
Measuring Similarity of Interactive Driving Behaviors Using Matrix
Profile

Qin Lin1, Wenshuo Wang2, Member, IEEE, Yihuan Zhang3, and John M. Dolan1, Senior Member, IEEE

Abstract— Understanding multi-vehicle interactive behaviors
with temporal sequential observations is crucial for autonomous
vehicles to make appropriate decisions in an uncertain traffic
environment. On-demand similarity measures are significant for
autonomous vehicles to deal with massive interactive driving
behaviors by clustering and classifying diverse scenarios. This
paper proposes a general approach for measuring spatiotem-
poral similarity of interactive behaviors using a multivariate
matrix profile technique. The key attractive features of the
approach are its reduced space and time complexity, real-
time online computing for streaming traffic data, and possible
capability of leveraging hardware for parallel computation.
The proposed approach is validated through automatically
discovering similar interactive driving behaviors at intersections
from sequential data.

I. INTRODUCTION

One of the biggest challenges for deploying autonomous
vehicles (AVs) in real life is the requirement of the AVs’
capability to interact with surrounding road users. Classify-
ing diverse scenarios and separately designing appropriate
decisions using on-hand prior knowledge is unfortunately
not realistic [1]–[4] because of the diversity of scenarios
that are far larger and messier than human beings can cope
with. A driving encounter is referred to as a scenario where
two or multiple vehicles are spatially close to and interact
with each other when driving [5]. Intelligent analysis of
massive and diverse encounter scenarios is helpful for AVs
to make corresponding decisions, for example, at unsignal-
ized intersections [6]. There are two types of approaches
to achieve this: model-based and model-free. The model-
based approaches attempt to learn generative models for
heterogeneous driving encounters from human driving data
[1], [7]. Alternatively, the proposed model-free approach in
this work tries to group homogeneous driving encounters in
an unsupervised fashion. The advantage of the model-free
approach is that there is no need for explicitly modelling
underlying complex human driving behaviors.

Driving encounters are essentially multi-vehicle interac-
tion behaviors, which can be described using their trajec-
tories. Therefore, they can be represented as multivariate
time series. Time series analysis techniques are popular tools
for mining and analyzing trajectories, as reviewed in [8].

1Qin Lin and John Dolan are with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA 15213, USA
qinlin,jdolan@andrew.cmu.edu

2Wenshuo Wang is with the California Partners for Advanced Transporta-
tion Technology (PATH), University of California, Berkeley, CA 94570.
He was with Carnegie Mellon University, Pittsburgh, PA 15213, USA.
wwsbit@gmail.com

3Yihuan Zhang is with Tsinghua Automotive Research Institute (Suzhou),
China. 13yhzhang@tongji.edu.cn

Unfortunately, most of the existing work focus on single
trajectories, rather than multi-vehicle interactive trajectories,
see [9]–[11]. For instance, Yao [12] et al. clustered a group
of single-driver behaviors such as left turn with multivari-
ate observations (i.e., speed, acceleration, yaw rate, and
sideslip angle of the driver) as the clustering index. Dynamic
time warping (DTW) techniques were used to measure the
similarity between drivers. Niu [13] et al. developed an
efficient clustering algorithm to group several single-vehicle
trajectories for road network recognition.

Different from the task of clustering a bunch of single-
vehicle trajectories, the fundamental challenges in clustering
a bunch of multi-vehicle trajectories is how to measure
the similarity between interactive behaviors. In this paper,
we first propose a distance metric for measuring the sim-
ilarity between two driving encounters. Then, we further
formulate and solve a top-k query problem – “Given a
driving encounter, are we able to find the k most similar
driving encounters?”. We also develop classification and
clustering methods based on the similarity. Note that in
this paper we mainly emphasize the developed time-series
similarity measure and validate it through investigating pair-
wise interactive driving behaviors at intersections, since one
driving encounter is a multivariate time series encoding all
information on two vehicles’ trajectories. We apply and
extend the matrix profile techniques to efficiently measure
similarity between two driving encounters, i.e., two multi-
variate time series [14]–[16]. Intuitively, two time series are
similar if they have substantial similar subsequences. The
significance of matrix profile is that it uses a novel represen-
tation to efficiently store and compute the nearest neighbour
of each subsequence in two time series. Unfortunately, the
existing matrix profile work focuses more on univariate time-
series data. A new related work [17] indeed discusses the
problem of discovering motifs in multivariate time series.
However, it aims at finding patterns in one single multivariate
sequence, rather than measuring similarity between a pair of
multivariate and unequal-length time series.

This work makes the following contributions:

1) It extends the matrix profile techniques to solve the
pair-wise multivariate time series similarity measure
problem;

2) It proposes an online variant of the multivariate matrix
profile method for streaming data;

3) It is applied to find similar interactive driving behaviors
in real-world traffic environments.

The rest of the paper is organized as follows. Section

ar
X

iv
:1

91
0.

12
96

9v
3

 [
cs

.L
G

]
 1

1
M

ar
 2

02
0

II introduces preliminary definitions as background mate-
rials. Section III introduces data description and data pre-
processing. Section IV details our developed new algorithms.
Section V shows the experimental results, followed by the
conclusive remarks and future work in Section VI.

II. PRELIMINARIES AND DEFINITIONS

Definition 2.1: Time series: A multivariate time series
T ∈ Rn×d is a sequence of real-valued vectors ti: T =
[t1, t2, . . . , tn], where n is the length of T , and d is the
dimension of variables in each vector. A univariate time
series is represented by a non-bold symbol T .

Definition 2.2: Subsequence: A subsequence Ti,l (or sim-
plified as Ti) of T is a continuous subset of the vectors
from T of length l, starting from position i; for example,
Ti = [ti, ti+1, . . . , ti+l−1], where 1 ≤ i ≤ n − l + 1. A
univariate subsequence is represented by Ti.

The first advantageous feature of matrix profile is its light-
weight representation for storing two time series’ relative
distance. The most straightforward way to measure the
distance of two time series A and B is using a |A| × |B|
size matrix, where the element dist(Ai,Bj) in the matrix is
the distance between the subsequence Ai from time series
A and the subsequence Bj from time series B. Note that
|A| and |B| are the number of subsequences of A and
B, respectively. Such a method of storage has a low space
efficiency for long time series: even taking into account the
symmetry of the matrix, the size is only reduced by half. The
second significance of matrix profile is its high efficiency of
computing the distance between two subsequences by using
a fast Fourier transform (FFT). In the following, we will
introduce the notations of matrix profile, matrix profile index,
and their learning algorithms in detail.

Definition 2.3: Similarity join set: Given all subsequence
of A and B, a similarity join set JAB for A and B is a set
containing pairs of each subsequence in A and its nearest
neighbor in B: JAB = {〈Ai,Bj〉 |θ1nn(Ai,Bj)}, denoted
as JAB = A ./ B, where θ1nn(Ai,Bj)} is Boolean
function which is TRUE if Bj is the nearest neighbor of
Ai.

Definition 2.4: Matrix profile: A matrix profile PAB is a
vector of the Euclidean distance, where each value of the
vector is the distance of each pair in JAB .

Definition 2.5: Matrix profile index: A matrix profile in-
dex IAB of a similarity join set JAB is a vector of integers,
where IABi = j if Ai,Bj ∈ JAB . The matrix profile index
stores the information that for Ai the index of its nearest
neighbor in B is j.

Fig. 1 illustrates how to compute the matrix profile and
the matrix profile index. The i-th row of the matrix is the
distance between i-th sliding window (subsequence) of B
(length M) over all subsequences of A (length N). Every
row is called a distance profile.

Each element in the matrix profile (the second row from
the bottom in Fig. 1) is the minimum value of the correspond-
ing column. The matrix profile index (the bottom row in Fig.
1) vector stores the indexes of these minimum values. Note

…

…

…d2,1

d1,1

…

…

… dM-l+1,N-l+1

…

d2,N-l+1

…

……

……

di,1

…

di,j

…

dM-l+1,1

…

…

d1,N-l+1

…

…

di,N-l+1…

…

…

Time series B (length M)

…P1 … Pi PN-l+1

min(D1) min(Di) min(DN-l+1)

I1 …Ii… IN-l+1

Time series A (length N)j-th

i-th

Matrix profile

Matrix profile index

Fig. 1. Matrix profile of two time series.

that the length of the matrix profile and the matrix profile
index are both N − l + 1, where l is the length of each
subsequence.

III. DATASET DESCRIPTION AND PREPROCESSING

The dataset used in this work is the released part of the
datasets collected under the University of Michigan Safety
Pilot Model Development (SPMD) program [18], [19]. The
data were collected at a sampling frequency of 10 Hz. The
dataset for the multi-vehicle interaction analysis used in
this work is from the dedicated short-range communication
(DSRC) devices mounted on the vehicles. One driving en-
counter in this paper is essentially the trajectories from two
spatially close vehicles, i.e., the GPS devices start to record
a pair of interacting vehicles’ trajectories when their relative
distance is smaller than roughly 100 meters. One driving
encounter is a time series of size n× 6, where the features
are speed of vehicle #1, latitude of vehicle #1, longitude
of vehicle #1, speed of vehicle #2, latitude of vehicle #2,
longitude of vehicle #2. The data are collected from three
intersections of Michigan City.

Note that the variation of the longitude and the latitude
values at an intersection is small. To better analyze the behav-
iors, we amplify the position information by transferring the
longitude and the latitude into relative distance (unit: meter)
from reference positions. In each intersection, the reference
position is the spot with the minimum longitude value and the
minimum latitude value among all trajectories in the dataset.
As a result, the original features are transformed into the
speed of vehicle #1 (v1), the relative latitude distance of
vehicle #1 (y1), the relative longitude distance of vehicle #1
(x1), the speed of vehicle #2 (v2), the relative latitude dis-
tance of vehicle #2 (y2), and the relative longitude distance
of vehicle #2 (x2).

IV. PROPOSED METHODOLOGY

Algorithm 1 shows how to compute a distance profile
given a time series subsequence and another complete time

Algorithm 1 Multivariate distance profile computation:
Input: A multivariate query Q (e.g., one subsequence of

time series B in Fig. 2) and a time series T (e.g.,
time series A in Fig. 2)

Output: A distance profile D of Q over T
1 Initialize D as a zero vector
2 for all dimension d do
3 QT i := sliding dot product(Qi, T i);
4 µi

Q, σ
i
Q,M

i
T ,Σ

i
T := compute mean std(Qi, T i);

5 Di = compute distance profile(Qi, T i,QT i,
µi
Q, σ

i
Q,M

i
T ,Σ

i
T);

6 D = D + Di

7 end
8 D = D

d
9 Return D

series, i.e., how to get a row as shown in Fig. 1. Instead of
directly computing the Euclidean distance, the algorithm first
conducts a sliding dot product operation to obtain the inner
products using an FFT (line 3). Second, the mean and the
standard deviation of the subsequence and the time series are
computed (line 4). Last, computing the Euclidean distance
from the dot product by compute distance profile uses the
following formula (line 5):

Di
j =

√√√√2l

(
1−

QT i
j − lµi

QM
i
T j

lσi
QΣi

T j

)
(1)

The line 6 inside the for loop states that the algorithm
computes a distance profile for each dimension and combines
them into a multivariate distance profile. The efficiency
is significantly improved compared with the brute-force
computation of the Euclidean distance. The details will
be discussed in the following algorithms and complexity
analysis subsections.

A. Multivariate STAMP

In this paper, we extend the STAMP (Scalable Time series
Anytime Matrix Profile) algorithm [14] to the multivariate
version, hereafter referred to as MUSTAMP. MUSTAMP
randomly selects one row of the matrix (as shown in Fig.
1) in each iteration, computes the corresponding distance
profile, and updates the minimum values and the index
into the matrix profile and the matrix profile index. Note
that the matrix as shown in Fig. 1 is only for illustration
purposes. It is not necessary to store such a large matrix,
because MUSTAMP can continuously maintain and update
the minimum values and index in every iteration.

Complexity analysis for MUSTAMP: As shown in Equa-
tion 1, computing the mean and the standard deviation can be
achieved with O(1) time complexity [20]. So the dominant
term of the complexity is from sliding dot product, of
which the complexity is O(n log n) instead of O(nl) for
a brute-force solution, where n is the length of the time
series (or the longest length of two time series A and B).

… ti+l-1ti+1ti

tj+l-1…tj+1tj

ti+l…ti+2ti+1

tj+l…tj+2tj+1

delete add

SDP(Ti, Tj) SDP(Ti+1, Tj+1)

Fig. 2. The relation of two adjacent dot products of MUSTOMP

The difference is more significant for a larger subsequence
length l. Since we need to obtain n multidimensional distance
profiles (i.e., n rows in Fig. 1), the overall complexity is
O(dn2 log n). Ref. [14] shows that the empirical runtime
for computing a distance profile is roughly O(n) instead of
O(n log n) owing to the well-optimized FFT in many pro-
gramming platforms, therefore the overall empirical runtime
would be roughly O(dn2).

B. Multivariate STOMP

As discussed before, the STAMP algorithm randomly
selects a row in the matrix shown in Fig. 1 in each
iteration. In addition, the computations of different rows
are independent. Ref. [15] discovers that actually any two
adjacent rows’ distance profiles have a relation. We extend
the results and implement a multivariate version of STOMP,
hereafter referred to as MUSTOMP. The key idea is that once
we operate a sliding dot product between two multivariate
subsequences to obtain SDP (Ti,Tj), we can incrementally
compute SDP (Ti+1,Tj+1) using the following formula:

SDP (Ti+1,Tj+1) = SDP (Ti,Tj)−
d∑

k=1

tki t
k
j

+

d∑
k=1

tki+l−1t
k
j+l−1 (2)

Fig. 2 illustrates that realization from SDP (Ti,Tj) to
SDP (Ti+1,Tj+1) just needs to remove the product titj (the
red block, i.e.

∑m
k=1 t

k
i t

k
j) and add the product ti+l−1tj+l−1

(the black block, i.e.,
∑m

k=1 t
k
i+l−1t

k
j+l−1). The remaining

products are kept without the need of recomputing.
Complexity analysis of MUSTOMP: According to the

relation between SDP (Ti,Tj) and SDP (Ti+1,Tj+1), for
the one-dimensional case, we can obtain the distance profile
in O(n) time complexity instead of STAMP’s O(n log n).
For the multivariate case, the overall complexity is O(dn2).

C. Online Learning Algorithm of MUSTAMP

The MUSTAMP and MUSTOMP algorithms are essen-
tially both for batch learning. Batch learning means that we
need to see the entire time series A and B before computing
the matrix profile. However, in practice, we usually only
see the incomplete interactive behaviors, i.e., a part of the
time series. It becomes crucial to have an online incremental
variant of the algorithm, which is capable of updating the
matrix profile by taking care of the new arriving data points
rather than restarting from scratch.

……

……

…

…

di,1

…

…

…

…

…

…

dM-l+1,N-l+1

… di,j

…

d2,1

… …

…

d1,1

di,N-l+1

… …

…

dM-l+1,1

…

d1,N-l+1
d2,N-l+1

Time series B (length M+1)

…… PN-l+1…P1

min(D1) min(Di) min(DN-l+1)

I1 … IN-l+1I2 …

dM-l+2,1 … … dM-l+2,N-l+1…

dM-l+1,N-l+2

…

di,N-l+2

dM-l+2,N-l+2

d2,N-l+2

d1,N-l+2

…

PN-l+2

IN-l+2

New datum (window)

New datum (window)

min(DN-l+2)

Time series A (length N+1)

Fig. 3. Online maintenance of matrix profile. Compared with the matrix
shown in Fig. 2, the size of the distance profiles in the rows and the columns
is growing with the newly arrived data.

Fig. 3 illustrates the idea of the incremental maintenance
for a matrix profile. Compared to the matrix profile we
already have (see Fig. 1) for the data we have seen so far, we
have two new data points of time series A and B, i.e., two
sliding windows. The red row dM−l+2,1 · · · dM−l+2,N−l+2

is the new distance profile about the new sliding win-
dow of time series B over time series A. Similarly, the
new red column is the new distance profile about the
new sliding window of time series A over time series
B. The matrix profile P1 · · ·PN−l+1 and the matrix index
I1 · · · IN−l+1 both get updated since we have the new vector
dN−l+2,1 · · · dN−l+2,N−l+1. We also need to append new
items PN−l+2 and IN−l+2 according to the minimum value
and its index of the new column.

D. Distance measure for top-k query

The matrix profile is a vector storing the subsequential
similarity “fingerprint” of two time series. However, nor-
mally we need a scalar value to represent the distance
between two time series. In the following, we will first
introduce how to “compress” the matrix profile from a vector
to a scalar. Then, the distance metric is plugged into a top-
k query algorithm, see Algorithm 2. The top-k query task
is: given a query time series, how to retrieve the k most
similar time series from a dataset. It is widely used to validate
the robustness of a similarity metric in the time series data
mining area [21], [22].

The algorithm first sets up the linkages for the query
time series T [i] (a complete sequence) and other com-
plete time series (complete sequences). Note that to save
the computation time, we only compute the distance for-
wards: T [1] with T [2] until T [N]; then T [2] with T [3]
until T [N]. distance(T [2],T [1]) is obviously equal to
distance(T [1],T [2]) without another redundant computa-
tion. Line 4 is the formula for the transformation from the
matrix profile to the scalar distance value. Intuitively, two
time series are similar if the values of the matrix profile are

Algorithm 2 top-k query algorithm:
Input: All time series in the dataset (number of time series:

N), threshold thr
Output: top-k most self-exclusively similar time series for

each time series
1 for i in range(1, N) do
2 for j in range(i+ 1, N) do
3 linkage(i, j) = MUSTA/OMP (T i,T j); //

MUSTA/OMP means MUSTAMP or MUSTOMP
4 distance(i, j) = 1− 2×# of elements in linkage(i,j)<=thr

|T i|+|T j | ;
5 distance(j, i) = distance(i, j);
6 end
7 sorted distance(i, ·), and select k self-exclusive time

series with the smallest distance values.
8 end
9 Return top-k query for each time series

small, i.e., for any subsequence A, its relative distance to
the nearest neighboring subsequence in B is always small.
Namely, they have substantial similar subsequences. The
number of elements in linkage(i, j) <= thr in the numer-
ator is the number of significantly similar subsequences. A
larger number implies a small distance value. The distance
value varies from 0 to 1.

One disadvantage of the original matrix profile algorithm
is the asymmetry problem, i.e., JAB 6= JBA and PAB 6=
PBA. The asymmerty property will be problematic when we
compute the distance between the time series T [i] and T [j],
because intuitively we want distance(i, j) = distance(j, i).
To make a deterministic computation, we deal with the
problem by checking the following different conditions:

1) when |T [i]| < |T [j]|, linkage(i, j) =
MUSTA/OMP (T [i],T [j]);

2) when |T [j]| < |T [i]|, linkage(i, j) =
MUSTA/OMP (T [j],T [i]);

3) when |T [j]| == |T [i]|, we com-
pute MUSTA/OMP (T [i],T [j]),
MUSTA/OMP (T [j],T [i]), and their corresponding
distance. The final distance(i, j) is the average value.

Line 7 in Algorithm 2 sorts all neighborhood time series and
selects the top-k nearest neighborhoods.

V. EXPERIMENTAL RESULTS

This section discusses the experimental details about how
to apply the algorithms to deal with the similarity measure
for driving encounters. However, our proposed algorithm is
general enough to deal with other interactive behaviors, such
as vehicle-pedestrian and vehicle-cyclist interactions.

A. Top-k Driving Encounter Query Using MUSTAMP

The subplot (a) in Fig. 4 is from a driving encounter in
which vehicle 1 is stopping and waiting to proceed while
vehicle 2 is moving from the west to the east. Our algorithm
finds the top-3 most similar interactive behaviors (b, c, and
d) from the dataset. We can observe that owing to the
normalization, the algorithm can generalize to the topological

0 50 100 150 200 250 300

x (m)

0

50

100

150

200

y
 (

m
)

vehicle 1

vehicle 2

(a) query driving encounter

0 50 100 150 200 250 300

x (m)

0

50

100

150

200

y
 (

m
)

(b) top-1 most similar encounter

0 50 100 150 200 250 300

x (m)

0

50

100

150

200

y
 (

m
)

(c) top-2 most similar encounter

0 50 100 150 200 250 300

x (m)

0

50

100

150

200
y
 (

m
)

(d) top-3 most similar encounter

Fig. 4. An example of the top-k query for finding the top-k most similar
encounters. The blue star and the red star indicate the starting positions of
the two trajectories. The distance of a&b, a&c, a&d are 0.0728, 0.0763, and
0.1415, respectively.

20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1
matrix profile

threshold

Fig. 5. Distance metric example

minor behaviors, i.e., having vehicle 1 on the left-hand side
and the right-hand side of vehicle 2 are recognized as similar
behaviors.

Fig. 5 shows an example of how to compute the distance
value from a matrix profile (line 4 in Algorithm 2) for the
encounters (a) and (b). First, we compare the matrix profile
with the threshold and get the number in the numerator
2*121=242. The denominator is the sum of the two series’
subsequence number 261, and the final distance value is
therefore 1− 242

261 = 0.0728.

B. Online Convergence Evaluation

The example used for evaluating the online version of
MUSTAMP is again from the two encounters (a) and (b) in
Fig. 5. The length of A and B are 140 and 159, respectively.
We first calculate the matrix profile from A(1 : 100) and
B(1 : 119) by assuming that they have been observed, then
using the online learning algorithm to compute the remaining
40 data points. Intuitively, the matrix profile will converge
to the batch learning for A(1 : 140) and B(1 : 159). Fig. 6
shows the convergence result. The y-axis value is the mean

0 10 20 30 40 50

Number of new observations

0

0.05

0.1

0.15

0.2

0.25

M
ea

n
 s

q
u
ar

e
er

ro
r

Fig. 6. Convergence of incremental maintenance

0 100 200

x (m)

0

50

100

150

200

250

y
 (

m
)

(a)

0 100 200

x (m)

0

50

100

150

200

250

y
 (

m
)

(b)

0 100 200

x (m)

0

50

100

150

200

250

y
 (

m
)

(c)

0 100 200

x (m)

0

50

100

150

200

250

y
 (

m
)

(d)

0 100 200

x (m)

0

50

100

150

200

250

y
 (

m
)

(e)

0 100 200

x (m)

0

50

100

150

200

250

y
 (

m
)

(f)

Fig. 7. Classification of new observations. The distance values between
(d) and (a-c) are 0.05, 1, 1; the distance values between (e) and (a-c) are
1, 1, 0.0950; the distance values between (f) and (a-c) are 1, 0.1863, 1.

square error between the current matrix profile and the matrix
profile of the complete two time series.

C. Classification and Clustering

Classification is a classical task of machine learning for
identifying to which category a new observation belongs.
For AVs, we might have some predefined scenarios as
semantically labelled categories. AVs are able to match
the new observations to the specified categories and take
the corresponding decisions. Fig. 7 shows an example of
classification based on the proposed distance metric. The
first column is from three frequently seen behaviors in the
dataset. Using human interpretation: the (a) scenario has two
cars driving in the same direction at the beginning, but then
the red vehicle turns right at the intersection; in the (b)
scenario, the red car stops while the blue car approaches the
red car and then turns right; in the (c) scenario, the blue car
approaches the intersection while the red car goes straight.
The new observations in the second row are assigned to the
most similar behavior in the first row.

In many cases of practice, we do not know the number
of categories in advance, since human labelling is costly.
Hierarchical clustering is an unsupervised learning approach

to automatically obtain categories according to the similarity
metric. The startpoint is that every driving encounter is a
cluster, and the algorithm continuously merges the two most
similar clusters into a new cluster in each iteration. The
algorithm terminates according to some stopping criterion
such as number of clusters or distance threshold.

D. Run-time Comparison

Table I is the summary of run-times for each intersection
dataset. The n driving encounters would require that the
number of pairs we need to compute the distance is their
permutations C2

n. The average computation cost for one pair
is less than 200 ms. The average computation cost of every
iteration for the online MUSTAMP is around 2 ms, which is
able to handle the streaming traffic data because the sampling
frequency of the data used in this work is 10 Hz, i.e., the
new datum arrives every 100 ms. All the computations are
done on a standard Macpro laptop with an Intel 2.5 GHz i5
core and 8 GB RAM.

TABLE I
RUN-TIME OF MUSTAMP

Intersection C2
n MUSTAMP Runtime (s) MUSTOMP Run-time (s)

1 4851 840.1 191.4
2 14878 1828.6 633.5
3 20503 2618.3 920.4

VI. CONCLUSION

In this paper, we propose a novel distance metric to
measure similarity between two unequal-length multivariate
time series. It has been applied to find similar interactive
behaviors of driving encounters in the top-k query, the
classification, and the clustering tasks. We also developed
an incremental learning variant to handle streaming traffic
data. The framework is general for dealing with other on-road
interactive behaviors such as vehicle-pedestrian and vehicle-
cyclist interactions. In the near future, we will develop a
parallel computation version of our approach to make it more
applicable in real life. The idea is that, for instance, because
the distance profile in MUSTAMP is independent, multi-core
processors can be leveraged to independently compute and
to aggregate all distance profiles to obtain the final matrix
profile.

VII. ACKNOWLEDGMENT

This material is based upon work supported by the United
States Air Force and DARPA under Contract No. FA8750-
18-C-0092. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
United States Air Force and DARPA.

REFERENCES

[1] W. Ding, W. Wang, and D. Zhao, “A multi-vehicle trajectories gen-
erator to simulate vehicle-to-vehicle encountering scenarios,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 4255–4261.

[2] Q. Lin, “Intelligent control systems: Learning, interpreting, verifica-
tion,” Ph.D. dissertation, Delft University of Technology, 2019.

[3] W. Zhang and W. Wang, “Learning v2v interactive driving patterns at
signalized intersections,” Transportation Research Part C: Emerging
Technologies, vol. 108, pp. 151–166, 2019.

[4] Q. Lin, Y. Zhang, S. Verwer, and J. Wang, “Moha: a multi-mode
hybrid automaton model for learning car-following behaviors,” IEEE
Transactions on Intelligent Transportation Systems, vol. 20, no. 2, pp.
790–796, 2018.

[5] W. Wang, A. Ramesh, and D. Zhao, “Clustering of driving scenarios
using connected vehicle datasets,” arXiv preprint arXiv:1807.08415,
2018.

[6] S. Yang, W. Wang, Y. Jiang, S. Zhang, and W. Deng, “What con-
tributes to driving behavior prediction at unsignalized intersections?”
Transportation Research Part C: Emerging Technologies, vol. 108, no.
2019, pp. 100–114, 2019.

[7] Y. Guo, V. V. Kalidindi, M. Arief, W. Wang, J. Zhu, H. Peng, and
D. Zhao, “Modeling multi-vehicle interaction scenarios using gaussian
random field,” arXiv preprint arXiv:1906.10307, 2019.

[8] Z. Feng and Y. Zhu, “A survey on trajectory data mining: Techniques
and applications,” IEEE Access, vol. 4, pp. 2056–2067, 2016.

[9] P. C. Besse, B. Guillouet, J.-M. Loubes, and F. Royer, “Review and
perspective for distance-based clustering of vehicle trajectories,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 11, pp.
3306–3317, 2016.

[10] ——, “Destination prediction by trajectory distribution-based model,”
IEEE Transactions on Intelligent Transportation Systems, vol. 19,
no. 8, pp. 2470–2481, 2017.

[11] M. Y. Choong, L. Angeline, R. K. Y. Chin, K. B. Yeo, and K. T. K.
Teo, “Modeling of vehicle trajectory clustering based on lcss for traffic
pattern extraction,” in 2017 IEEE 2nd International Conference on
Automatic Control and Intelligent Systems (I2CACIS). IEEE, 2017,
pp. 74–79.

[12] Y. Yao, X. Zhao, Y. Wu, Y. Zhang, and J. Rong, “Clustering driver
behavior using dynamic time warping and hidden markov model,”
Journal of Intelligent Transportation Systems, pp. 1–14, 2019.

[13] X. Niu, T. Chen, C. Q. Wu, J. Niu, and Y. Li, “Label-based trajectory
clustering in complex road networks,” IEEE Transactions on Intelli-
gent Transportation Systems, 2019.

[14] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau,
D. F. Silva, A. Mueen, and E. Keogh, “Matrix profile i: all pairs
similarity joins for time series: a unifying view that includes motifs,
discords and shapelets,” in 2016 IEEE 16th international conference
on data mining (ICDM). IEEE, 2016, pp. 1317–1322.

[15] Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. Funning,
A. Mueen, P. Brisk, and E. Keogh, “Matrix profile ii: Exploiting a
novel algorithm and gpus to break the one hundred million barrier
for time series motifs and joins,” in 2016 IEEE 16th international
conference on data mining (ICDM). IEEE, 2016, pp. 739–748.

[16] Y. Zhu, C.-C. M. Yeh, Z. Zimmerman, K. Kamgar, and E. Keogh,
“Matrix profile xi: Scrimp++: time series motif discovery at interactive
speeds,” in 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, 2018, pp. 837–846.

[17] C.-C. M. Yeh, N. Kavantzas, and E. Keogh, “Matrix profile vi: Mean-
ingful multidimensional motif discovery,” in 2017 IEEE International
Conference on Data Mining (ICDM). IEEE, 2017, pp. 565–574.

[18] D. Bezzina and J. Sayer, “Safety pilot model deployment: Test
conductor team report, usdot report no. dot hs 812 171,” 2015.

[19] W. Wang, C. Liu, and D. Zhao, “How much data are enough? a
statistical approach with case study on longitudinal driving behavior,”
IEEE Transactions on Intelligent Vehicles, vol. 2, no. 2, pp. 85–98,
2017.

[20] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh, “Addressing big data time series:
Mining trillions of time series subsequences under dynamic time
warping,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 7, no. 3, p. 10, 2013.

[21] Y. Bu, T.-W. Leung, A. W.-C. Fu, E. Keogh, J. Pei, and S. Meshkin,
“Wat: Finding top-k discords in time series database,” in Proceedings
of the 2007 SIAM International Conference on Data Mining. SIAM,
2007, pp. 449–454.

[22] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme,
“Learning time-series shapelets,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2014, pp. 392–401.

	I Introduction
	II Preliminaries and Definitions
	III Dataset Description and Preprocessing
	IV proposed Methodology
	IV-A Multivariate STAMP
	IV-B Multivariate STOMP
	IV-C Online Learning Algorithm of MUSTAMP
	IV-D Distance measure for top-k query

	V Experimental Results
	V-A Top-k Driving Encounter Query Using MUSTAMP
	V-B Online Convergence Evaluation
	V-C Classification and Clustering
	V-D Run-time Comparison

	VI Conclusion
	VII ACKNOWLEDGMENT
	References

