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Abstract—In recent years, it has become crucial to improve
the resilience of electricity distribution networks (DNs) against
storm-induced failures. Microgrids enabled by Distributed En-
ergy Resources (DERs) can significantly help speed up re-
energization of loads, particularly in the complete absence
of bulk power supply. We describe an integrated approach
which considers a pre-storm DER allocation problem under
the uncertainty of failure scenarios as well as a post-storm
dispatch problem in microgrids during the multi-period repair
of the failed components. This problem is computationally chal-
lenging because the number of scenarios (resp. binary variables)
increases exponentially (resp. quadratically) in the network size.
Our overall solution approach for solving the resulting two-stage
mixed-integer linear program (MILP) involves implementing
the sample average approximation (SAA) method and Benders
Decomposition. Additionally, we implement a greedy approach
to reduce the computational time requirements of the post-
storm repair scheduling and dispatch problem. The optimality
of the resulting solution is evaluated on a modified IEEE 36-
node network.

I. INTRODUCTION

In the U.S., weather-induced disruptions to power systems
cost $20-$55 billion in annual economic losses [1]. Among
these disruptions, about 90% of outages occur in electricity
distribution networks (DNs) [2]. Smart grid technologies
such as microgrids powered by Distributed Energy Resources
(DERs) permit DNs to provide power to loads even when
the bulk supply from central generation is disrupted [3],
[4]. Current disaster preparedness procedures include use of
microgrids for operational benefits [5]. For example, before
Hurricane Sandy struck, the Federal Emergency Management
Agency prepared an inventory of industrial-size emergency
generators [6]. However, to realize the benefit of DER-
enabled microgrids, agencies need to ensure coordinated
resource allocation and response actions. Otherwise, the
available resources for supporting power dispatch and repair
are likely to be ineffective in reducing prolonged outages and
economic losses [7], [8].

DER allocation in microgrids has received attention in the
context of remote control applied to microgrids [9]; alloca-
tion of mobile generators [6]; utilization of electric buses
as generation resources [10]; and allocation for microgrid
formation in radial and meshed topologies [11]. However,
previous approaches do not also consider damage uncertainty
and dynamic repair of damaged network components; this
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limitation can result in suboptimal resource utilization.
Sec. II summarizes our modeling approach for improving

resilience of DNs against tropical storms [12]. The approach
jointly considers proactive pre-storm decisions (DER alloca-
tion) and post-storm response actions of microgrid formation,
component repairs, and DER dispatch (see Fig. 1). In contrast
to [6], [9], [11], our model considers DN component repairs
over a multi-period horizon. The model is written as a two-
stage stochastic mixed-integer program (SMIP2).
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Fig. 1: Timeline of events and decisions. P denotes the
distribution over failure scenarios; a the pre-storm DER
allocation decision; s a realization of uncertainty; y the
line repair schedule; x the network state variables. Line
repair and dispatch decisions are undertaken over periods
k “ 0, 1, ¨ ¨ ¨ ,K.

Our first contribution of this work is a stylized example
that demonstrates how uncertainty in line failures, repair
scheduling, and power flows can affect the optimal DER
allocation (see Sec. III). The presented example highlights
the necessity of the added modeling complexity associated
with SMIP2.

Our second contribution (Sec. IV) is a solution ap-
proach based on the sample average approximation (SAA)
method [13], which involves restricting SMIP2 to a subset of
scenarios, and solving the resulting MIP using L-shaped Ben-
ders Decomposition (LBD) [14]. The approach significantly
the decreases computation time to solve SMIP2, which is
a computationally challenging problem because the number
of scenarios (resp. the Stage II binary variables) increases
exponentially (resp. quadratically) with the network size.

Although applying SAA and LBD results in a smaller
MIP, LBD requires solving computationally expensive Stage
II subproblems (typically solved to optimality using branch-
and-bound algorithms). Our third contribution is a greedy
heuristic that sequentially determines optimal repair actions
in a period-wise manner. We show that this heuristic provides
reasonable upper bounds to the Stage II subproblems, thus
significantly reducing the computation time required to solve
SMIP2.

We evaluate our solution approach in Sec. V, and conclude
our work in Sec. VI.
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II. TWO-STAGE STOCHASTIC PROGRAM

DN parameters
N set of nodes in DN
E set of edges in DN
0 substation node label
G radial topology of DN, G “ pN

Ť

t0u, Eq
N “ |N| number of non-substation nodes in DN
U Ď N a set of potential locations for developing DER sites
D set of available DERs
vnom nominal squared voltage magnitude (1 pu)
Parameters of edge e P E
P k,s
e , Qk,s

e active and reactive power flowing on line e
re, xe resistance and reactance of line pi, jq P E
e´, e` from and to nodes of line e between nodes i and j
Nodal quantities of node i P N
vk,s
i squared voltage magnitude at node i
pk,si , qk,si net active and reactive power consumed at node i
Quantities of load at node i P N
pci,qci nominal active and reactive power demand at node i
kck,si 0 if load at node i is connected to DN; 1 otherwise
βk,s
i fraction of demand satisfied at node i
β
i

lower bound of load control parameter βi
WLC

i cost of unit load control at node i
WLS

i cost of load shedding at node i
pck,si , qck,si actual active and reactive power consumed at node i
vci,vci lower, upper voltage bounds for load at node i
WSD

i cost of developing DER site at node i
Quantities of DER d P D
pgd,qgd maximum active and reactive power bounds of DER d
ηd tan arccos of the maximum power factor of DER d

pgk,sid , qg
k,s
id active and reactive power contribution of DER d at node

i

yk,si 0 if DG at node i is connected to DN; 1 otherwise
vg

i
,vgi lower, upper voltage bounds for DG at node i

mqd voltage droop coefficient of the DER d
vref
d idle (no load) voltage reference setpoint of DER [15]

Failure variables for scenario s
s P t0, 1uE se “ 1 if line e is disrupted; 0 otherwise.
Es set of lines failed in scenario s.
Allocation decision variables
u P BU ui “ 1 if a site is developed at node i P U ; 0 otherwise.
w P BUˆD wid “ 1 if DER d is allocated at node i P U ; 0 otherwise.
Repair decision variables for scenario s
ylk,s P BE ylk,se “ 1 if line e is repaired in period k; 0 otherwise.
klk,s P BE klk,se “ 1 if line e is operational in period k; 0 otherwise.

TABLE I: Table of notation.

Consider a DN denoted as G “ pN Y t0u, Eq, where 0 is
the substation node, N the set of nodes, and E the set of
edges. We formulate the SMIP2 problem as:

mina gpaq :“ JI
paq ` Es„PrJII

pa, sqs,

s.t. Aaa ě b, a P Bna ,
(SMIP2)

where a P Bna denotes a na-dimensional binary vector that
captures a DER allocation strategy; JI

paq :“ cJa a the Stage
I cost; and Aa P Rmaˆna , b P Rma model the set of feasible
allocation strategies, where ma denotes the number of con-
straints on a. The distribution P characterizes the probability
of line failures and is supported over S :“ t0, 1uE ; random
vector s is drawn from P. Finally, Es„PrJII

pa, sqs denotes
the expected Stage II cost under allocation a.

For a pair pa, sq P AˆS, JII
pa, sq denotes the optimal value

of the Stage II recourse problem. Consider a multi-period
horizon K “ t0, 1, ¨ ¨ ¨ ,Ku where each period is viewed
as a work shift during which lines are repaired and DERs
are dispatched. Then, we formulate the Stage II problem

as a multi-period mixed-integer linear program (MILP) as
follows:

JII
pa, sq :“ min

ř

kPK Jkpxk,s, yk,sq
s.t. Bxx

s ` Byy
s ě h ´ Ta

xk,s P Rnx , yk,s P Bnsy @ k P K
xk,si P t0, 1u @ i P Ix, k P K,

(SP2)

where xk,s P BIx ˆ RrnxszIx and yk,s P Bnsy denote the
mixed-binary network state variables and binary line repair
actions in period k and scenario s; Ix Ă t1, 2, ¨ ¨ ¨ , nxu

the index set indicating xk,si variables with binary restric-
tions; ys “ tyk,sukPK the overall line repair schedule;
xs “ txk,sukPK the aggregated network state variables;
Jkpxk,s, yk,sq :“ cJx,kx

k,s ` cJy,ky
k,s the Stage II cost; and

Bxx
s ` Byy

s ě h ´ Ta the system of mixed-integer linear
constraints on the Stage II decision variables.

In this paper, we assume the probability distribution P as
given. We refer the reader to [12] for details on estimating
P. We now describe our models for allocation (a), repair
(ys), and dispatch (xs) actions, and the objective functions
for both the stages; see Table I for a summary of notation.
A. Resource allocation model

Let D denote the set of available DERs, and U Ď N the
subset of nodes in which DERs can be feasibly allocated.
In Stage I (before the storm), the operator needs to decide
which sites to develop, and which DERs to allocate to the
chosen sites.1 The Stage I constraints are as follows:

ui ď
ř

dPD wid @ i P U (1a)
wid ď ui @ d P D, i P U (1b)

ř

iPU wid ď 1 @ d P D (1c)
ř

iPU
ř

dPD wid ď G, (1d)
where (1a) denotes that a site i is operational if there is at
least one DER allocated to that site; a DER can be allocated
to a site only if that site is developed (1b); a DER d can be
allocated to at most one site (1c); and the total number of
allocated DERs can be at most G (1d). Here G ď |D| models
the supply constraint on the number of DERs.

Thus, the Stage I decision variable (joint site development
and DER allocation) in (SMIP2) is defined as a :“ pu,wq.
The set of feasible resource allocation strategies is defined
as A :“ tpu,wq P BU ˆ BUˆD | (1a)´ (1d) holdu.
B. Multi-period joint repair scheduling and dispatch model

From a practical viewpoint, each period in the second-
stage multi-period horizon can be viewed as one work shift
of the repair crews. We assume that at period k “ 0, the
DN is disconnected from the main grid due to the storm.
Subnetworks formed as a result of line failures can be
operated as microgrids using the available DER supply. As
the line repairs continue over subsequent periods, smaller
microgrids increase in size and/or merge together to form
larger microgrids. At period k “ K, all line repairs are
complete, the DN is reconnected to the main grid, and normal
operation is restored.

We assume that the estimated number of periods to repair
all failed lines K “ |E|, for a straightforward comparison
between different scenarios and repair crew constraints. This
is not a restrictive assumption because if the repairs finish at

1DER site development, such as land acquisition, building enclosures
and elevated platforms, ensure secure and reliable operation of DERs.



period k ă K´ 1, the network state will remain unchanged
until k “ K, when normal operation is restored.

The constraints governing line repair decisions are:
ylk,se “ 0 @ e P Es, k “ 0 (2a)

ř

ePEs
ylk,se ď Y @ k P KzK (2b)

ylk,se “ 1 @ e P Es, e´ “ 0, k “ K (2c)
řK

k“0 yl
k,s
e ď 1 @ e P Es (2d)

klk,se “ 1 @ e P Es, k “ 0 (2e)

klk,se “ 1 @ e, k P KzK, e´ “ 0 (2f)

klk,se “ 0 @ k P K, e R Es (2g)

klk´1,s
e ´ ylk,se “ klk,se @ k P Kz0, e P Es (2h)

ylk,se , klk,se P B @ e P E. (2i)
No repairs are permitted at k “ 0 (2a); at most Y lines can
be repaired per period in k P t1, ...,K ´ 1u (2b);2 and the
DN is reconnected to the main grid at K (2c), where e´ “ 0
denotes that line e connects the DN to the substation node 0.3
Eq. (2d) ensures a line can be repaired at most once. Eq. (2e)
enforces that the damaged lines are non-operational at k “ 0;
(2f) models that the line connected to the substation is non-
operational until k “ K; and (2g) captures that lines not
damaged remain operational at all periods. A failed line turns
operational after it is repaired (2h). The line repair actions
and operating state variables are constrained to be binary (2i).

The line repair variable for each scenario s is denoted as
ys :“ tpylk,se , klk,se quePE,kPK, and the set of feasible repair
schedules is Y psq :“ ty P E ˆK | (2a)´ (2i) holdsu.4

Henceforth, we drop the notation @ k P K, s P S 1.
In each period, the DERs are redispatched to satisfy new

operating constraints resulting from lines becoming opera-
tional and to enable further load restoration. The following
constraints characterize our DER model:

0 ď pgk,sid ď widpgd @ d P D, i P U (3a)

|qgk,sid | ď ηdpg
k,s
id @ d P D, i P U (3b)

pgk,sid “ qgk,sid “ 0 @ d P D, i P NzU (3c)

|vk,s
i ´ pvref

d ´mqdqg
k,s
id q| ď p1´ widqL

@ d P D, i P U , k P KzK, (3d)
where (3a) bounds the active power contributed by a DER;
(3b) models a power factor constraint, (3c) ensures no active
and reactive power contributions of a DER to non-DER site
nodes; and (3d) models voltage droop control.5

The constraints governing our load model are as follows:
kck,si ě vci ´ vk,s

i , kck,si ě vk,s
i ´ vci @ i P N (4a)

βk,s
i ě p1´ kck,si qβ

i
, βk,s

i ď p1´ kck,si q @ i P N (4b)

pck,si “ βk,s
i pci, qc

k,s
i “ βk,s

i qci @ i P N (4c)

kck,si P B @ i P N. (4d)
Here, (4a) ensures that the load remains connected only if

2The number of repairs can vary across periods depending on the
number of crews. For simplicity, we assume that Y is fixed at all periods.

3Our model can be extended to allow early reconnection back to the
main grid even before DN repairs are completed as shown in [16].

4Our model can be easily extended to consider meshed topologies and
network reconfiguration capabilities as in [9], [11].

5Once the DN is connected to the bulk grid, the “stiff” AC system of the
bulk grid determines the terminal voltage of the DERs. Hence the voltage
droop equation does not apply at period K.

voltage bounds are satisfied; (4b) models bounds on load
control; (4c) determines the load’s active and reactive power
consumption; and (4d) models a binary constraint on kck,si .

For computational simplicity, the power flow model is
given by the LinDistFlow model adapted to microgrids [16]:

pk,si “ pck,si ´
ř

dPD pg
k,s
id @ i P N (5a)

qk,si “ qck,si ´
ř

dPD qg
k,s
id @ i P N (5b)

P k,s
e “

ř

l:l´“e` P
k,s
l ` pk,s

e`
@ e P E (5c)

Qk,s
e “

ř

l:l´“e` Q
k,s
l ` qk,s

e`
@ e P E (5d)

|P k,s
e | ď p1´ klk,se qL @ e P E (5e)

|Qk,s
e | ď p1´ klk,se qL @ e P E (5f)

|vk,s
e`
´ pvk,s

e´
´ 2preP

k,s
e ` xeQ

k,s
e qq| ď Lklk,se @ e P E. (5g)

Eqs. (5a)-(5b) determine the net active and reactive power
consumed at the nodes; (5c)-(5d) compute the resulting active
and reactive power flows on the lines; (5e)-(5f) ensure that
no power flows on the failed lines until they are repaired;
and (5g) ensures that the voltage drop constraint along a line
e (between ‘from’ node e´ and ‘to’ node e`) is enforced
only if e is operational.6

The dispatch variable for scenario s is denoted
as xs :“ tpgk,s, qgk,s, βk,s, kck,s, pk,s, qk,s, P k,s, Qk,s,
vk,sukPK. The set of feasible power flows under alloca-
tion a and line repair schedule ys P Y psq is written as
X pa, s, ysq :“ tx | (3a) ´ (5g) holdu. X pa, s, ysq. The
sets X pa, s, ysq and Y psq define the system of inequalities
Bxx

s ` Byy
s “ h ´Ta and the binary constraints in (SP2).

C. Objectives
We assume that the Stage I cost is dominated by the

site development cost. Thus, the Stage I cost is given as
JI
paq “

ř

iPU WSD
i ui, i.e., the DER allocation has zero cost.

For the Stage II objective, we assume costs are the same
at all periods, i.e., cx,j “ cx,k @ j, k P K. Furthermore, we
assume that cy,k “ 0 @ k P K, i.e., there is no cost of line
repairs. (The model can be easily extended to account for
objectives without these assumptions.) Let the cost of load
control/shedding of a load at node i P N be defined as:
Li
pkck,si , βk,s

i q “ WLC
i p1´βk,s

i q`pWLS
i ´WLC

i qkck,si . (6)
We can define the value or benefit to the operator by
operating a load i as

Vi
pkck,si , βk,s

i q :“ WLS
i ´ Li

pkck,si , βk,s
i q. (7)

Then, we define the Stage II objective function to be the
weighted sum of the cost of load control and load shedding,
specifically: Jkpxk,s, yk,sq “

ř

iPN Li
pkck,si , βk,s

i q.

Thus, the DEF reformulation of (SMIP2) is posed as:
min
a,x,y

ÿ

iPU
WSD

i ui `
ÿ

sPS
Ppsq

ÿ

kPK
Jkpxk,s, yk,sq

s.t. a P A, ys P Y psq , xs P X pa, s, ysq @ s P S,
(8)

where x :“ txsusPS and y :“ tysusPS .
For a period k, we also define the system performance

metric Rk as follows:
Rk “

1

|S|
ÿ

sPS
100

´

1´ Jkpxk,s
‹
, yk,s

‹
q{
`
ř

iPN WLS
i

˘

¯

(9)

where xs‹ :“ txk,s
‹
ukPK, ys‹ :“ tyk,s

‹
ukPK are the optimal

solutions to JII
pa, sq. System performance decreases with

6When the DN is connected back to the main grid, the substation voltage
is assumed to be the nominal voltage.



increasing costs Jk, and is a maximum of 100 when the
demand is fully met.

III. AN ILLUSTRATIVE EXAMPLE

In this section, we introduce an illustrative example to
discuss how failure uncertainty, repair scheduling and power
flow constraints affect the DER allocation (see Fig. 2).

0
1

2
3
4

(a)

S1

S2

S3

(b)

A1

A2

A3

(c)

A1,S1

k = 0

A1,S2

A1,S3

A2,S3

(d)

k = 1

(e)

k = 2

(f)

k = 3

(g)

Fig. 2: The subfigures show (a) nominal DN, (b) considered
scenarios with failed lines shown by dotted lines (c) three
potential DER allocations, (d) network topology after the
storm, and (e)-(g) network restoration. Greater load control
is indicated by a darker (grayer) node.

N
od

es

i WSD
i pci qci βi

WLS
i WLC

i Useful Li or Vi values for some pkci, βiq inputs
1 300 0 0 0 0 0 N/A
2 0 0.9 0.3 1{3 1000 450 L2

p1, 0q “ 1000,V2
p0, 2{3q “ 850,V2

p0, 1{3q “ 700
3 0 0.6 0.2 1{2 900 300 L3

p1, 0q “ 900,V3
p0, 1{2q “ 750

4 300 0.3 0.1 1 650 0 L4
p1, 0q “ 650

Ed
ge

s

e re xe

D
ER

s

pgd qgd vref
d

t0, 1u 0.1 0.2 0.6 0.2 1.05
t1, 2u 0.1 0.2
t1, 3u 0.1 0.2 0.3 0.1 1.05
t1, 4u 0.1 0.2 Sc

en
ar

io
s s Ppsq st0,1u st1,2u st1,3u st1,4u

S1 1{3 1 0 1 1
S2 1{3 0 1 1 1
S3 1{3 1 1 1 1

TABLE II: Parameters of the example 4-node network.
Consider a 4-node DN (Fig. 2a) connected to substation

node 0. The voltage bounds for each node i are vi “ 0.95
and vi “ 1.05 (see parameters in Table II). The considered
failure scenarios are shown in Fig. 2b and three of 16 feasible
allocations in Fig. 2c, where the DER with larger (resp.
smaller) capacity is shown in green (resp. blue).

First, we argue that the optimal allocation without consid-
ering line repairs, as is the case in [9], [11], is to allocate
DERs to nodes 2 and 3 (allocation A2). Based on the costs of
load shedding, the operator’s load preference is in the order
2 ą 3 ą 4. Even if the power consumed by each load is
adjusted to be identical at 0.3`0.1j by exercising load control
(β2 “ 1{3, β3 “ 1{2, β4 “ 1), the value in operating loads
2, 3 and 4 is 700, 750, and 650, respectively; see Table II. If
the operator were forced to shed one of three loads, then
the operator would be best off shedding load at node 4.
Thus without considering repairs, the optimal allocation is
to allocate DERs at nodes 2 and 3, and it does not matter
which DER is allocated to which node between 2 and 3.
However, we show that this allocation is suboptimal.

Second, we show how the power flow constraints influence
DER allocation. If for some line e, Pe “ 0.3, Qe “ 0.1, then
2prePe ` xeQeq “ 0.1, i.e., the voltage drop along that line
equals 0.1. This constrains the amount of power that can flow
along any line. If no DER is allocated to node 1, then the
three loads cannot be simultaneously energized even after
load control because of voltage bound violations. For e.g., if
u2 “ u3 “ 1, w21 “ 1, and w32 “ 1 (such an allocation

a JI
paq s

Stage II cost in period k
JII
pa, sq gpaq

J0 J1 J2 J3

A1 200
S1 1000 450 450 450 2350

3050S2 1050 450 450 450 2400
S3 1900 1000 450 450 3800

A3 100
S1 950 450 450 450 2300

3233S2 1550 950 450 450 3400
S3 1850 950 450 450 3700

TABLE III: Costs in different periods for allocations A1 and
A3, and scenarios S1, S2, and S3. The costs under A2 is a
constant of 950 for each period, and each scenario, thereby
resulting in total expected loss of 3800.

may be considered since there is no cost for developing sites
at nodes 2 and 3), then for all three loads to be energized,
power from the larger DER at node 2 must travel to node
4. This would result in a voltage drop of 0.2 between nodes
2 and 4, and a voltage bound violation. Thus, the larger of
the two DERs, i.e. DER 1, should be allocated at node 1 for
all three loads to be energized. Hence, under allocation A2,
load 4 cannot be re-energized in any scenario.

Third, we show how the uncertainty in scenarios influence
the DER allocation. The summary of the operator costs
in various stages under considered allocation strategies and
scenarios is shown in Table III. Note that A1 has the lowest
total expected cost, i.e. A1 is the optimal strategy. Also, under
A1 the smaller DER would be allocated to node 4. This is
somewhat counterintuitive in the sense that the DERs are
allocated to costly nodes (i.e. larger WSD

i values), and in
case of node 1, allocated to a node without a load. This
can be understood by noting that the line t1, 4u fails in all
scenarios. On the other hand, under allocation A3, the load at
node 4 will have to be shed for two time periods in first two
scenarios, and for three time periods in the third scenario.
Hence, A3 is clearly a suboptimal allocation.

IV. SOLUTION APPROACH FOR (SMIP2)
In this section, we outline our approach for obtaining solu-

tions to the two-stage program (SMIP2). We use the sample
average approximation (SAA) method to solve (SMIP2) [13],
which takes a random subset of the scenario set S as input.
Specifically, the SAA problem is given by:

minaPA tĝS1paq :“ JI
paq ` p1{S1q

ř

sPS1 JII
pa, squ. (SAA)

Here, S 1 Ă S is a random subset of the set of failure
scenarios, S1 :“ |S 1|, and ĝS1paq is the SAA objective.

We solve (SAA) rather than obtain an exact solution to
(SMIP2), because calculation of Es„PrJII

pa, sqs in (SMIP2)
is computationally intractable for large networks. The number
of Stage II problems to solve under allocation a is 2N. If
S1 ! |S|, (SAA) requires much less computation time to
solve than (SMIP2). A naive approach to solve (SAA) is to
solve (SP2) for each scenario s P S 1 under each strategy
a P A. This is inefficient because the number of feasible
solutions |A| increases exponentially with number of DERs.

We propose a more efficient approach based on L-shaped
Benders decomposition (LBD), which can output the opti-
mal solution to (SAA) by potentially considering a smaller
number of Stage I strategies. Akin to LBD for two-stage
stochastic programs, our approach alternates between a mas-
ter problem and sub-problems at each iteration r (see Fig. 3).
The master problem is defined as:

A‹r “ arg minaPA JI
paq s.t. Benders cuts, (MP)

where the Benders cuts are defined in Sec. IV-A. At the
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Network topology,
parameters, costs Failure scenarios

Solve (MP) w/
Benders cuts

A‹
r = ∅

Solve (SP2) w/
greedy approach

Solve (SP2) w/
upper boundsSolve (SPC)

Update current
solution g̃

Add Benders cut exit

A‹
r

a‹
r P A‹

rno

Φpa‹
r, sq, @s

y‹, xd
‹

Benders cut

yes

Fig. 3: Overview of the proposed solution approach.

start of the first iteration, there are no Benders cuts and the
current solution g̃ to (SAA) is initialized to 8. If A‹r is
not empty, an optimal solution a‹r P A‹r is used as input
to solve the sub-problem (SP2) for each scenario s P S 1.
Then, we solve a linear program (SPC) @s P S 1, formed
using (SP2) with the discrete variables fixed. We update
the solution g̃ as: g̃ Ð mintg̃ , ĝS1pa

‹
rqu where ĝS1pa

‹
rq

denotes the objective at iteration r. A new Benders cut is
added to (MP) using the solutions to (SP2) and (SPC). The
algorithm terminates when the Benders cuts renders all first-
stage solutions infeasible (i.e., A‹r “ H). If termination
occurs at iteration R, we define the set of solutions from all
iterations as AR “ ta

‹
1, ¨ ¨ ¨ , a

‹
R´1u. The solution from AR

that produces the smallest objective is the optimal solution.
The greatest computational burden in LBD arises from

solving (SP2) for each scenario. In Sec. IV-B, we discuss a
greedy approach to decrease computation required for (SP2).
A. Formation of Benders cuts

Given an allocation a‹ and scenario s, the optimal objec-
tive for a sub-problem (SP2) is JII

pa‹, sq. The corresponding
optimal solution is given by pxsq‹ and pysq‹, where pxsq‹
can be partitioned into pxsdq

‹ and pxscq
‹ to denote the discrete

(resp. continuous) variables. The optimal objective of (SP2)
can be rewritten as

ř

kPKpc
J
xd,kpx

k,s
d q‹ ` cJxc,kpx

k,s
c q‹q. After

solving (SP2), we solve the Stage II problems with the
discrete variables pysq‹ and pxsdq

‹ fixed. The resultant LP
is:

min
ř

kPK c
J
xc,kx

k,s
c

s.t. Bxcx
s
c ě h ´ Ta‹ ´ Bypy

sq‹ ´ Bxdpx
s
dq
‹,

(SPC)

where Bxd and Bxc are the columns of Bx corresponding to
the discrete and continuous variables, respectively.

A Benders cut is formed using the discrete variables from
(SP2) and the dual solution from (SPC):
cJa a`

ř

sPSrc
J
xd,kpx

k,s
d q‹ ` h̃pa, sq

J
pλsq‹s ď L‹ ´ ε, (10)

where h̃pa, sq “ h ´ Ta´ Bypy
sq‹ ´ Bxdpx

s
dq
‹ is the right-

hand side of (SPC), pλsq‹ is the dual solution to (SPC), loss
L‹ “ cJa a

‹ `
ř

sPS1 JII
pa‹, sq, and ε « 10´6 is a small

positive number. This cut renders a‹ infeasible because the
resulting objective value gpa‹q is exactly L‹.
B. Greedy Approach to Stage II problem

We now describe our greedy approach to decrease the
computation time required for the Stage II MIP (SP2). The
number of binary variables in (SP2) increases quadratically
with the network size, because it requires at least Op|E|{Yq

periods for line repairs, and there are Op|N| ` |E|q binary
variables for each period. Thus, off-the-shelf MIP solvers,
which typically implement branch-and-bound (B&B) algo-
rithms, require significant computational time to solve (SP2).
Our greedy approach finds a feasible solution to (SP2) so that
the corresponding objective value can be used as a reasonable
upper bound, which can significantly reduce the number of
B&B nodes explored.

The greedy approach entails sequentially obtaining a
period-wise line repair and power dispatch solution from
first to last period. We take advantage of the fact that
there are no inter-period dependencies in the power flow
constraints, which permits us to decompose (SP2) into an
MIP for each period. At each period k, the solutions yk,s and
xk,s myopically minimize the Stage II cost for the period,
i.e. Jk. The constraints on yk,s are only dependent on the
operational states klk´1,s from the previous period k´1, and
the constraints on xk,s only depend on the state klk,s. With a
slight abuse of notation, for k P K, we denote by Ykpnq a set
of vectors yk,s which satisfy only those constraints among
(2a)-(2i) that involve variables yk,s, where klk´1,s

“ n is
fixed. Similarly, let X kpa, s, yk,sq denote a set of vectors
xk,s which satisfy only those constraints among (3a)-(5g)
that involve variables xk,s.

Now, consider a fixed pair pa, sq P Aˆ S. Then, for k “
0, ¨ ¨ ¨ ,K, we solve the following MIP:

Φk

`

a, pklk´1,s
q‹
˘

:“ min
xk,s,yk,s

cJx,kx
k,s

s.t. yk,s P Yk
`

pklk´1,s
q‹
˘

, xk,s P X k
`

a, s, yk,s
˘

,
(11)

where pklk´1,s
q‹ is part of the optimal solution to the MIP

Φk´1 in the previous iteration. For k “ 0, we consider
pklk´1,s

q‹ “ s, since there are no repairs before k “ 0.
Then, the sum of the optimal solutions to the greedy

problem, Φpa, sq “ Φ0 pa, sq`
řK

k“1 Φkpa, pkl
k´1,s

q‹q is an
upper bound to the Stage II objective. Thus, the following
cut can be used for the Stage II problems:

ř

kPK c
J
x,kx

k,s ď Φpa, sq. (12)
As shown in Fig. 3, we first obtain an upper bound to (SP2)
using the greedy approach, then solve (SP2) with the cut (12)
as an added constraint. Then, we use the solution to (SP2) in
order to solve (SPC) and obtain a Benders cut (Sec. IV-A).

V. COMPUTATIONAL STUDY

In this section, we discuss our computational study. In
Sec. V-A, we analyze the system performance attained by our
approach, compared to simpler approaches that search the set
of feasible allocation solutions less exhaustively. In Sec. V-B,
we evaluate the performance of the greedy approach. For our
study, we use a modified IEEE 36-node test feeder.7

A. System performance evaluation
We compare solutions from four approaches: (1) Simple

enumeration (SE): best solution from the set of allocations
obtained by simple enumeration; (2) solution to LBD with
Greedy Approach (LBDwGA), outlined in Sec. IV; (3) ‘Best
of Random Allocations’ (BoRA): best solution from a set
of randomly-sampled allocations; and (4) ‘Single Allocation’
(SA): one pre-determined allocation such that the DERs have
an even spatial distribution across the DN.

712 out of 36 randomly-chosen nodes have one load each. We otherwise
use the same parameters as in our previous work [12].



Fig. 4: Average system performance of the 36-node DN under
allocations given by LBDwGA, SE, BoRA, and SA. We use
the parameters G “ 3, Y “ 2, and S1 “ 10.

Fig. 4 demonstrates how system performance Rk evolves
over the set of periods under the four approaches. Before
the storm occurs, the network is in nominal operation and
Rk “ 100%. After the storm (k “ 0), Rk is at a minimum,
and improves in subsequent periods with each set of line
repairs. Once all the damaged lines are repaired, Rk is
almost (but not fully) restored. Finally, Rk returns to 100%
following reconnection of the DN to the bulk power grid
at k “ K. As expected, LBDwGA and SE have equivalent
system performance and outperform the other methods.
B. Evaluation of greedy approach

The greedy solution provides an upper bound to the
optimal value of (SP2). In Fig. 5, we compare the system
performance of the optimal and greedy solutions under
two different scenarios. For Scenario 1, the greedy solution
exactly matches the optimal solution. For Scenario 2, the
greedy solution is suboptimal, but the difference between
the greedy and optimal solutions’ system performance is
small. Although the greedy solution outperforms the optimal
solution at k “ 2 (see right-hand plots in Fig. 5), the total
expected cost will be higher in the former case.

A smaller difference between the system performance of
the optimal and greedy solutions indicates a tighter upper
bound. In Scenario 1, the greedy upper bound ensures that
the greedy solution is the only feasible solution, because the
greedy and optimal solutions are the same. In Scenario 2,
the greedy upper bound renders a large number of repair
schedules infeasible, but multiple feasible schedules remain.

Fig. 5: System performance under Scenario 1 (left column)
and Scenario 2 (right column). Parameters are G “ 1,Y “ 2
(top row) or G “ 1,Y “ 3 (bottom row).

VI. CONCLUDING REMARKS

This work presents a solution approach to the integrated
pre-storm resource allocation and post-storm repair and dis-
patch problem for improving resilience of electricity distri-

bution networks against storms. The problem is formulated
as a two-stage stochastic multi-period program. The solution
approach involves Sample Average Approximation (SAA),
L-shaped Benders decomposition, and a greedy approach to
reduce the cost of solving Stage II recourse subproblems.

We plan to extend our work in three directions, to permit
scalability of our approach to larger networks. First, we will
provide provable guarantees on the upper bound formed by
the greedy approach, and discuss how the greedy solutions
may be improved. This would decrease the computation time
required for scenario-wise sub-problems. Second, we will
focus on decreasing the number of iterations in Benders
decomposition. In particular, we will form lower bounds
to the two-stage MILP objective, which may permit us to
achieve convergence before our current approach exhausts
all feasible first-stage allocations. Finally, we will evaluate
accuracy of SAA solutions using optimality gap estimates.
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