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Abstract— Human impedance parameters play a key part in
the stability of strength amplification exoskeletons. While many
methods exist to estimate the stiffness of human muscles offline,
online estimation has the potential to radically improve the
performance of strength amplification controllers by reducing
conservatism in the controller tuning. We propose an amplifica-
tion controller with online-adapted exoskeleton compliance that
takes advantage of a novel, online human stiffness estimator
based on surface electromyography (sEMG) sensors and stretch
sensors connected to the forearm and upper arm of the human.
These sensor signals and exoskeleton position and velocity
are fed into a random forest regression model that we train
to predict human stiffness, with a training set that involves
both movement and intentional muscle co-contraction. Ground
truth stiffness is based on system identification in essentially
perturburator-style experiments. Our estimator’s accuracy is
verified both by the offline validation results and by the stability
of the controller even as stiffness changes (a scenario where
the ground truth stiffness is not available). Online estimation
of stiffness is shown to improve the bandwidth of strength
amplification while remaining robustly stable.

I. INTRODUCTION

Robotic exoskeletons have been used for a range of
applications including assistance with muscle impairment
due to disease [1], [2], [3], control mechanisms for tele-
operation robots [4], [5], and a means to augment the strength
or increase the endurance of the human operator [6], [7],
[8], [9]. Some researchers improve the performance of ex-
oskeletons through feedback control [1] or offline and online
optimization of control parameters [8], [10]. This paper
aims to improve the performance of a strength amplification
exoskeleton—one that feedback couples exoskeleton joint
torque to human joint torque in order to amplify human
strength.

The stability of force amplification exoskeletons, like
impedance controlled robots for physical human robot in-
teraction, depends on the human impedance—and the ex-
oskeleton must guarantee this coupled stability despite the
variability in the human’s behavior. Medically oriented stud-
ies often model the human as a spring, mass, damper system
with time-varying parameters [11], [12]. A more conservative
model—where the human is a passive system—can provide
very strong coupled stability guarantees [6], [13], however
this wider space of possible human models restricts controller
performance [14]. An estimate of human stiffness with
lower uncertainty has the potential to improve bandwidth for
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both human-robot interaction controllers and amplification
exoskeletons [6], [15], [16].

Exoskeletons can accomplish strength amplification
through various control frameworks including adaptive con-
trol [17], admittance control[18], impedance control [19],
loop-shaping design with a bounded human impedance [7],
and by independently shaping the human and exoskeleton
side compliance [6]. Ref. [7] emphasizes remaining robustly
stable and used system identification with the human in
the loop in order to obtain a robust model of a SISO
“amplification plant”. In this framework it is clear how
widening the uncertainty restricts the choice of crossover
point and closed loop bandwidth. The framework in [6]
emphasizes what dynamics behaviors are possible with the
exoskeleton by specifying behavior in terms of two dynamic
compliance transfer functions (exo-side and human-side).
This framing makes it easy to design the controller to avoid
instability with different human stiffnesses. A physical spring
in [6] guaranteed a minimum compliance for the spring and
human system and was used to design the controller. But an
online estimate of human stiffness could provide the same
information, without softening the human’s connection to the
exoskeleton.

A common approach to measuring human stiffness is to
impose a perturbation torque and measure deflection [20].
However, this method is only effective offline [21], [22],
[23]. Online stiffness estimation methods include biological
models [23], [24], [25] as well as artificial neural networks
[21], [22], with only a subset of the estimation methods
generalizing to multiple subjects [23], [25]. Most studies
focusing on stiffness estimation use sEMG sensors [21], [22],
[23], [24], [25], but physical deflection sensors may offer
a less noisy means to gain information from the human
[26]. Our approach similarly combines sEMG with low
cost stretch sensors (deflection-varying resistors). Although
many studies have successfully estimated human impedance
parameters, few have applied them to exoskeletons.

Research has been done to incorporate other human prop-
erty estimates into controllers [27], [28], [29], with most
studies focusing on the estimation of applied torque or
human intention [19], [30], [31], [32]. In many cases this
torque estimation is used as an alternative to contact force
sensors between the human and exoskeleton. The researchers
in [29] perform a dynamic stiffness estimation using a
musculoskeletal model for a power assist exoskeleton, but
focus on the reduction of vibrations due to EMG noise.

In this paper we apply online estimation of human stiffness
to adapt the force feedback gains of a strength amplification
exoskeleton according to the estimated human stiffness. Our

ar
X

iv
:1

91
0.

12
90

2v
2 

 [
ee

ss
.S

Y
] 

 2
 A

ug
 2

02
0

https://ieeexplore.ieee.org/document/9147875


online human stiffness estimator uses a novel combination
of sensors, and arguably improves over the state of the art
for estimating the stiffness of the human elbow, boasting an
R factor of 0.993 (c.f. 0.9266 in [21]), and a 17 Nm/rad
max error (c.f. 30 Nm/rad in [22] and 80 Nm/rad in [23]).
We also contribute a novel controller adaptation scheme
(based on the compliance shaping framework [6]) that uses
bounded-error stiffness information to improve bandwidth
while remaining stable. This controller is then experimentally
validated to A) remain stable as stiffness changes, B) lose
stability when fed incorrect stiffness information, and C)
improve strength amplification bandwidth relative to a robust
control design.

II. ONLINE STIFFNESS ESTIMATION

We first propose an approach to estimate human stiffness
online by using a trained random forest model taking advan-
tage of signals from sEMG and stretch sensors as well as
exoskeleton velocity and position.

A. Apparatus

We use a single degree of freedom elbow joint exoskeleton
for this research. The P0 exoskeleton (Apptronik Systems
Inc., Austin, TX), as shown in Fig. 1, is a 3 bar linkage device
powered by a series elastic actuator (SEA) with a spring force
tracking bandwidth of 10 Hz and reliable actuator torque
conversion using a linkage table. The exoskeleton includes a
6-axis force torque sensor measuring the human exoskeleton
contact forces. The human rests his or her upper arm on
a white 3D printed mount beside the actuator. Exoskeleton
position θ is measured by an encoder at the joint and
contact torque τc is measured by the force torque sensor. The
moment of inertia of the exoskeleton is 0.1 kg ·m2 without
any additional weight, but provides the option to include
additional external weights. A laser pointer is attached to the
end of the long bar to assist with precise position movement
projecting onto a white board one meter in front of the
subject wearing the exoskeleton. The white board contains
three lines referring to initial position and upper and lower
bounds of movement. A deviation around ±3◦ from those
lines is acceptable.

In addition, we utilize 3 Myowear sEMG sensors (Spark-
Fun Electronics, Niwot, CO) located on the upper arm and
forearm (biceps brachii, triceps brachii, and brachioradialis
muscles) of the subject and 2 stretch sensors (Images Scien-
tific Instruments Inc., Staten Island, NY) attached around
the middle of the forearm and upper arm connected to
an Arduino Mega 2560 (SparkFun) by a breadboard. The
sampling frequency for all sensors is 250 Hz. The full setup
of the apparatus including the exoskeleton and the peripheral
sensors are shown in Fig. 1.

B. Experimental Protocol

The experimental protocol was approved by the Institu-
tional Review Board (IRB) at the University of Texas at
Austin. One healthy, male subject wore the 3 sEMG sensors
and 2 stretch sensors during the experiments.

SEA

EMG Sensors

Stretch Sensors

Gripper

Cuff

Laser Pointer

Fig. 1. The P0 exoskeleton (Apptronik Systems Inc., Austin, TX) with
an ATI Mini40 (ATI Industrial Automation, Apex, NC) force sensitive cuff
located near the middle of the forearm. The subject holds a grip-strength
exercise device to modulate co-contraction in the muscles at the elbow. The
subject is instrumented with 3 sEMG sensors and 2 stretch sensors that are
used to estimate stiffness.

The experiments are divided into 2 sections. The first
consists of 11 experiments in which the participant main-
tains a constant equilibrium position while the exoskeleton
imposes a torque comprising a piece-wise constant bias
and a sinusoidal excitation with constant frequency and
amplitude. In order to obtain reference signal values for
all sensors, the participant initially holds a constant posture
for 20 seconds, aligning the laser pointer to a target. The
first 20 seconds includes gravity compensation, with no bias
torque. Following this procedure, the exoskeleton induces
bias forces ranging from 0 Nm to 9.5 Nm in 0.5 Nm steps
occurring in 3 second intervals. Because we noticed there
tends to be larger errors for the low bias torques, we repeated
the first five bias forces twice. The participant is asked to
maintain the same constant position and apply no voluntary
compensation torque. Movement is induced by the sinusoidal
signal, which has a constant frequency of 1 Hz and amplitude
of 1.5 Nm. This experiment is repeated 11 times (denoted
I.1-11), with a 30 second resting period between every five
bias force transitions as well as a minimum of 2 minutes
resting period between each of the 11 experiments. In I.1,
the subject holds nothing. To induce muscle co-contraction,
I.2-11 introduce a hand-grip exercise tool with an adjustable
load. The participant squeezes a gripper beginning with 22
lb for the second trial and up to 82 lb for the final trial.

The second set of experiments maintains the same pro-
cedure as the first experiment set except the participant
voluntarily moves his or her arm at 0.5 Hz, using three
optical targets for the midpoint and two extremes of the
oscillation. In this experiment the sinusoidal excitation has
a constant frequency of 1.7 Hz and an amplitude of 2.5
Nm. The bias force increases from 0 Nm to 8 Nm in
step of 2 Nm occurring in 15 second intervals. All other
parameters and procedures remain consistent with the first
set of experiments (including the variation of grip strength).
This set of experiments is denoted as II.1-11.

C. Methods

1) Data Preprocessing: In both experiment sections sig-
nals from 3 sEMG sensors are amplified, rectified, and
integrated and then passed through a second order low pass
filter with cutoff frequency of 60 rad/s and damping ratio
of 0.707. We use the average signal values from 2 stretch
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Fig. 2. Diagram of training scheme for random forest predictor. Stiffness
kh is estimated using least squares fitting in the time domain, and is used
as the ground truth for training the stiffness predicting random forest.

sensors and 3 sEMG sensors in the first 20 seconds of
each experiment as initial reference signal values for that
experiment. These values are subtracted from the sEMG
and stretch sensors’ data to get the variation data for the
5 sensors. The absolute values of processed data from the
stretch and sEMG sensors are denoted as S1, S2 and E1,
E2, E3 respectively.

In the first experiment section, exoskeleton position and
velocity, and contact torque are filtered with the same second
order low pass filter to calculate the reference stiffness.

In the second experiment section, we use a second order
butterworth bandpass filter [33] with cutoff frequency of 1.2
Hz and 10 Hz for exoskeleton position and velocity, and
contact torque to filter out the influence of human voluntary
movement when calculating the reference stiffness.

For both sections, exoskeleton position and velocity are
filtered by the same second order low pass filter to build the
training and validation data set.

2) Time Domain Regression: In order to obtain a refer-
ence stiffness value for training the online estimation model
and validating the accuracy, we use a linear regression for
the time domain data regarding the dynamic equation1

mhθ̈ + bhθ̇ + kh(θ − θ0) = τc (1)

where τc is the contact torque between the human and
exoskeleton, mh, bh, and kh are the inertia, linear damp-
ing, and stiffness of the human, θ, θ̇ and θ̈ are the joint
position, velocity and acceleration of the human, and θ0 is
the equilibrium angle of the human spring (i.e. the human’s
desired position). In the case of a rigid connection between
the human and exoskeleton, the human’s joint position,
velocity and acceleration are equal to the corresponding
measurable properties of the exoskeleton. Through a linear
regression between τc and [θ, θ̇, −1] for the corresponding
experimental data (θ̈ is not included due to the amplified
noise from the double differentiation on joint position), we
find the human stiffness kh as the reference stiffness, linear
damping bh, and offset spring torque τ0 = khθ0. Each linear
regression includes a moving window of 400 points in time.

3) Random Forest Predictor: We use a random forest
predictor from scikit-learn package [35] in Python to estimate

1Here, we use a linear damping model to estimate the human’s stiffness,
because of difficulties implementing hysteretic damping in the time domain
regression. Hysteretic damping models are likely more accurate[34], and we
use them for the stability analysis.

muscle stiffness based on a 7-dimensional training data set,
which includes the absolute value of exoskeleton position
and velocity, filtered by the second order low pass filter, and
S1, S2, E1, E2 and E3. The reference stiffness values are
used as a supervisory signal. The model is structured with
an estimator number of 50 and a maximum depth of 10 for
each estimator to avoid over-fitting. The predictor is trained
offline with data from both the first and second experimental
sections. The full diagram of the model training procedure
is outlined in Fig. 2.

D. Results

We obtain 76350 offline shuffled data points where 50900
are used for offline training and the remaining 25450 are
used as an offline validation set. The estimation results for
all data sets using the trained random forest predictor give
us a maximum error of 16.58 Nm/rad and an error variance
of 2.55 Nm2/rad2. The results are shown in Fig. 3(a).
Estimation results for the validation data set only have a
maximum error of 14.51 Nm/rad and an error variance
of 3.01 Nm2/rad2. Representations of accurate estimation
results are shown in Fig. 3(b) and Fig. 3(c) respectively.

The quality of our predictor is high relative to other
published predictors of human stiffness using sEMG data.
From Fig. 3(a) we notice a significant linear relationship
between stiffness estimation and reference stiffness. Com-
paring the estimation results with other similar research,
our R factor 0.993 points to a stronger correlation than the
best result of elbow stiffness in [21] of 0.9266 ([21] uses
an artificial neural network to estimate multi-joint stiffness,
but we only compare the elbow joint stiffness results). Our
stiffness ranges from 5 to more than 90 Nm/rad which is a
more practical range compared with [21]’s smaller range of
1 to 3 Nm/rad. Our predictor has a maximum error less
than 17 Nm/rad while Fig.5 in [22] shows a maximum
error greater than 30 Nm/rad and the results in [23] show
a maximum error greater than 80 Nm/rad. However, [23]
uses a different definition of elbow stiffness and includes
data for nine subjects, which may influence their estimation
accuracy. In addition, all the experiments in [21], [22], [23],
[25] are done without the human’s voluntary movement,
which weakens the validation of their models. Stiffness
estimation in the presence of voluntary motion introduces
new challenges, because these voluntary movements can be
confused with the human’s response to the perturbation.
Our bandpass filter helps to remove the influence of human
voluntary motion in the estimation procedure (the human’s
voluntary motion is below the lower cutoff frequency), but
does not completely eliminate this influence. This implies
that the reference human stiffness is not entirely trustworthy
for the second experiment set.

The error between estimated stiffness and reference stiff-
ness may come from three sources: error caused by incorrect
sensor data, error caused by the imperfect predictor, and
error due to incorrect reference stiffness. The green circle
of Fig. 3(b) demonstrates a sudden peak in the stiffness
estimate, a peak which is not reflected in the smooth ref-
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Fig. 3. Random forest predictor results. k̂h is the estimated stiffness from our random forest predictor and kh is the reference stiffness calculated from
the time domain regression. Fig. 3(a) shows the linear relationship between the estimated stiffness and the reference stiffness for all experiments I.1-11
and II.1-11. The blue dots are the data points and the red dash line is the reference line of y = x. Fig. 3(b) shows estimation results from experiment
group I. Fig. 3(c) shows estimation results from experiment group II.

erence stiffness. This kind of instant peak may be caused by
inaccurate sensor data corrupting the inputs to the stiffness
predictor. An erroneous momentary sensor value may be
due to buffer error or electrical noise, which will cause the
predictor to return an incorrect estimation result. In Fig. 3(c),
the error shown in the orange circle may be a pure inaccuracy
from the predictor while the error in the black circle may
be caused by the incorrect reference stiffness. Since kh in
Fig 3(c) is acquired using a band pass filter, this unusual
sudden increase and decrease of reference stiffness in the
black circle can be explained by human motion being abrupt
enough to enter the bandpass region of the filter.

In general, our predictor gives an accurate stiffness esti-
mation for both stiffness in isometric conditions and during
voluntary movement. This random forest predictor can be
used for online stiffness estimation. If we eliminate the data
from the stretch sensors in the training data set, we notice
a decrease of R factor from 0.993 to 0.987 and an increase
of maximum error from 16.58 to 19.32 Nm/rad. The error
variance also increases from 2.55 to 5.13 Nm2/rad2 vali-
dating the importance of including the data from the stretch
sensors.

III. APPLICATION

Since we have demonstrated that stiffness can be estimated
online to a reasonable accuracy, we can now exploit this
knowledge to design higher performance exoskeleton con-
trollers.

A. Controller Adaptation Scheme

The relationship between exoskeleton position and exter-
nal torque can be expressed as

mes
2 · θ = τe + τc + τs. (2)

where τe is environment torque, τc is torque applied by the
human, and τs is our control input. Exoskeleton inertia me

includes the attached weight. We implement a compliance
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Fig. 4. Conceptual bode plot shows the amplification performance for both
the robust controller and the adaptive controller. Ce(s) corresponds to the
exoskeleton compliance. CH

e/α
(s) and CL

e/α
(s) correspond to the human

side compliance of the exoskeleton using the adaptive controller when the
human has a high stiffness and low stiffness. CR

e/α
(s) corresponds to the

human side exoskeleton compliance using the robust controller.

shaping amplification controller as τs = (α(s) − 1)τc so as
to achieve the nominal behavior

mes
2 · θ = τe + α(s)τc, (3)

where the human is amplified by a factor of α(s). This choice
of control does not alter the environment-side compliance of
the exoskeleton, Ce(s) = 1/(mes

2). But it allows the human
to feel an attenuated compliance Ce/α(s) of the exoskeleton
as

Ce/α(s) =
α(s)

mes2
, (4)

which we refer to as the “human-side” compliance.

Our adaptation strategy determines a transfer function
α(s) based on the measured human stiffness. We parame-
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of λ1 and λ2.

terize α(s) as

α(s) =
(s2 + 2ζ0ωz1s+ ω2

z1)(s2 + 2ζ1ωz2s+ ω2
z2)

(s2 + 2ζ0ωp1s+ ω2
p1)(s2 + 2ζ0ωp2s+ ω2

p2)
. (5)

The steady state amplification rate αss =
(ω2
z1ω

2
z2)/(ω2

p1ω
2
p2). The amplification α(s) approaches

unity at high frequencies, making the torque feedback
(1 − α(s)) strictly causal, even though α(s) is not. For
simplicity, we order the four natural frequency parameters
ωp1, ωz1, ωp2, ωz2 as shown in Fig. 4, and do not attempt
to adapt the damping ratio ζ parameters. We place ωz2 at 10
Hz to avoid exceeding the bandwidth of the low level force
controller, and this leaves us three free frequency parameters
in the controller design. We remove one free parameter
by fixing the desired steady state amplification ratio. As
explained later, the gap between ωz1 and ωp2 must enclose
a crossover frequency that depends on human stiffness. We
constrain the remaining two degrees of freedom by choosing
two tuning parameters λ1 and λ2 that ensure a sufficient
distance between this crossover frequency and ωz1 and ωp2,

λ1 =
ωh-e
ωz1

, λ2 =
ωp2
ωh-e

, (6)

where ωh-e =
√
kh/mh-e is the natural frequency of the

human in the exoskeleton and mh-e is the inertia of the
human and exoskeleton including the attached weight. The
forearm inertia mh has been measured for an average human
at 0.1 kg m2 in [11], but we do not know the inertia of our
own subject.

Ultimately, we define our controller based on λ1, λ2, αss
and the estimated value of k̂h:

ωz1 =
ωh-e
λ1

=
1

λ1

√
k̂h
mh-e

, (7)

Rope

Weight

SpringRope

Weight

Fig. 6. Experimental setup to verify the improvement of the controller. The
left picture shows the setup of the bandwidth test and the right picture shows
the setup of the stability test. The rope is in place to maintain a constant
position in the bandwidth test and limit the range of position to protect the
actuator in the stability test. In both tests, a 1.25 lb weight is attached to
the end of the long bar (though this has no effect on the bandwidth test
where the output is locked).

ωp2 = λ2ωh-e = λ2

√
k̂h
mh-e

, (8)

ωp1 =
ωz1ωz2√
αss · ωp2

. (9)

This allows us to change the shape of our amplification in
real time. We refer to this real time compliance shaping
controller as an adaptive controller in this paper. In contrast,
without real time stiffness estimation, we have to use the
most conservative bound of human stiffness to calculate ωz1,
ωp1 and ωp2, which reduces our amplification bandwidth,
ωp1. We refer to this as the robust controller.

The conceptual bode plot shown in Fig. 4 illustrates the
improved performance using stiffness estimation and shows
the amplification performance in different frequencies and
values of stiffness. It is straightforward to find a better
amplification performance of the compliance shaping con-
troller with online stiffness estimation because the amount
of uncertainty handled by the controller is reduced. The
difference between the lines corresponding to CHe/α (the
compliance shape when the human stiffness is high) and
CLe/α (the shape when it is low) indicates the controller’s
shape changing with different stiffness values. In either case
the steady state amplification behavior continues until ωp1,
a far higher bandwidth than that achieved by CRe/α, the
compliance shape that is robust to both human stiffness
extremes.

The stability analysis for these controllers is based on the
complex stiffness model of human impedance proposed in
[34], with

Ch(s) =
1

mhs2 + kh + chj
, (10)

where ch is the hysteretic damping of the human. According
to [34],

ζh =
ch

2kh
, (11)

where ζh is the damping ratio of the human’s elbow joint—
which has been found to be nearly constant for repeated
measurements of a subject [34], [36], [37]. We use a con-
servative, constant damping ratio of 0.13 to represent our
subject.

The parallel connection between human compliance and
human side exoskeleton compliance results in the total com-



pliance of the human in the exoskeleton Ch-e/α(s) being a
harmonic sum

Ch-e/α(s) =

(
1

Ch(s)
+

1

Ce/α(s)

)−1

. (12)

The stability of this system is determined by the phase
margin of Ce/α(s)

Ch(s)
.

Ce/α(s)

Ch(s)
=

α(s)

mes2
(mhs

2 + kh + chj) (13)

Therefore, the stability of this system can also be determined
by the “human phase margin” of Ce/α(s),

∆φ = φ(Ce/α(s))− (φ(Ch(s))− 180◦). (14)

The two bode plots in Fig. 5 show how large values of λ1
and λ2 produce a stable system (left) and how small values
degrade the human phase margin and result in an unstable
system (right). Note that the unstable system has a phase that
rises rather than falling at the pole-pair—this indicates the
poles are in the RHP.

As mentioned before, we do not know the inertia of
our subject. Fortunately, in (14) reducing the phase of the
human compliance increases the phase margin, and thus
approximating human inertia as zero is conservative. We
therefore choose values for λ1 and λ2 which guarantee
stability for zero human inertia. In a more realistic test with
human inertia based on [11], these parameters are confirmed
to be stable.

B. Experiment Validation

We performed three tests to verify the stability, and
bandwidth increase of the compliance shaping controller that
incorporates the online stiffness estimation, as well as the
significance of accurate online stiffness estimation.

1) Stability Test: We verify stability of the two controllers
using a step response test. The experimental apparatus shown
in the right image of Fig. 4 incorporates a spring attached
to the end of the exoskeleton to induce an external force on
the device. The removal of this spring acts as a step force
excitation to the system.

The first experiment tests the robust controller. The par-
ticipant wears the exoskeleton without the sEMG and stretch
sensors and maintains a constant position while the spring
is attached. After 10 seconds we remove the spring and
observe the step response in the position signal. We repeat
this procedure for a low stiffness (no gripper) and high
stiffness case (the participant squeezes the gripper of 72 lb).

For the second experiment we repeat the same procedure,
but using the adaptive controller. The participant wears the
sEMG sensors and stretch sensors to allow a real-time muscle
stiffness estimate, which is also observed.

2) Bandwidth Increase Test: This experiment is designed
to compare the bandwidth of the adaptive controller with the
robust controller. The experimental setup shown in the left
image of Fig. 6 incorporates a rope attached to the end of
the exoskeleton to maintain a constant position by pulling
against the hard-stop.
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Fig. 7. Stability test response shown by the exoskeleton position changing
with time. δθa is the position change response of the adaptive controller
and δθr is the robust controller response.
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robust controller in high stiffness and low stiffness.



In order to verify the bandwidth improvement of the
adaptive controller, the participant wears the exoskeleton and
generates a (near) constant force for 10 seconds. Actuator
torque is observed. This process is repeated for the robust
controller.

3) Instability Test: The significance of accurate online
stiffness estimation is measured by using the adaptive con-
troller without real stiffness estimate data. Instead, a dummy
stiffness estimate (60 Nm/rad) is used. In addition, the
participant does not wear sEMG or stretch sensors. The
setup is as the stability test, except that the step input is
unnecessary. The subject maintains a constant position and
relaxes their muscles for 10 seconds while the controller
loses stability. After 10 seconds the participant maximally
tenses their muscles and the controller regains stability.

C. Results

Results from these experiments are shown in Fig. 7, Fig. 8
and Fig. 9 respectively.

Fig. 7 shows that both controllers give a stable response to
an impulse input, however the adaptive controller produces
a smaller vibration amplitude than the robust controller for
both cases of high stiffness and low stiffness. The lower
overshoot amplitude of the adaptive controller response may
be due to a better human phase margin and correspondingly
better damping ratio in the human–robot system.

Fig. 8 shows both the simulation results of the steady state
response with a step input (Fig. 8(a)) as well as experimental
results (Fig. 8(b-e)). Fig. 8(b)(c) shows the comparison of
the robust controller and the adaptive controller in the high
stiffness case and Fig. 8(d)(e) shows the low stiffness case.
The lag between τs and τA indicates the bandwidth of the
controller. In both cases, the adaptive controller requires less
time to achieve the target torque τA and therefore has a
higher bandwidth. The experimental results appear consistent
with the simulation results—large visual differences in the
plots are largely due to the human input deviating from a
perfect step.

Fig. 9 shows the instability test result. When the adaptive
controller has a discrepancy between the estimated stiffness
value and the actual stiffness value, the system becomes
unstable as shown in Fig. 9. This experiment highlights the
importance of accurate stiffness estimation to our adaptive
controller.

IV. DISCUSSION

Many studies performed on amplification exoskeletons
have relied on conservative bounds of human impedance
properties [7], [15], [34]. Due to the difficulties of online
estimation of human muscle stiffness [21], [22], [23], [25],
few studies have attempted to improve amplification con-
troller performance using these properties.

In this paper, we propose an adaptive compliance shaping
controller and demonstrate the improved performance due
to stiffness estimation. The adaptive controller using the
stiffness estimation provides increased stability and higher
bandwidth than a comparable robust controller designed
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Fig. 9. The instability test. The red dotted line at the top of the graph is
the maximum position, as limited by the rope shown in the right picture of
Fig. 6.

based on a conservative bound of human stiffness. We prove
this improvement both theoretically and experimentally on a
one DOF exoskeleton.

Accurate stiffness estimation is necessary to realize
this compliance shaping controller. Our random forest
predictor—using data from both sEMG and stretch sensors—
was sufficiently accurate for this purpose. Our two exper-
iment sections include training data from both isometric
conditions and dynamic conditions with voluntary move-
ment. Our estimation results appear to be more accurate
than similar studies [21], [22]. The estimation results may
be further improved with better and more reliable sensors,
as well as by taking into consideration the time delay of the
filter. A higher accuracy would allow us to use a lower safety
bound λ1 and λ2 to achieve even higher bandwidth.

In this paper, we only collected data from a single subject
and trained a random forest model specified for this subject,
which is non applicable to other subjects. In the future, we
may include more subjects and train a more general random
forest model applicable to multi subjects.

The convergence of the random forest predictor has not
been proven, so it is difficult to make guarantees about the
performance and safety of the predictor. As future work, we
propose to integrate a backup safety controller [38] to take
over if the learning system fails. Such a backup controller
could offer firm safety guarantees, but would not interfere
with the controller if it was not misbehaving.

The bandwidth increase test and the stability test point to
performance improvement that can be realized with infor-
mation about human properties. In this paper, we use very
conservative values of λ1 and λ2, calculated based on a zero
human inertia assumption, for both the adaptive and robust
controller, which limits the performance of both controllers.
In future studies, we can use a more aggressive safety
bound to achieve better performance for both controllers
with accurate knowledge of human inertia. However, we can
still expect the adaptive controller to outperform the robust
controller. We believe this method can be applied to other
kinds of controllers currently lacking knowledge of human
impedance parameters. For instance the controllers in [7],
[15], [34] may achieve similar bandwidth improvements with
a similar system to update the human model online.
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