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Abstract— Set-based computations become increasingly pop-
ular for safety-critical systems to ensure properties of con-
trollers and observers. To efficiently compute various set
operations, one often uses different set representations and
conversions between them. Two popular set representations,
for which scalable conversion algorithms do not yet exist, are
zonotopes and ellipsoids. We provide computational approaches
for all four conversion cases, i.e., overapproximations and un-
derapproximations from zonotopes to ellipsoids and vice versa.
By using upper bounds on the maximum and lower bounds
on the minimum Euclidean norm of a given zonotope, our
approaches have polynomial complexity and thus can be used
for high-dimensional spaces. We show that the tightness of our
approaches directly depends on the tightness of the Euclidean
norm. Numerical experiments demonstrate the usefulness of
our proposed methods.

I. INTRODUCTION

Since the introduction of zonotopes for reachability analy-
sis of discrete-time linear systems [1], they have become in-
creasingly popular for computing reachable states of further
system classes [2]–[5]. While zonotopes are closed under lin-
ear transformations and Minkowski sum, the latter increases
the representation size. In contrast, ellipsoids are not closed
under Minkowski sum; nevertheless, they are used in state
estimation [6], [7] and for the computation of invariant sets
[8], as they provide a very compact representation of high-
dimensional spaces.

For certain applications, conversions between state rep-
resentations might be necessary, e.g., when intersecting an
ellipsoid with a zonotope. In [9], an approach for computing
both the minimum-volume ellipsoid enclosing a polytope
as well as a maximum-volume ellipsoid inscribed in a
polytope is presented. A more sophisticated approach for
computing the minimum-volume enclosing ellipsoid is given
in e.g., [10], while an approximate solution is described in
[11]. However, the computation of minimum-volume and
maximum-volume enclosing ellipsoids requires the availabil-
ity of a vertex representation or a half-space representation,
making it not scalable for many dimensions [12].

Therefore, we propose novel, more scalable approaches
for conversions between ellipsoids and zonotopes. We de-
rive methods to compute overapproximations and underap-
proximations for both conversion directions. Because exact
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methods optimizing the volume of sets are either not avail-
able or require the computation of the half-space or vertex
representation of a zonotope, we investigate approximations
based on the maximum and minimum zonotope norm.

This paper is organized as follows: Sec. II introduces some
notation as well as necessary definitions and basic operations.
We provide new methods for conversions between zonotopes
and ellipsoids for all four cases: First, we present the
enclosing ellipsoid in Sec. III as well as inscribed zonotopes
in Sec. IV as they both are dependent on the maximum
zonotope norm. In Sec. V we present a new method for
inscribing an ellipsoid into a zonotope and enclosing an
ellipsoid by a zonotope, as these tasks are dependent on
the minimum zonotope norm. We conclude with results in
Sec. VI and a summary in Sec. VII.

II. NOTATION AND PRELIMINARIES

Let us denote with N+, R, R+, the set of positive
natural, real and positive real numbers. Sets are denoted by
upper-case caligraphic letters, e.g., A, matrices by upper-
case letters, e.g., A, and vectors and scalars are given by
lower-case letters, e.g., a. Also we require B = {−1, 1}.
Let Wo, o ∈ N+ be the o-ary Cartesian product of a set
W , i.e., Wo = W × · · · × W (o times). A scalar vector
component for a q-dimensional vector v is denoted by vi,
i ∈ {1, ..., q} , q ∈ N+. For a given q-dimensional vector w,
we define for r < q (r, q ∈ N+) w1:r :=

[
w1 · · · wr

]T
.

The i-th column of a matrix Q is denoted by qi. The vector
1 denotes the vector of ones and I the identity matrix,
ei the i-th column of I and 0r×r the r × r zero matrix.
Matrices with no indication of dimension are assumed to be
of the appropriate dimension given the current context. The
trace of two matrices of appropriate dimension is denoted
by 〈A,B〉 = trace

(
ATB

)
. The positive (semi-)definiteness

of a matrix A is denoted by A � (�)0. When talking about
norms, we will assume the Euclidean norm unless stated
otherwise. The absolute value of each component of a vector
x is denoted by |x|. Lastly, whenever the argument y of a
function f (x, y) is irrelevant, we replace it by (·).

Next, we define zonotopes and ellipsoids as well as some
basic operations on them.
Definition 1 (Zonotope)
A full-dimensional zonotope is given by

Z (G, z̄) := {z ∈ Rn | z = Gx+ z̄, |x| ≤ 1} , (1)

where G ∈ Rn×m is the n-dimensional generator matrix
consisting of m generators with n ≤ m and rank (G) = n,
and z̄ ∈ Rn is the center.

https://doi.org/10.23919/ACC45564.2020.9147938


A given zonotope Z can equivalently be
represented using its vertex representation Z ={
z ∈ Rn

∣∣ z ∈ convhull
(
v(1), ..., v(N)

)}
, where v(i) ∈ Rn,

i ∈ {1, ..., N} denotes one of the N vertices of Z and
convhull (·) is the convex hull operation. Alternatively, Z
can also be described using its half-space representation
Z = {z ∈ Rn | Az ≤ b}, A ∈ Rq×n, b ∈ Rq .
Definition 2 (Ellipsoid)
A full-dimensional ellipsoid is defined by

E (E, ē) :=
{
x ∈ Rn

∣∣∣ (x− ē)T E−1 (x− ē) ≤ 1
}
, (2)

where E ∈ Rn is the shape matrix, E � 0, and ē ∈ Rn is
the center.

Note that from Def. 2, we can conclude that the shape
matrix E always has an inverse. We simply write Z (or E)
whenever the arguments are clear from the context or are of
no relevance.
Lemma 1 (Linear Transformation of a Zonotope)
The linear transformation φ : x 7→ Tx, T ∈ Rn×n, of a
given zonotope Z (G, z̄) is given by

TZ := {t ∈ Rn | t = Tz, z ∈ Z} = Z (TG, T z̄) . (3)

Proof: Follows directly from Def. 1.
For this paper, it suffices to assume that each linear

transformation of an ellipsoid is non-singular, i.e., the matrix
associated with the linear transformation is invertible.
Lemma 2 (Linear Transformation of an Ellipsoid)
The non-singular linear transformation, defined by φ : x 7→
Tx, T ∈ Rn×n, of a given ellipsoid E (E, ē) is

TE := {t ∈ Rn | t = Tx, x ∈ E} = E
(
TETT , T ē

)
. (4)

Proof: Plugging x̃ = Tx into Def. 2 yields(
T−1x̃− ē

)T
E−1

(
T−1x̃− ē

)
≤ 1. After factoring out

T−1, we have (x̃− T ē)T
(
TETT

)−1
(x̃− T ē) ≤ 1, which

is the desired result.
For later derivations we also define the squared maximum
and minimum norm of a zonotope.
Definition 3 (Squared Maximum Zonotope Norm)
The squared maximum norm from any point on the boundary
of a zonotope Z (G, z̄) to its center z̄ is defined by

dZ (G, z̄)e2 := max
|u|≤1

uTGTGu. (5)

Definition 4 (Squared Minimum Zonotope Norm)
The squared minimum norm from any point on the boundary
of a zonotope Z (G, z̄) to its center z̄ is defined by

bZ (G, z̄)c2 := min
(
b2
)
, (6)

where {z ∈ Rn | Az ≤ b}, A ∈ Rq×n, b ∈ Rq , is the half-
space representation of Z (G, 0), b2 is to be understood
component-wise and min

(
b2
)

is the minimum of all elements
of b2.

Geometrically, this minimum norm is equal to the radius of
the largest n-ball that is still enclosed by Z . This result can
be obtained as follows: The radius of the maximum-volume

inscribed ball of Z (G, 0) ( [9, Sec. 8.4.2], also see Sec. V)
is obtained by

s∗ = arg max
s∈R+

s, (7a)

s.t. ‖sIai‖ ≤ bi, ∀i ∈ {1, ..., q} , (7b)

with aTi being the i-th row of A and where by definition of
this ball we have bZc = s∗. If we assume that ai is normed,
i.e., ‖ai‖2 = 1, then

{s ∈ R+ | ‖sIai‖2 ≤ bi, ∀i ∈ {1, ..., q}} (8)

⇔
{
s ∈ R+

∣∣ s21 ≤ b2} , (9)

and an equivalent representation of (7) is

s∗2 = min
(
b2
)
. (10)

Together with bZc2 = s∗2, this yields the result from Def. 4.

III. ENCLOSING ELLIPSOID

In this section, we overapproximate a given zonotope with
a minimum-volume ellipsoid.

A. Minimum-Volume Enclosing Ellipsoid

We wish to compute the minimum-volume enclosing ellip-
soid E (Emin, ēmin) of a given zonotope Z (G, z̄). Due to the
symmetric properties of zonotopes, it is intuitive that ēmin =
z̄. Assuming that the N ∈ N+ vertices of the zonotope
are denoted by {vi}Ni=1, the minimum-volume enclosing
ellipsoid of Z (see e.g., [9, Sec. 8.4.1]) is E (Emin, z̄), with
Emin calculated as

Emin = arg min
E�0

− log detE, (11a)

s.t. (vi − c)T E−1 (vi − c) ≤ 1, ∀i ∈ {1, ..., N} .
(11b)

Note that there are more sophisticated ways of solving (11)
(e.g., [13]), but those methods also require a vertex repre-
sentation, which is infeasible for high-dimensional problems
(see [12, Theorem 2.5]).

a) Remark: For the special case n = m, we have that G
has an inverse since we assumed that Z is a full-dimensional
zonotope. Then, we can transform Z into a hypercube, i.e.,

Z (I, ẑ) = G−1Z (G, z̄) . (12)

The minimum-volume enclosing ellipsoid of Z (I, ẑ) is
E (nI, ẑ) since the minimum-volume ellipsoid that covers
a n-dimensional hypercube is the hyper-sphere with radius√
n [14, 4.1]. Applying the inverse, the minimum-volume

enclosing ellipsoid of Z (G, z̄) is E
(
nGGT , z̄

)
. Hence, we

subsequently assume that m > n.



Fig. 1: The given zonotope (black) and the overapproximative ellipsoids
using the variation of Goffin’s algorithm from [14] (gray) as well as the
approach from theorem 1 (dashed gray).

Fig. 2: Distribution of all vertex candidate points (black crosses) for a
random zonotope (black border) with G ∈ R2×10.

b) Remark: An approach to compute an approximation
to the minimum-volume enclosing ellipsoid (also called
Löwner-John ellipsoid) of a zonotope using a variation of
Goffin’s algorithm is provided in [14]. However, the resulting
ellipsoid is not ideal for our purposes as can be seen in Fig. 1
for the zonotope Z (G, z̄) with

G =

[
−2 0 1 −2 1
−1 −2 0 0 −1

]
, ē =

[
−1
−1

]
,

which is not very tight. Therefore, we present new ap-
proaches.

B. Fitting an Initial Guess

Fig. 1 shows that the alignment given by the initial guess
of [14, Sec. 4.1], i.e.,

E (E0, z̄) = E
(
mGGT , z̄

)
, (13)

appears to be promising: Let a zonotope Z (G, z̄) and
L = G

[
B −B

]
be given, where

[
B −B

]
contains all

2m possible combinations of Bm. For illustration purposes,
Fig. 2 depicts the distribution of those points for a random
zonotope with G ∈ R2×10. A Principle Component Analysis
(PCA) on the samples (column vectors) of L results in a
mean of 0 due to the symmetry of

[
B −B

]
. One way to

construct B ∈ Bm×2m−1

is to start each row with +1 and
alternate the sign for row i ∈ {1, ...,m} every 2m−1−(i−1)

entries. Consequently, bTi bj = 0, ∀i, j ∈ {1, ...,m}, i 6= j,
for any two rows bi, bj of B. Thus, the corresponding
covariance matrix L̄ = 1

2m−1LL
T = 2

2m−1G
(
BBT

)
GT =

cGGT with c ∈ R+ is (up to a factor) identical to the initial
guess provided in (13). Therefore, the initial guess can be
interpreted as an ellipsoid which is oriented according to the
principal component axes of all samples.

Next, we show how we can use dZ (G, z̄)e2 (see Def. 3)
to compute the desired shrinking factor. According to Def. 3,
the value of the maximum norm is

max
u∈{−1,1}m

uTGTGu. (14)

The following proposition rewrites (14) into a mixed integer
quadratic program (MIQP).
Proposition 1
Given Z (G, z̄), G ∈ Rn×m, we have

dZ (G, z̄)e2 = − min
u∈{−1,1}m

uTMu+ λmaxm, (15)

where M = −
(
GTG− λmaxI

)
� 0 and λmax is the

maximum eigenvalue of GTG.

Proof: From uTu = m follows that uTGTGu =
uT
(
GTG− λmaxI

)
u + λmaxm. Because GTG � 0, using

M � 0 together with Def. 3 provides the desired result
maxu∈{−1,1}m uTGTGu = −minu∈{−1,1}m

{
uTMu

}
+

λmaxm.
Since it is easier to work with hyper-spheres instead of
ellipsoids, we transform both E and Z , using the non-
singular transformation matrix T = E

− 1
2

0 to Z (Gt, ẑ) = TZ
and E (I, ẑ) = TE so that E (I, ẑ) is the n-dimensional
unit hyper-sphere with center ẑ. As a relation between the
transformed and original space, we also have

Z ⊆ E ⇔ TZ ⊆ TE = E (I, ẑ) . (16)

Hence Z (Gt, ẑ) ⊆ E (I, ẑ) if dZ (Gt, ẑ)e ≤ 1, since E (I, ẑ)
has a radius of 1 and Z (Gt, ẑ) can only be contained if the
maximum norm is less than 1.

Proposition 1 is a MIQP and thus in the complexity
class NP [15]. However, it has been shown that (14) is of
polynomial complexity O

(
mn−1) if the rank of GTt Gt is

fixed [16]. That said, once m and n become larger, this
approach also does not scale well due to its polynomial
complexity with the large exponent n − 1. Therefore, we
calculate an upper bound on dTZe2. Using Def. 3, we can
write

p∗ = max
u2
i≤1,∀i∈{1,...,m}

uTGTt Gtu, (17)

where we used the fact that {u ∈ Rm | |u| ≤ 1} ={
u ∈ Rm

∣∣ u2i ≤ 1, ∀i ∈ {1, ...,m}
}

. Its dual problem in-
duces the following lemma.
Lemma 3 (Upper Bound on Maximum Zonotope Norm)
Given Z (G, z̄), the dual problem given by

d∗ = min
λ≥0

1Tλ, (18a)

s.t. diag (λ)−GTG � 0, (18b)

with λ ∈ Rm, provides an upper bound d∗ ≥ dZe2.

Proof: The result follows immediately from min (·) =
−max− (·) and the weak-duality-theorem.
The dual (18) is a semi-definite program and thus has a
polynomial worst-case complexity [17] so that lemma 3
scales well. Note that other approaches, e.g., [18], are even



more efficient, but much more complicated to implement.
Since lemma 3 is not the bottleneck of our approach, we
favor simplicity.

Because of the non-convexity of (17), there is a gap
between (17) and (18), which is briefly discussed. First,
we rewrite (17) (with the knowledge that u2i = 1, ∀i ∈
{1, ...,m} as the maximum is attained at vertices of the
zonotope) as

max
U

〈
GTt GtU

〉
, (19a)

s.t. U � 0, (19b)
〈diag (ei)U〉 = 1, ∀i ∈ {1, ...,m} , (19c)
rank (U) = 1, (19d)

where U = uuT . Dropping the rank constraint gives us a
semi-definite relaxation of (17). The dual of this relaxation
is identical to (18). Because (19) is a convex problem and
because constraint qualifications hold, strong duality holds
and therefore the optimal objective value of the dual is equal
to that of the primal. Therefore, the discussed duality gap is
due to the dropped rank constraint.

We now formulate the main theorem for enclosing ellip-
soids.
Theorem 1 (Enclosing Ellipsoid)
Given Z (G, z̄) and the initial ellipsoid E (E0, z̄) from (13),
an enclosing ellipsoid is obtained by

E (E, z̄) = E (r̂E0, z̄) , (20)

where r̂ is an upper bound on dE−
1
2

0 Z (G, z̄)e2 using
lemma 3.

Proof: Transforming both Z (G, z̄) and E (E0, z̄) using
T = E

− 1
2

0 , we obtain Z (Gt, ẑ) = TZ (G, z̄) as well as
E (I, ẑ) = TE (E0, z̄). Lemma 3 returns an upper bound
r̂ of dZ (Gt, ẑ)e2, which itself bounds the norm of every
vertex from its center ẑ. Therefore, Z (Gt, ẑ) ⊆ E (r̂I, ẑ),
and applying the inverse transform T−1 = E

1
2
0 then yields

the desired result.
In [19] (for other approaches see e.g., [20]), a result for

tightening this duality gap is provided. While for zonotopes
where n � m, the combined approach from [19, Corollary
2 & Lemma 3] is not applicable, the following example
demonstrates the usefulness for cases where n ≈ m.
Example 1
Given is a zonotope Z (G, z̄)

G =


1 −2 2 0 3 1 0
0 0 −1 −2 −2 −1 0
−2 −1 0 0 −2 1 0
1 −1 −1 1 −4 0 5
−2 1 0 0 1 0 −3

 , (21)

and z̄ = 05×1. Using proposition 1, we find the exact value
dZ (G, z̄)e2 = 231. The upper bound on the maximum norm
via lemma 3 evaluates to d∗ = 233.250. We have n = 5,
m = 7 and thus r = 2. From [19, Lemma 3], it follows
that γr = 0.976 and thus the improved upper bound is γ =
231.932.

Example 1 shows that the upper bound in (18) can be
efficiently checked for a zero gap to the optimal solution and
potentially tightened whenever the vertex enumeration of an
r-dimensional zonotope with m generators is feasible. This is
especially interesting whenever the number of vertices is not
prohibitively large. However, if m is very close to n, it might
be better to perform an overapproximative order reduction
of the given zonotope to order 1 (m = n) and then directly
compute the minimum-volume enclosing ellipsoid as stated
at the end of Sec. III-A. Next, we inscribe a zonotope into
a given ellipsoid.

IV. INSCRIBED ZONOTOPE

Now an ellipsoid E (E, ē) is given and we want to find a
zonotope Z (G, z̄) for a given number of generators m such
that Z ⊆ E . Since we can always transform the ellipsoid
into a unit hyper-sphere, we only consider the problem of
inscribing a zonotope in a given hyper-sphere for now.

Intuitively, a good under-approximation of the unit hyper-
sphere is a zonotope whose generators are equally spaced on
its surface. Computing an exact uniform distribution of m
points on the surface of the unit hyper-sphere is impossible
for arbitrary m (also see [21]), to the best of our knowledge.

However, one can approximate this exact distribution by
randomly picking m uniformly distributed points on the
surface of the hyper-sphere [22]. While this approach works
well for large m, in practice its stochastic nature often leads
to a non-uniform distribution for smaller m. Therefore, one
can use deterministic sampling [21] or center points of a par-
tition on the unit hyper-sphere with roughly equal diameters
[23]. For the latter approach, the MATLAB toolbox EQSP:
Recursive Zonal Sphere Partitioning Toolbox1 is available.
The following lemma proofs that we can approximate the
hyper-sphere arbitrarily closely for arbitrary m.

Lemma 4 ( [23, Theorem 5.4.1.], [24, 3., Theorem] combined)
Let S ∈ Rn×n be the collection of m points given by
the partitioning algorithm described in [23]. The zonotope
Z (S, z̄) approximates a hyper-sphere with radius r increas-
ingly closer (in the Hausdorff distance) for increasing m.

Proof: Without loss of generality, we assume z̄ = 0.
With S given by [23], we use [23, Theorem 5.4.1.] as an
upper bound on the spherical discrepancy in [24, 3., Theo-
rem], which gives an upper bound on the Hausdorff distance
between Z (S, 0) and E

(
r2I, 0

)
of the form O

(
m−

1
n

)
,

which is decreasing in m. As [24, 3., Theorem] gives the
approximation of the unit-sphere, we scale the generators by
the radius r and conclude the proof.

Given the approximation of a hyper-sphere, it is straight-
forward to inscribe a zonotope into a given ellipsoid.

Theorem 2 (Inscribed Zonotope)
A zonotope Z (G, z̄) with m generators is inscribed in

1https://de.mathworks.com/matlabcentral/fileexchange/13356-eqsp-
recursive-zonal-sphere-partitioning-toolbox



E (E, ē) by

Z (G, z̄) = Z
(

1√
r̂
T−1S, ē

)
, (22)

where

T = E−
1
2 , (23)

S =
[
v1 · · · vm

]
, (24)

each vi,∀i ∈ {1, ...,m} is a point on the surface of the
hyper-sphere, and r̂ is an upper bound on dZ (S, ·)e2 using
lemma 3.

Proof: By choosing T = E−
1
2 , we have E (I, ê) =

TE (E, ē). From lemma 4, we know that Z (S, 0) is a good
approximation of the unit hyper-sphere with radius

√
r̂. Since

dZ (S, 0)e2 ≤ r̂, we have Z (S, ê) ⊆ E (r̂I, ê) and hence
also Z

(
1√
r̂
S, ê
)
⊆ E (I, ê). Applying the inverse transform

T−1 gives Z
(
1
r̂T
−1S, ē

)
which concludes the proof.

a) Remark: The upper bound r̂ in Theorem 2 can
be any upper bound on dZ (S, ·)e2 and thus can also be
computed using proposition 1.

b) Remark: Since lemma 4 shows that we can approx-
imate the hyper-sphere arbitrarily closely, the procedure in
theorem 2 can be made arbitrarily precise.

In the following two sections, we use the minimum
squared zonotope norm in order to derive both inscribed
ellipsoids as well as enclosing zonotopes.

V. INSCRIBED ELLIPSOID AND ENCLOSING ZONOTOPE

Here, we wish to compute the maximum-volume ellipsoid
E (Emax, z̄) inscribed within a given zonotope Z (G, z̄). In
[9, Sec. 8.4.2], a straightforward way of computing this
ellipsoid for a polytope with half-space representation P =
{x ∈ Rn | Ax ≤ b}, is given as E (BB, z̄) with

B = arg min
B�0

− log detB, (25a)

s.t. ‖Bai‖2 + aTi z̄ ≤ bi, ∀i ∈ {1, ..., N} , (25b)

where aTi is the i-th row of A ∈ Rq×n and bi is the i-th
component of b ∈ Rq . However, the number of half-spaces
q for larger m quickly renders (25) intractable [25].

For an approximation of (25), we use the minimum zono-
tope norm bZ (G, z̄)c (see Def. 4), instead of the maximum
zonotope norm dZ (G, z̄)e, as presented in the next lemma.
Lemma 5 (Lower Bound on Squared Minimum Norm)
Given is a zonotope Z (G, z̄). For any ν ∈ R+ such that
the test νei ⊆ Z , ∀i ∈ Rn, ν ∈ R+ from [14, Sec. 4.4] is
fulfilled, a lower bound l̂ ∈ R+ on bZc2 is given by

l̂ =
ν2

n
. (26)

Proof: For any ν fulfilling the test from [14, Sec. 4.4],
the tested scaled unit vectors νei, i ∈ {1, ..., n}, span a
rotated hyper-cube. Since a zonotope is a convex set, this
hyper-cube is contained. We can inscribe a ball with radius
ν√
n

into that hyper-cube such that E
(
ν2

n I, z̄
)
⊆ Z , which

concludes the proof.

Before we continue, a quick note about the complexity of
the test used in lemma 5. In order to verify whether a
given ν passes the test, we check whether the n points νei,
i ∈ {1, ..., n}, are contained in Z . Checking the containment
of a given point νei is efficiently possible, as this reduces
to checking the feasibility of a linear program, specifically
the feasibility of νei = Gx + z̄, where x ∈ [−1; 1]

m and
G ∈ Rn×m, which is of polynomial complexity. Thus, an
instance of this test has complexity O (nlp), where lp is the
complexity of checking the feasibility of a linear program.
Now that we have a constructive way to compute a lower
bound on the minimum norm of the zonotope, we are ready
to state the main result.
Theorem 3 (Inscribed Ellipsoid)
Given is a zonotope Z (G, z̄). Let E (E0, z̄) and set E0 =

GGT . We obtain the lower bound l̂ on bE−
1
2

0 Z (G, z̄)c2 from
lemma 5. Then, an inscribed ellipsoid is given by

E (E, ē) = E
(
l̂E0, z̄

)
. (27)

Proof: For T = E
− 1

2
0 , we have Z (Gt, ẑ) = TZ (G, z̄).

With lemma 5, we compute a lower bound l̂ on the minimum
squared norm for Z (Gt, ẑ). Therefore, we know that the
hyper-sphere with radius

√
l̂, i.e., E

(
l̂I, ẑ

)
, is still contained

in Z (Gt, ẑ). Applying the inverse transform yields the
desired result.

Lastly, we enclose a given ellipsoid with a zonotope
consisting of m generators, similar to Sec. IV. Since we
already know how to compute a lower bound on the squared
minimum norm (see lemma 5), and since we have a way
to generate a zonotope approximating a hyper-sphere (see
lemma 4), we directly state the result.
Theorem 4 (Enclosing Zonotope)
Let E (E, ē) be given. Then an enclosing zonotope Z (G, z̄)
of dimension n with a given number of generators m is given
by

Z (G, z̄) = Z

(
1√
l̂
T−1S, ē

)
, (28)

where

T = E−
1
2 , (29)

S =
[
v1 · · · vm

]
, (30)

vi,∀i ∈ {1, ...,m} is a point on the surface of the hyper-
sphere and l̂ is a lower bound of bZ (S, ·)c2.

Proof: The proof is analogous to the proof of theorem 2.
With T = E−

1
2 , we have Z (Gt, ê) = TZ (G, ē) and

E (I, ê) = TE (E, ē). Further we know that E (I, ê) ⊆
Z
(

1√
l̂
S, ê

)
due to the definition of l̂. Applying the inverse

transform T−1 then gives the desired result.

VI. RESULTS

First, note that we do not include results for theorems 2
and 4, as lemma 4 shows that both theorems in principle
allow arbitrary precision for exact maximum and minimum



norm values, respectively. Since we want to illustrate the
performance of theorems 1 and 3 for optimal shrinking
factors, we calculate both minimum and maximum zonotope
norm exactly, and omit computations using upper and lower
bounds due to space limitations.

Furthermore, we denote with tavg, tmax the average and
maximum execution time in seconds, and define ∆V :=(

vol(Z)
vol(E)

) 1
n

where vol (·) returns the volume and n is the
dimension. Further, ∆V min, ∆V max and ∆V avg denote the
minimum, maximum, and average volume ratios, respec-
tively. All generator matrices are constructed using the randn
function from MATLAB. The shown results are averaged
over N = 100 runs, where the first ten runs for each instance
(fixed m, n) were omitted for the computation of execution
times due to startup delays. Lastly, while both theorems 1
and 3 scale beyond what is shown with the usage of upper
and lower bounds, the poor scalability of the optimal ap-
proaches prevents any high-dimensional computations. That
said, the bottom half of Tables I and II contain the highest
dimensional results computable using an Intel Xeon Gold
6136 3.00 GHz processor and 128 GB of DDR4 2666 MHz
memory. Results that were not computable due to (standard)
MATLAB memory limits are denoted by −. These memory
issues are caused by the vertex computation done with the
MPT32 toolbox and might be preventable using a different
implementation.

All remaining results are computed on a Lenovo T480s
with an Intel Core i7 8650U and 24 gigabytes of memory.
The proposed methods are all implemented in MATLAB,
using the YALMIP modeling framework [26] in conjunction
with the Gurobi3 and SDPT34 solver. The CORA toolbox
[27] is used for zonotope operations.

Because we used parallel computing for the bottom-half
results in tables I and II and because those results were
computed using a different CPU, we omit the executing times
for these results.

A. Enclosing Ellipsoids

For an analysis of theorem 1, we look at the tightness of
the presented approach by comparing the normalized volume
of the resulting ellipsoid and that of the given zonotope.
As we have seen, there is no tractable way to compute the
optimal ellipsoid that encloses a given zonotope with mini-
mal volume for high-dimensional zonotopes. This, however,
implies that we are restricted to rather low dimensionality
as otherwise the minimum-volume enclosing ellipsoid of Z ,
which is required for a comparison, is not computable.

As we saw in Sec. III, Emin is the shape matrix of the
minimum-volume enclosing ellipsoid that contains Z . Table I
shows a comparison between the ideal enclosing ellipsoid
given by (11) and the approach from theorem 1.

First, we notice that for fixed m and increasing n, the
optimal ratio ∆V in both cases decreases, while for fixed

2https://www.mpt3.org/
3http://www.gurobi.com
4http://www.math.nus.edu.sg/ mattohkc/sdpt3.html

TABLE I: Depicted are the volume ratios ∆V min,∆V avg, execution times
tavg, tmax using (11) (Emin) and theorem 1 (E).

m 10 20 30

n Emin E Emin E Emin E

2

∆V avg 0.935 0.889 0.959 0.923 0.966 0.937
∆V min 0.850 0.809 0.920 0.858 0.904 0.879
tavg [s] 0.194 0.161 0.202 0.174 0.194 0.265
tmax [s] 0.234 0.196 0.317 0.199 0.236 0.584

3

∆V avg 0.875 0.830 0.922 0.877 0.937 0.897
∆V min 0.839 0.769 0.884 0.829 0.911 0.833
tavg [s] 0.199 0.159 0.223 0.170 0.311 0.276
tmax [s] 0.237 0.194 0.272 0.193 0.466 0.578

4

∆V avg 0.828 0.787 0.886 0.844 0.910 0.873
∆V min 0.781 0.741 0.865 0.805 0.890 0.835
tavg [s] 0.220 0.164 0.544 0.170 4.506 0.276
tmax [s] 0.325 0.230 0.603 0.191 4.903 0.645

5
∆V avg 0.779 0.746 0.855 0.817 − 0.850
∆V min 0.749 0.717 0.836 0.773 − 0.826

n and increasing m, it increases. Assume that for a fixed
n, we are given two zonotopes and their respective optimal
ellipsoids. We transform for both cases the zonotope and the
ellipsoid such that the latter is a hyper-sphere. It is intuitive
that a zonotope with more generators can approximate a
hyper-sphere better than one with less (see also lemma 4).
Therefore, the volume ratio increases for fixed n and increas-
ing m. As for decreasing n and fixed m: Intuitively, higher
dimensional spaces (and zonotopes) require more generators
to achieve the same volume ratio. Therefore, increasing n
for fixed m is similar to decreasing m for fixed n and thus
yields a similar outcome.

Lastly, while theorem 1 performs worse than (11), we
note that the relative difference vol(E)

vol(Emin)
for fixed n and

increasing m also decreases for the results shown. This might
indicate that vol (E) approaches vol (Emin) for very large m.
This in turn implies that the initial ellipsoid according to (13)
for very large m has the same shape as the optimal ellipsoid
from (11).

B. Inscribed Ellipsoids

Next, we analyze the performance of theorem 3, depicted
in table II. Instead of approaching ∆V = 1 from below, we
now only have values greater than 1.

As before, the volume of the maximum-volume inscribed
ellipsoid decreases for fixed m and increasing n. Similarly
for fixed n and increasing m. For detailed reasoning, see the
analogous argument in Sec. VI-A.

It is worth to note that the computation times differ
substantially, even though both approaches need to compute
the half-space representation of the given zonotope. However,
the minimum norm follows directly from (6), while (25)
requires solving a convex optimization problem.

Also, analogously to Sec. VI-A, we find that vol(E)
vol(Emax)

decreases with increasing m for fixed n. Again, this might
indicate that the initial inscribed ellipsoid (which has the
same shape as the initial ellipsoid from (13)) has the same



TABLE II: Depicted are the volume ratios ∆V max,∆V avg, execution
times tavg, tmax using (25) (Emax) and theorem 3 (E).

m 10 20 30

n Emax E Emax E Emax E

2

∆V avg 1.046 1.104 1.032 1.084 1.026 1.067
∆V max 1.101 1.328 1.069 1.218 1.059 1.133
tavg [s] 0.187 0.010 0.187 0.001 0.186 0.001
tmax [s] 0.223 0.002 0.234 0.002 0.217 0.002

3

∆V avg 1.090 1.207 1.065 1.131 1.053 1.107
∆V max 1.147 1.427 1.118 1.263 1.099 1.181
tavg [s] 0.199 0.002 0.214 0.003 0.256 0.006
tmax [s] 0.240 0.003 0.296 0.005 0.319 0.007

4

∆V avg 1.143 1.281 1.095 1.185 1.080 1.154
∆V max 1.195 1.637 1.127 1.279 1.104 1.340
tavg [s] 0.217 0.004 0.373 0.015 0.922 0.055
tmax [s] 0.264 0.004 0.434 0.016 1.017 0.064

6
∆V avg 1.259 1.486 1.159 1.301 1.127 1.228
∆V max 1.332 1.932 1.200 1.769 1.154 1.455

shape as the maximum-volume inscribed one from (25) for
large m.

Finally, we note that the minimum-volume enclosing el-
lipsoid is more expensive to compute than the maximum-
volume inscribed ellipsoid, as can be seen from tables I
and II. This is due to the well-known fact that computing
the vertex representation of a zonotope is generally more
expensive than computing the half-space representation.

VII. CONCLUSIONS

In this work, we derived approaches to compute both
underapproximations and overapproximations for ellipsoids
and zonotopes. Due to the convex nature of the chosen upper
and lower bounds on the maximum and minimum zonotope
norm, we are able to perform all four approximations for
many dimensions. The accuracy of the proposed methods
heavily depends on the tightness of the respective bounds.
We note that our results will also be implemented in the next
CORA release.

Future work includes tightening of both upper and lower
bounds for the maximum and minimum zonotope norm.
Specifically, it might be possible to obtain an expression
for the minimum zonotope norm that does not depend on
the facet description, which in turn might enable a lower
bound computation using an approach similar to the duality
argument for the upper bound on the maximum zonotope
norm.
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