,

ẋ2 = µI
(
x1 − βx1

2)x2 − δx2 + α+ κY x2u2

− ηu1x2,

x1(0) = 500, x2(0) = 0.5,
x1(60) 6 100,
0 6 u1 6 1 , 0 6 u2 6 1,
0 6 x1 6 780 , 0 6 x2 6 5,
x2 > 0.1,
t ∈ [0, 60].

(5)
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Fig. 3: Nominal control inputs (u1 and u2), for η = 1.

The cost J is chosen according to the objectives that
one seeks to achieve. It can contain many terms such
as final states, integrals of state trajectories and control
inputs, with different penalties in order to achieve a
trade-off between the different control objectives. Prob-
lem (5) has been reformulated in the framework of mo-
ments optimization via GloptiPoly 3 [11], as explained in
Section III, and has been solved using YALMIP and the
semidefinite programming solver MOSEK. The control
inputs are approximated, based on the knowledge of their
moments, using Christoffel-Darboux kernel, for more
details, see [17]. For practical reasons, time and states
trajectories are scaled to [0, 1], therefore, the control
inputs presented in this paper are computed for scaled
dynamics.
Since chemotherapy has damaging side effects on the

human body, it is common to frame an optimal control
problem so that the total amount of drugs is minimized
[6]. It is also important to minimize the use of im-
munotherapy since the available amount is limited, and
for some treatment types, immunotherapy can even be
toxic [18]. Thereby, one can easily notice that the choice
of the cost J , to be minimized, is very important in order
to meet the control objectives. Here, we focus on the
assessment of the methodology by taking the following
cost:

J = 10x1(60)+4
∫
x1(t)dt+0.01

∫
u1(t)dt+0.1

∫
u2(t)dt.

In Fig. 3, we show the drug delivery profiles in the
time interval [0, 5] to highlight the treatment duration,
since for t ∈ [5, 60], u1(t) = 0 and u2(t) = 0. We can
see in this figure that, for η = 1, the chemotherapy
profile is a considerable injection at the beginning of
treatment followed by a one day maximal dose injection
of immunotherapy.
Fig.4 shows the time evolution of state trajectories, we

can notice that the tumor burden is considerably reduced
during the 5 first days, this is due to the considerable
amount of chemotherapy drugs injected at the begin-
ning. We can also notice that this important injection
of chemotherapy induced a decrease in the density of
immune cells (due to the term −ηu1x2) in the dynamics
of x2. However, the minimal constraint is still respected
thanks to the immunostimulation (u2).

Even though controls in Fig. 3 satisfy standard objec-
tives in the context of nominal optimal control, we will
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Fig. 5: MC tests on nominal profiles, x1 trajectory

show that when the dynamics are subject to parametric
uncertainties, those controls will not meet the goals set
in the optimal control problem.

Let’s assume that η ∼ U ([0, 2]).
Remark 1: The considered distribution is not based

on practical knowledge of the system parameters, it
is chosen only to illustrate the problem of handling
parametric uncertainties. Of course, the method can be
applied to general probability distributions.

Fig. 5 and Fig.6 presents 100 Monte-Carlo (MC) sim-
ulations with random values of η. It shows that there
are many violations of immune cells density constraint
(i.e. leading to critical immune weakening of patients).
Another point to notice is that, in some cases, there is a
small tumor regrowth due to the weakening of immune
system. Therefore, it is crucial to consider the potential
uncertainties on model parameters.

B. Robust optimal control problem
Let’s extend system (1) to the following dynamics:

ẋ1 = µCx1 −
µC
x∞

x1
2 − γx1x2 − κXx1u1,

ẋ2 = µI
(
x1 − βx1

2)x2 − δx2 + κY x2u2 + α− ηu1x2,

η̇ = 0.
(6)

The state extension in (6) allows to characterize η by
its probability distributions, as explained in Section III.
Similarly to problem (5), one can reformulate the robust
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Fig. 6: MC tests on nominal profiles, x2 trajectory
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optimal control problem with dynamics (6) by including
the moments of the distribution of η.
Fig. 7 shows the robust chemotherapy injection profile,

we can notice that compared to the nominal case (Fig. 3),
the use of chemotherapy in the robust case has been
considerably reduced in intensity but extended in time.
This is due to the presence of constraint on the minimal
immune cells density and the new term −ηu1x2 which
reduces the amount of immune cells when chemother-
apy concentration increases. The robust chemotherapy
schedule uses less than 3.5% of the maximal allowed dose,
this concentration decreases slowly during the treatment
period while in the nominal profile, it is a one maximal
dose at the beginning of treatment period.

Remark 2: We can notice that there is continuous
administration of chemotherapy in both profiles (nominal
and robust) which is unrealistic in practice. However,
this methodology remains interesting since it provides a
guide on the maximal concentrations to be injected and
their evolution with respect to time. Furthermore, these
profiles can be approximated using impulses in order to
be applicable from a practical point of view.

Fig. 8 shows the immunotherapy profile, we can notice
that the nominal and robust profiles of immunotherapy
are almost the same, it is a one day maximal dose at the
beginning of the treatment period.

Similarly to the nominal case, we did 100 Monte-Carlo
simulations on system (1), using robust schedules, results
are presented in Fig. 9 and 10. We can notice in Fig. 9
that the tumor volume takes more time to be reduced in
the robust case. However, as we can see in Fig. 10, there
is no immune constraints violation unlike the nominal
case.
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V. Conclusion

We presented in this paper some results on the appli-
cation of moment optimization theory to schedule cancer
treatment. We highlighted the importance of taking into
account the side effects of chemotherapy on immune cells,
we notice that when we consider those effects in addition
to a constraint on the minimal allowed immune cells
density, the concentration of the injected cytotoxic agent
is considerably reduced.

The moment optimization approach is promising for
many applications, since it allows to solve optimal control
problems for a class of nonlinear systems, with uncer-
tainties on parameters and initial states. However, it
may have some limitations, mainly the restriction on
polynomial dynamics and the limited dimension (state
and control variables) that can be handled. Finally,
future work will be focused on considering uncertainties
on state initial conditions and applying this methodology
to other models of cancer dynamics.
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