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Abstract— This paper presents a bio-inspired central pattern
generator (CPG)-type architecture for learning optimal maneu-
vering control of periodic locomotory gaits. The architecture is
presented here with the aid of a snake robot model problem
involving planar locomotion of coupled rigid body systems.
The maneuver involves clockwise or counterclockwise turning
from a nominally straight path. The CPG circuit is realized
as a coupled oscillator feedback particle filter. The collective
dynamics of the filter are used to approximate a posterior
distribution that is used to construct the optimal control
input for maneuvering the robot. A Q-learning algorithm is
applied to learn the approximate optimal control law. The
issues surrounding the parametrization of the Q-function are
discussed. The theoretical results are illustrated with numerics
for a 5-link snake robot system.

I. INTRODUCTION

The objective of this paper is to present a bio-inspired
central pattern generator (CPG)-type sensori-motor control
architecture to learn optimal maneuvers using only noisy
sensor measurements and (online) reward. The dynamic
and sensor models are assumed unknown. The architecture,
depicted in Fig. 1, is presented here with the aid of a snake
robot model problem involving planar locomotion of coupled
rigid body systems.

The snake robot is modeled as n coupled rigid bodies.
The configuration space of the system is split into two
sets of variables: (i) the shape variable which describes the
internal shape of the system; (ii) and the group variable
which describes the global displacement and orientation of
the system. The shape variables are actuated using motors
at each joint to produce a nominal sinusoidal gait for the
forward motion. The synthesis procedure for this gait is taken
from [2], where it was shown to be optimal with respect to
an energy cost function.

The learning problem is for the robot to learn to maneuver
about this nominal gait. The particular maneuver is to turn the
robot either clockwise or counter-clockwise, e.g., to avoid an
obstacle in the environment. We assume noisy measurement of
the shape variables and employ changes in friction coefficients,
with respect to the surface, as control inputs.

The main complexity reduction technique is to model the
nominal periodic motion of the (local) shape variable at the
j-th joint in terms of a single (hidden) phase variable θ j(t) for
j = 1,2, . . . ,n−1. The inspiration comes from neuroscience
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Fig. 1. The proposed architecture to learn a distributed feedback control
law for turning the snake robot.

where phase reduction is a popular technique to obtain reduced
order model of neuronal dynamics [4].

A coupled oscillator feedback particle filter (FPF) is used
to approximate the posterior distribution of θ j(t) given
noisy measurements. The collective dynamics of the (n−1)
oscillator populations electrically encode the evolution of the
mechanical shape of the robot. The filter requires knowledge
of the observation model which is also learned in an online
fashion through the use of a linear parameterization.

The filter outputs are aggregated into the second layer
which seeks to learn the Q-function (or the Hamiltonian)
based on an online access to the reward. A clever linear
parametrization is used to enforce a distributed architecture
for the policy. The parameters are learned by using a gradient
descent algorithm to reduce the Bellman error [12], [5].

This overall control system can be viewed as a central
pattern generator (CPG) which integrates sensory informa-
tion to learn closed-loop optimal control policies for bio-
locomotion. The framework presented here is based upon
our prior research in [10] where phase reduction technique
was introduced for a 2-link system and in [13] where the
technique was extended to include learning for the 2-link
system. The main contributions of this work over and above
these prior publications are as follows:

1) The application involving the snake robot is new and
more practically motivated than the simple 2-link model
considered in [13].

2) The distributed coupled oscillator FPF is biologically
motivated. Each of the FPF encodes only the local
shape and can be extended to n-links and ultimately to a
continuum rod type models. In contrast, the framework
in our earlier papers parametrized the limit cycle by a
single oscillator.

3) A procedure to learn the sensor model is presented. This
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is in contrast to [10], [13], where the sensor model is
assumed to be known.

4) The learning framework is numerically demonstrated in
a simulation environment. The main innovation is the
parametrization of the Q-function (or the Hamiltonian).

Taken together, the numerical results of this paper demon-
strate an end-to-end architecture for sensori-motor control of
bio-locomotion. These results are likely to spur comparative
studies as well as theoretical investigations of learning in
bio-locomotion.

The remainder of this paper is organized as follows: The
snake system problem is formulated in Section II. The control
problem solution is described in Section III. The numerical
results of the snake system appear in Section IV.

II. PROBLEM FORMULATION

A. Modeling

The model of snake robot, described next, closely fol-
lows [8]. Consider a system of n planar rigid links, connected
by single degree of freedom joints as depicted in Fig. 2. The
system is placed on a horizontal surface, subject to friction.
The j-th joint is equipped with torque actuator (motor) with
drive torque τ j, linear torsional spring with coefficient κ j,
and viscous friction with coefficient ζ j for j = 1, . . . ,n−1. It
is assumed that each link has uniformly distributed mass. For
link j, m j denotes its mass, l j denotes its half length, and J j
denotes its moment of inertia about the center of mass.

The absolute orientation of j-th link, with respect to a
global inertial frame, is denoted by q j ∈ [0,2π], and the
position of the center of mass is denoted by rCM ∈ R2.
As a result, (q,rCM) ∈ [0,2π]n×R2, with q := (q1, . . . ,qn),
represents the configuration of the n-link system.

The configuration is divided into two sets: (i) the shape
variable; (ii) and the group variable. The shape variable, x =
(x1, . . . ,xn−1) ∈ [0,2π]n−1, are the relative angle between the
links, defined as x j = q j−q j+1 for j = 1, . . . ,n−1. The group
variable (ψ,rCM) ∈ SE(2) comprises the global orientation of
the system,

ψ :=
1
n

n

∑
j=1

q j (1)

and the position of center of mass rCM. The group variable is
an element of the group of planar rigid body motions SE(2).

An open loop periodic input is assumed for torque
actuators,

τ j(t) = τ0 j sin(ω0t +β j), for j = 1, . . . ,n−1 (2)

where ω0 is frequency, τ0 j is the amplitude, and β j is
the phase. The particular form of the periodic input is not
important. For the purpose of numerics, this input is chosen
to induce a nominal gait, which leads to forward motion.

The friction force exerted at each link comprises of three
component: A force component directed normal to the link,
a force component directed tangent to the link, and a torque.

Fig. 2. Schematic of the n-link system for the snake robot.

The models for these components are,

normal friction force =−cn, jm jv j · n̂ j

tangent friction force =−ct, jm jv j · t̂ j

friction torque =−cn, jJ jq̇ j

where n̂ j, t̂ j are the normal and tangent unit vectors to link
j, v j is the velocity of link j, and ct, j,cn, j are the friction
coefficients in the tangent and normal directions, respectively.
For snake robot, these coefficients are different (cn � ct)
which is believed be essential for forward locomotion [3].

For the snake robot model problem, the control input enters
via change in friction coefficients as,

cn, j(t) = c̄n, j(1+u j(t)), for j = 1, . . . ,n (3)

where c̄n, j is the nominal friction coefficient normal to link
j, and u j(t) represents a small time-dependent perturbation
due to control.

B. Dynamics

The dynamics of the system is given by a second order
ode for the shape variable, and a first-order ode for the group
variable:

ẍ(t) = F̃x(x(t), ẋ(t),τ(t),u(t)), (4)
d
dt

[
ψ(t)
rCM(t)

]
=

[
F̃ψ(x(t), ẋ(t),u(t))
F̃r(x(t), ẋ(t),u(t))

]
(5)

The derivation of the dynamic equations and the explicit form
of the functions F̃x, F̃ψ , and F̃r appears in Appendix A. In
this paper, the explicit form of these functions are assumed
to be unknown.

C. Observation process

The shape variable and its velocity (x, ẋ) are assumed not
to be fully observed . To estimate (x, ẋ), each joint is equipped
with a sensor that provides noisy measurements of the shape
variable and its velocity. The model for the sensor at the j-th
joint is

dZ j(t) = h̃ j(x j(t), ẋ j(t))dt +σW dWj(t), for j = 1, . . . ,n−1
(6)

where Wj(t) is a standard Wiener process and σW is the
standard deviation parameter. The explicit form of the function
h̃ j(·) in the observation model is assumed to be unknown.
However, it is assumed that h̃ j(·) is only a function of (x j, ẋ j).



D. Optimal control problem

The control objective is to find a control input u(t) that
turns the robot, while the robot is moving forward with a
nominal gait produced by the uncontrolled open-loop input
torque τ(t) according to (2). The control objective is modeled
as a discounted infinite-horizon optimal control problem:

J̃(x(0), ẋ(0)) = min
u(·)

E

[∫
∞

0
e−γt c̃(x(t), ẋ(t),u(t))dt

]
(7)

subject to the dynamic constraints (4). Here, γ > 0 is the
discount rate and the cost function

c̃(x, ẋ,u) = F̃ψ(x, ẋ,u)+
1

2ε
‖u‖2

2 (8)

where F̃ψ(x, ẋ,u) = ψ̇ is the rate of change of the global
orientation ψ , ‖u‖2

2 = ∑
n
j=1 u2

j , and ε > 0 is the control
penalty parameter. The minimum is over all control inputs u(·)
adapted to the filtration Zt := σ(Z(s);s ∈ [0, t]) generated by
the observation process.

The cost function is chosen so that, minimizing the cost
leads to negative net change in the global orientation ψ ,
which corresponds to the clockwise rotation.

III. SOLUTION APPROACH

Solving the optimal control problem (7) is challenging
because:

1) The function F̃x in the dynamics model (4) for the
(n−1)-dimensional shape variable x is assumed to be
unknown. The model is highly nonlinear due to the
details of the geometry and contact forces with the
environment (see (32) in Appendix A).

2) The explicit form of the function F̃ψ that appears in
the cost function (8) is assumed to be unknown.

3) The shape variable (x, ẋ) is not fully observed.
4) The explicit form of the observation functions h̃ j(·)

in (6) are assumed to be unknown.
The following steps are used to overcome these challenges:

A. Step 1. Phase modeling

Consider the second-order differential equation (4) for the
shape variable x under the open-loop periodic input τ(t) in (2).
The following assumption is made concerning its solution:

Assumption A1 Under periodic forcing τ(t) as in (2), the
solution (x j(t), ẋ j(t)) to (4) is an isolated asymptotically
stable periodic orbit (limit cycle) with period 2π/ω0
for j = 1, . . . ,n−1 (see Figure 3).

Denote the set of points on the limit cycle of (x j(t), ẋ j(t))
as P j ⊂ R2. Each limit cycle solution is parameterized by
a phase coordinate θ j ∈ [0,2π) in the sense that there exists
an invertible map XLC

j : [0,2π)→P j such that XLC
j (θ j(t)) =

(x j(t), ẋ j(t)), where θ j(t) = (ω0t +θ j(0)) mod 2π , for j =
1, . . . ,n−1. The definition of the phase variable is extended
locally in a small neighborhood of the limit cycle by using
the notion of isochrons [4].

Let θ(t) := (θ1(t), . . . ,θn−1(t)) denote the vector of all the
phase variables, and XLC(θ) :=(XLC

1 (θ1), . . . ,XLC
n−1(θn−1)). In

x1

x 1

Limit Cycle Solution (xj, xj) j

x2

x 2

x3

x 3

x4

x 4 0

0

0

0

Fig. 3. The limit cycle solution for the shape variable (x(t), ẋ(t)) under the
periodic torque input (2), for a 5-link system. Each limit cycle is parametrized
with a phase variable θ j ∈ [0,2π].

terms of θ(t), the first-order dynamics of the group variable
in (5) is expressed as

d
dt

[
ψ(t)
rCM(t)

]
=

[
F̃ψ(XLC(θ(t)),u(t))
F̃r(XLC(θ(t)),u(t))

]
=:
[

Fψ(θ(t),u(t))
Fr(θ(t),u(t))

]
(9)

and the observation model (6) is

dZ j(t) = h j(θ j(t))dt +σW dWj(t), for j = 1, . . . ,n−1
(10)

where h j(θ j) := h̃ j(XLC
j (θ j)).

The optimal control problem (7) in terms of the phase
vector is given by

J(θ(0)) = min
u(·)

E

[∫
∞

0
e−γtc(θ(t),u(t))dt

]
(11)

where c(θ ,u) = Fψ(θ ,u)+ 1
2ε
‖u‖2

2 and the minimum is over
all control inputs u(·) adapted to the filtration Zt .

The new problem is described by a single phase vector θ

instead of coupled shape variables x and ẋ. With u(t)≡ 0, the
dynamics is described by the oscillator model θ j(t) = (ω0t +
θ j(0)) mod 2π for j = 1, . . . ,n−1. Now, in the presence of
(small) control input, the dynamics need to be augmented by
an additional term εg(θ ,u) due to control:

dθ(t) = (ω01n−1 + εg(θ(t),u(t)))dt (12)

where 1n−1 = [1, . . . ,1]T ∈ Rn−1.

B. Step 2. Learning observation model

The explicit form of the function h j(·) in the observation
model (10) is not known. It is approximated using a linear
combination of the Fourier basis functions:

h j(θ j)≈ h j(θ j;r j) := rT
j φh(θ j), for j = 1, . . . ,n−1 (13)



where φh is a vector of Mh Fourier basis functions (e.g
φh(ϑ) = (sin(ϑ),cos(ϑ))), and r j ∈ RMh is a vector of Mh
weights. The weights are initialized at zero and updated in
an online fashion according to

dr j(t) = αh(t)
[

dZ j(t)− ĥ j(t)dt
]
E[φh(θ j(t))|Zt ] (14)

where αh(t) is the learning rate, and ĥ j(t) :=
E[h j(θ j(t),r j(t))|Zt ]. In numerical implementation,
the conditional expectations are approximated using the
feedback particle filter, described next.

C. Step 3. Feedback particle filter (FPF)

The feedback particle filter algorithm is used to obtain the
posterior distribution of the phase vector θ(t), governed by
dynamics (12), given the noisy observations (10). The filter
comprises N stochastic processes {θ i(t) : 1≤ i≤ N}, where
θ i(t) ∈ [0,2π]n−1 is the state of the i-th particle (oscillator)
at time t. The particles evolve according to

dθ
i(t) = ω

i1n−1 dt + εg(θ i(t),u(t))dt

+
n−1

∑
j=1

K j(θ
i(t), t)

σ2
W

◦

(
dZ j(t)−

h j(θ
i
j(t),r j(t))+ ĥ j(t)

2
dt

)
(15)

where ω i∼Unif([ω0−δ ,ω0+δ ]n−1) is the frequency of the i-
th oscillator, ĥ j(t) :=E[h j(θ j(t),r j(t))|Zt ], and the notation ◦
denotes Stratonovich integration. In numerical implementation
ĥ j(t)≈ 1

N ∑
N
i=1 h j(θ

i
j(t),r j(t)).

The algorithm involves n − 1 gain functions K j(θ , t)
for j = 1, . . . ,n− 1, where the j-th gain function corre-
sponds to the j-th observation signal. Each gain function
is a (n− 1)-dimensional vector expressed as K j(θ , t) =
(K j,1(θ , t), . . . ,K j,n−1(θ , t)) ∈Rn−1. The gain function is the
solution of a certain partial differential equation. In practice,
the gain function is numerically approximated using the
Galerkin algorithm. The details of the Galerkin algorithm
appears in [11].

Given the particles, the conditional expectation
E[ f (θ(t))|Zt ] of a given function f (·) is approximated as
1
N ∑

N
i=1 f (θ i(t)).

Remark 1: There are two manners in which control input
u(t) affects the dynamics of the filter state θ i(t):

1) The O(ε) term εg(·,u(t)) which models the effect of
dynamics;

2) The FPF update term which models the effect of sensor
measurements. This is because the control input u(t)
affects the state (x(t), ẋ(t)) (see (4)) which in turn
affects the sensor measurements Z(t) (see (6)).

D. Step 4. Q-learning

With the constructed FPF, we can now express the partially
observed optimal control problem (11) as a fully observed
optimal control problem in terms of oscillator states θ (N)(t) =
(θ 1(t), . . . ,θ N(t)) according to

J(N)(θ (N)(0)) = min
u(·)

E

[∫
∞

0
e−γtc(N)(θ (N)(t),u(t))dt

]
(16)

subject to (14)-(15), where the cost c(N)(θ (N),u) :=
1
N ∑

N
i=1 c(θ i,u) and the minimization is over all control laws

adapted to the filtration Xt := {θ i(s); s≤ t,1≤ i≤ N}. The
problem is now fully observed because the states of oscillators
θ (N)(t) are known. This approach closely follows [6].

The analogue of the Q-function for continuous-time sys-
tems is the Hamiltonian function:

H(N)(θ (N),u) = c(N)(θ (N),u)+DuJ(N)(θ (N)) (17)

where Du is the generator for (15) defined such that
d
dtE[J

(N)(θ (N)(t))] = DuJ(N)(θ (N)(t)).
The dynamic programming principle for the discounted

problem implies:

min
u

H(N)(θ (N),u) = γJ(N)(θ (N)) (18)

Substituting this into the definition of the Hamiltonian (17)
yields the fixed-point equation:

Du H(N)(θ (N)) =−γ(c(N)(θ (N),u)−H(N)(θ (N),u)) (19)

where H(N)(θ (N)) := minu H(N)(θ (N),u). This is equivalent
to the fixed-point equation that appears in the Q-learning
algorithm in discrete-time setting.

Linear function approximation: The Hamiltonian function
is approximated as the linear combination of M real-valued
basis functions {φm(θ ,u)}M

m=1 as follows:

Ĥ(N)(θ (N),u;w) =
1
N

N

∑
i=1

wT
φ(θ i,u) (20)

where w ∈ RM is a vector of weights and φ = (φ1, . . . ,φM)T

is a vector of basis functions. Thus, the infinite-dimensional
problem of learning the Hamiltonian function is reduced to
the problem of learning the M-dimensional weight vector w.

We define the point-wise Bellman error as follows:

E (θ (N),u;w) :=DuĤ(N)
(θ (N);w)

+ γ(c(N)(θ (N),u)− Ĥ(N)(θ (N),u;w))
(21)

where Ĥ(N)
(θ (N);w) := minu Ĥ(N)(θ (N),u;w).

Then a gradient descent algorithm to learn the weights is:

d
dt

w(t) =−1
2

α(t)∇wE 2(θ (N)(t),u(t);w(t)) (22)

where α(t) is the learning rate and u(t) is chosen to explore
the state-action space. For the convergence analysis of the
Q-learning algorithm, see [9], [7].

Given a learned weight vector w∗, the learned optimal
control policy is given by:

û∗(θ (N);w∗) = argmin
v

Ĥ(N)(θ (N),v;w∗) (23)



E. Information structure

In order to implement the FPF algorithm (15), it is
necessary to know the model for g(θ ,u). The function g(θ ,u)
represents the effect of the control input on the limit cycle.
However, it is numerically observed that the control input
has negligible effect on the limit cycle solution. Thus, in the
simulation results presented next, the term εg(θ i(t),u(t)) is
ignored.

In the Q-learning algorithm, the generator Du is approxi-
mated numerically as

DuĤ(N)
(θ (N)(t))≈ Ĥ(N)

(θ (N)(t +∆t))− Ĥ(N)
(θ (N)(t))

∆t

where ∆t is the discrete time step-size and {θ i(t)}N
i=1 is the

state of the oscillators at time t.
The function Fψ(θ(t),u(t)) that appears in the cost function

is numerically approximated as

Fψ(θ(t),u(t)) = ψ̇(t)≈ ψ(t +∆t)−ψ(t)
∆t

where ∆t is the discrete time step-size in the numerical algo-
rithm and ψ(t) is available through a (black-box) simulator,
that simulates the dynamics (4) and (5).

F. Distributed aspect of the architecture

The FPF algorithm (15) is simplified to n−1 independent
filters as follows. By ignoring the εg(θ ,u) term in (12), the
evolution of the each component θ j ∈ [0,2π] of the n− 1
dimensional phase variable θ ∈ [0,2π]n−1 becomes indepen-
dent of each other. Moreover, the observation functions h j(·)
for j = 1, . . . ,n−1 in the sensor model (10) are independent
of each other, in the sense that h j(·) is a function of only
θ j. Therefore, the posterior distribution of the phase variable
θ is the product of n− 1 independent distributions for θ j.
With independent posterior distribution, the j-th gain function
K j(θ , t) ∈ Rn−1 in the FPF algorithm (15) takes the form
K j(θ , t) = (0, . . . ,0,K j, j(θ j, t),0, . . . ,0) ∈ Rn−1. As a result,
the FPF algorithm is decomposed to n−1 independent filters.
The evolution of particles {θ i

j(t)}N
i=1 for the j-th filter is

dθ
i
j(t) = ω

i dt

+
K j, j(θ

i
j(t), t)

σ2
W

◦

(
dZ j(t)−

h j(θ
i
j(t),r j(t))+ ĥ j(t)

2
dt

)
(24)

Therefore, the FPF algorithm for each joint is simulated
independently from the other FPFs for other joints, in a
distributed manner as shown in Figure 1.

The learned control input is also designed to take distributed
structure, in the sense that the control input to each link
depends only on the phase variable of its adjacent joints.
The distributed structure is enforced by a careful selection
of basis functions for the Hamiltonian in (20). The selected

Algorithm 1 The proposed numerical algorithm
Input: A simulator for (4)-(5)-(6).
Output: Optimal control policy û∗(θ (N);w).
1: Initialize weight vector w0

2: Initialize particles
{
{θ i

j(0)}N
i=1

}n−1

j=1
∼ Unif([0,2π]);

3: for the k = 1 to nT
2π

ω0∆t do
4: Choose control input u(k) according to (27);
5: Input u(k) to simulator and output Z(k),ψ(k);
6: for the j = 1 to n−1 do
7: Compute ĥ j(k) = 1

N ∑
N
i=1 h j(θ

i
j(k),r j(k)) and

∆Z j(k) = Z j(k+1)−Z j(k)
8: Update the weights for observation model

r j(k+1) = r j(k)+αh
[
∆Z j(k)− ĥ j(k)∆t

] 1
N

N

∑
i=1

φh(θ j(k)i)

9: Update the particles

θ
i
j(k+1) = θ

i
j(k)+ω

i
∆t

+
K j, j(θ

i
j(k),k)

σ2
W

(∆Z j(k)−
h j(θ

i
j(k),r j(k))+ ĥ j(k)

2
∆t)

10: end for
11: Compute cost c(k) = ψ(k+1)−ψ(k)

∆t + 1
2ε
‖u(k)‖2

2
12: Compute Bellman error

E (k) = DuĤ(N)
(k)+ γ(c(k)− Ĥ(N)(θ (N)(k),u(k);w(k)))

13: Update weight w(k+1) = w(k)−∆tαE (k)∇wE (k)
14: end for
15: Output the learned control û∗(θ (N);w(k)) from (23).

basis functions consist of three groups:

group 1: {Φ(θ j)}n−1
j=1

group 2: {u jΦ(θ j),u j+1Φ(θ j)}n−1
j=1

group 3: {1
2

u2
j}n

j=1

(25)

where Φ(ϑ) = (Φ1(ϑ), . . . ,ΦMF (ϑ)) is a vector of selected
Fourier basis functions (e.g Φ(ϑ) = (sin(ϑ),cos(ϑ))). With
this particular form of basis functions, the j-th component
of the learned control input (23) takes the following form:

û∗j(θ
(N),w∗) =

1
N

N

∑
i=1

MF

∑
m=1

a j,mΦm(θ
i
j)+b j,mΦm(θ

i
j−1) (26)

where the constants a j,m and b j,m depend on the value of
optimal weight vector w∗, and the convention b1,m = an,m = 0
is assumed, for m = 1, . . . ,MF . According to the formula (26),
the control input to j-th link, only depends on the phase of the
adjacent joints θ j and θ j−1. The overall numerical procedure
is summarized in Algorithm 1.

IV. NUMERICS

The following numerical results are for the snake robot with
n = 5 links. The numerical results are based on Algorithm 1.
The simulation parameters are tabulated in Table I.



TABLE I
PARAMETERS FOR NUMERICAL SIMULATION

Parameter Description Numerical value

Sensor & FPF
∆t Discrete time step-size 0.02
σW Noise process std. dev. 0.1
N Number of particles 100
δ Heterogeneous parameter 0.05

Q-learning
ne number of episodes 200
nT number of periods in each episode 10
ε Control penalty parameter 10.0
γ Discount rate 0.50
α Learning gain for Q-learning 0.01
αh Learning gain for observation model 0.01
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Fig. 4. The time-trace of the weights for learning the observation model
according to (14).

A. Learning the observation model and FPF

The observation signal y j(t) := (Z j(t + ∆t)− Z j(t))/∆t,
for j = 1,2,3,4 is depicted in Figure 5. The signal is
generated according to (6), with observation function taken
as h̃ j(x j, ẋ j) = x j. The noise strength σw = 0.1.

The Fourier basis functions used to approximate the
observation function according to (13) are

φh(ϑ) = (sin(ϑ),sin(2ϑ),cos(2ϑ))

Including the cos(ϑ) in the basis functions is redundant
because of the degeneracy in defining the phase.

The gradient descent algorithm (14), to learn the weights r j,
and the FPF algorithm (24), for the j-th joint are simulated,
for j = 1,2,3,4. The time-trace of the weights r j(t), and the
trajectory of particles θ i

j(t), are depicted in Figure 4 and 6
respectively.

The performance of the observation model learning algo-
rithm and the FPF algorithm is observed in Figure 5. The
figure includes three signals: (i) The noisy measurements
y j(t); (ii) the value h̃ j(x j(t), ẋ j(t)) = x j(t); (iii) and the
approximation ĥ j(t) = 1

N ∑
N
i=1 h j(θ

i
j(t),r j(t)), which involve

the learned wights r j(t) and the particles {θ i
j(t)}N

i=1. It is
observed that the approximation ĥ j(t) converges to the exact
value h j(x j(t), ẋ j(t)), as the learning for the weights converge
and particles become synchronized.

Fig. 5. The figure contains three signals: (i) y j(t): the noisy observation
signal from the observation model (6) where y(t) = (Z(t +∆t)−Z(t))/∆t;
(ii) The exact observation signal h̃ j(x j(t), ẋ j(t)) = x j(t); (iii) and the
approximation ĥ j(t) = N−1

∑
N
i=1 h j(θ

i
j(t),r j(t)).

Fig. 6. Time trace of N = 100 particles for the four independent FPF
algorithm (24). The empirical distribution of the particles for the j-th FPF
approximates the posterior distribution of the phase variable corresponds to
the j-th joint of the 5-link system.

B. Q-learning

The Q-learning algorithm is simulated for 200 episodes.
Each episode starts with random initialization of the state,
and continues for nT = 10 periods.

The basis function used to approximate the Hamilto-
nian in (20) are chosen according to (25) with Φ(ϑ) =
(cos(ϑ),sin(ϑ),cos(2ϑ),sin(2ϑ)).

The weights for the 1
2 u2

j basis function are initialized ran-
domly with uniform distribution Unif([0.09,0.11]). The rest
of the weights are initialized according to Unif([−0.1,0.1])

For the purpose of exploration, the control input u(t) to
be used in (22) is chosen as a combination of sinusoidal
functions with irrational frequencies as follows:

u j(t) = Asin(
√

2ω0t +
jπ
5
)+Asin(πω0t +

jπ
5
) (27)

for j = 1, . . . ,5 where A = 0.5. The rationale for choosing
such control input is to explore the state-action space, which
is essential for convergence of the Q-learning [1].

The L2-norm of the point-wise Bellman error (21), averaged
over the j-th episode, is defined according to

e j :=
1

nT T

∫ jnT T

( j−1)nT T

∣∣∣E (θ (N)(t),u(t);w(t))
∣∣∣2 dt (28)
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Fig. 7. Summary of the Q-learning algorithm result: Average Bellman error
defined in (28) versus episode number.

The average Bellman error e j as a function of episode is
depicted in Figure 7. The decrease in the Bellman error
implies that the algorithm is able to learn the Hamiltonian
function that solves the approximate dynamic programming
fixed-point equation (19).

Figure 8(a) depicts the learned control input û∗(θ (N)(t),w∗)
evaluated according to (26) . Figure 8(b) depicts the resulting
global displacement rCM(t) and the global orientation ψ(t),
driven with the learned control input. It is observed that
the learned control input induces net change in the global
orientation and turn the snake robot clockwise.

V. CONCLUSIONS AND FUTURE WORK

A bio-inspired framework for learning a sensorimotor
control of locomotion is introduced and illustrated with a
planar coupled rigid body model of a snake robot. The
framework does not require knowledge of the explicit form
of the dynamics and the observation models.

Although the filtering and control are implemented in a
distributed manner, the Q-learning algorithm is centralized.
A possible direction of future work is to implement the
learning in a distributed way, so that the overall architecture
becomes fully distributed. Another direction for future work
is to extend the current framework to continuum rod type of
models, motivated by applications in soft-robotics.

APPENDIX

A. Derivation of the dynamic model

The dynamic equations are derived from Lagrangian
mechanics approach. The Lagrangian L = E(q, q̇)−V (q) is
the difference between kinetic energy E(q, q̇) and potential
energy V (q), given by:

E(q, q̇) =
1
2

mṙ2
CM +

1
2

q̇T I(q)q̇ , V (q) =
n−1

∑
j=1

1
2

κ j(q j−q j+1)
2

where m = ∑
n
i= j m j is the total mass of the system, and I(q)

is the inertia matrix. The Euler-Lagrange equation is,

d
dt
(

∂L
∂ q̇

)− ∂L
∂q

= f gen (29)

TABLE II
MODEL PARAMETERS FOR THE N-LINK SYSTEM

Parameter Description

m j Mass of link j
J j Moment of inertia of link j
2l j Length of link j
ct, j friction coefficient tangent to link j
cn, j friction coefficient normal to link j

κ j Torsional spring coefficient at joint j
ζ j Viscous friction coefficient at joint j

τ j Input torque amplitude at joint j
ω0 Input torque frequency
σw Noise process std. dev.
ε Control penalty parameter

Numerical values

m j = 1.0, J j = 1/3, l j = 1.0, ct, j = 0.1, cn, j = 0.5
κ j = 3.0, ζ j = 0.1 for j = 1,2,3,4

τ0 = [2.0,1.1,1.0,2.0], ω0 = 1.0, σ2
w = 0.1, ε = 10.0

where f gen ∈ Rn+2 are the generalized forces. Generalized
forces are defined by δW = δq f gen where δW is the virtual
work done by nonconservative forces, under infinitesimal
variation δq. Nonconservative forces include actuator torques,
viscous friction at each joint, and friction force with surface.

Considering generalized forces, the equations of motion
are succinctly expressed as,

I(q)q̈+C(q)q̇
2 + κ̃q = DT

τ− ζ̃ q̇−Rqqq̇−Rqr ṙCM

d
dt
(mṙCM) =−Rrr ṙCM−RT

qrq̇
(30)

where τ = [τ1, . . . ,τn−1] are the actuator torques, κ̃ is the
stiffness matrix, and ζ̃ is the friction coefficient matrix. The
terms involving Rqq,Rqr,Rrr arise due to friction with the
surface. The matrix D ∈ Rn−1×n is the difference operator.
These parameters are tabulated in Table III. A detailed
derivation of the equations of motion appears in [8].
Shape dynamics: The coordinate transformation (x,ψ)↔ q
is given by [

x
ψ

]
=

[
D

1
n eT

]
q⇒ q =

[
D+ e

][ x
ψ

]
(31)

where e = [1, . . . ,1]T ∈Rn, and D+ = DT (DDT )−1. Then the
dynamic equation for the shape variable x is,

ẍ = (DI−1
(x) DT )(τ−κx−ζ ẋ)

+DI−1
(x) (−C(q)q̇

2−RqqD+ẋ−Rqqeψ̇−Rqvv)
(32)

where I(x) := I(q(x)). This is the explicit form of the second
order ode in (4).
Group dynamics: Define the total angular momentum µ =
eT I(q)q̇, and the group velocity v = R(ψ)T ṙCM where R(ψ) =[

cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

]
is the rotation matrix. The dynamics
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Fig. 8. Summary of control results: (a) The learned control input (26) from the Q-learning algorithm; (b) Time trace of the global displacement
rCM = (xCM,yCM) and the global orientation ψ in open-loop manner (u(t) = 0), and using the learned control input.

TABLE III
AUXILIARY PARAMETERS FOR THE N-LINK SYSTEM

M = diag(m j), J = diag(J j), L = diag(l j),

Cn = diag(cn, j), Ct = diag(ct, j)

[D]n−1×n s.t [Dx] j = x j− x j+1, [A]n−1×n s.t [Ax] j = x j + x j+1

D+ = DT (DDT )−1 e = [1, . . . ,1]T

κ = diag(κ j), ζ = diag(ζ j), κ̃ = DT κD, ζ̃ = DT ζ D

H = LAT (DM−1DT )−1AL, B = M−1DT (DM−1DT )−1AL

cq = cos(q j), sq = sin(q j)

[I(q)]i j = Hi j cos(qi−q j)+ Ji j [C(q)]i j = Hi j sin(qi−q j)

[Bs]i j = Bi j sin(qi−q j) [Bc]i j = Bi j cos(qi−q j)

Rqq = BT
s MCt Bs +BT

c MCnBc +CnJ

Rqv1 = BT
s MCt cq−ψ −BT

c MCnsq−ψ

Rqv2 = BT
s MCt sq−ψ +BT

c MCncq−ψ

Rvv = cT
q−ψ MCt cq−ψ + sT

q−ψ MCnsq−ψ

Rv2v2 = sT
q−ψ MCt sq−ψ + cT

q−ψ MCncq−ψ

Rv1v2 = sT
q−ψ M(Ct −Cn)cq−ψ

Rqr = RqvRT (ψ), Rrr = R(ψ)RvvRT (ψ)

for these two variables are
dµ

dt
=−eTRqqeψ̇− eTRqvv− eTRqqD+ẋ

dmv
dt

=−m
[

0 −ψ̇

ψ̇ 0

]
v−Rvvv−Rvqeψ̇−RvqD+ẋ

(33)

Assuming the inertial terms are negligible, a first order ode
is obtain for the evolution of the group variables (rCM,ψ):

d
dt

[
ψ

R(ψ)T rCM

]
=−

[
eTRqqe eTRqv
Rvqe Rvv

]−1 [eTRqq
Rvq

]
D+ẋ

(34)

This is the first order ode that appears in (5).
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