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A Distributed Reinforcement Learning Yaw Control Approach for
Wind Farm Energy Capture Maximization*

Paul Stanfel1, Kathryn Johnson1, Christopher J. Bay2, and Jennifer King2

Abstract— In this paper, we present a reinforcement-learning-
based distributed approach to wind farm energy capture
maximization using yaw-based wake steering. In order to
maximize the power output of a wind farm, individual turbines
can use yaw misalignment to deflect their wakes away from
downstream turbines. Although using model-based methods to
achieve yaw misalignment is one option, a model-free method
might be better suited to incorporate changing conditions and
uncertainty. We propose an algorithm that adapts concepts
of temporal difference reinforcement learning distributed to
a multiagent environment that empowers individual turbines
to optimize overall wind farm output and react to unforeseen
disturbances.

I. INTRODUCTION

Wind farms extract energy from the wind and convert it
to electrical energy. When multiple turbines operate together
in a wind farm, an upstream turbine operating at maximum
power point tracking (MPPT) can create suboptimal wind
conditions for downstream turbines. There are currently
many techniques to mitigate the negative impacts of wake
interaction. Axial induction control can de-rate individual
turbines in order to achieve power reserve maximization [1].
Tilt control [2] involves tilting the rotor plane to deflect
the wake above or below downstream turbines. Finally, yaw
misalignment is the intentional misalignment of upstream
turbines with the prevailing wind direction to deflect the
wake laterally away from downstream turbines [3], [4].

Typically, yaw angle control is based on simulated out-
puts from a wake deflection model, such as the FLOw
Redirection and Induction in Steady-State (FLORIS) [5]
model. Such models can produce a yaw schedule lookup
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table (LUT) based on wind farm parameters like wind speed
and direction, as in [6]. However, this method is susceptible
to irregularities that are difficult to model and that could
decrease the benefit of the yaw optimization in the field. One
solution is to implement model-free control methods, such
as the game-theory-based approach described in [7], which
treats wind turbines as agents that optimize a local value
function, but also either assumes steady-state conditions
or involves large time delays in the field due to wake
propagation delays. Gebraad, et al. [8] propose incorporating
a time delay into a distributed gradient-descent routine,
which achieves faster convergence by only considering a
turbine’s nearest downstream neighbor. The approach in [8]
successfully adapts a model-free, agent-based control method
to a system with inherent time delays, but must re-converge
every time wind conditions change.

This paper proposes a yaw control strategy using rein-
forcement learning (RL) techniques and examines its ability
to account for wake propagation delay and stepwise-varying
inflow conditions. RL is a subset of machine learning fo-
cusing on training autonomous agents to make decisions.
The concept of agents, and their interactions with each other
in a larger multiagent system (MAS), has proved to be
widely useful [9]. However, RL has not been applied in as
much depth to the wind industry, although other machine-
learning techniques like neural networks have been studied
[10]. Wei, et al. [11] used reinforcement learning techniques
to implement MPPT for a single turbine, and Graf, et
al. [12] used a distributed alternating direction method of
multipliers algorithm in conjunction with RL to not only find
optimal turbine yaw angles but predict wind condition trends
and adjust accordingly. This paper builds on both of these
approaches, extending the single-turbine approach from [11]
to the wind farm case and adding time delay into an RL
algorithm like [12] to increase farm energy capture.

This paper is organized as follows. Section II provides
background on RL and how it is adapted to a wind farm
application. Section III incorporates wake delay into the
wind farm-RL environment. Section IV provides results from
simulations examining the effectiveness of this algorithm
when applied to a wind farm. Finally, Section V summarizes
the work and provides several possible paths forward.

II. REINFORCEMENT LEARNING CONTROL

A. Baseline Controller

The baseline controller in this paper is based on an
optimization routine provided with FLORIS [5]. This routine
uses the Sequential Least SQuares Programming algorithm
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to iterate through yaw angles for each turbine to maximize
farm power. This is repeated for different wind conditions to
assemble a LUT, which is then used to schedule yaw angles
based on measured wind farm parameters, as in [6].

B. Reinforcement Learning

RL algorithms typically exploit Markov decision pro-
cesses, or processes in which the future state depends only
on the current state. A Markov decision process is char-
acterized by a state and action space, a transition function
that determines the probability of moving from one state to
another by taking a certain action, α, and a reward function
that determines what level of reward the agent receives after
taking an action. The goal of RL is to arrive at a policy,
π∗(s), that determines the optimal action given state, s, such
that reward is maximized. Since the goal of this paper is to
develop a control algorithm that is less susceptible to model
uncertainty and time variation, it is desirable to use a model-
free version of RL. A common formulation of model-free
RL is Q-Learning, which makes iterative updates of a state-
action value function, Q(s, α). The iterative process records
information about the system’s state and actions taken and
measures a reward signal to quantify the value of the state-
action pair. The Q-Learning Bellman Equation [11] is:

Qt+1(st, αt) = Qt(st, αt)+

lt

[
rt+1 + βmax

αi
Qt+1(st+1, αi)−Qt(st, αt)

]
(1)

where Q(s, α) is the expected value of taking action, α,while
in state s, lt ∈ (0, 1] is a learning rate determining how
quickly the algorithm updates, rt+1 is an environmental
reward signal, β ∈ [0, 1) is a discount factor that weighs new
information more than past information, and t is simulation
iteration (or time, if applicable). At each iteration of the
learning process, an agent (e.g., a wind turbine) selects an
action, αt, evaluates the reward, rt+1, at the next time step,
and updates its internal Q-table Q(st, αt) based on the action
and observed state before (st) and after (st+1) taking action,
αt. Q(s, α) is initialized to all zeros, and has dimensions
equal to M ×N × ...× size(A) where A is the action space
(see Section II-C), and M , N , and so on are the lengths of
the range of discrete values for each state. For yaw angle
optimization, the agent’s state consists of its yaw angle, γ
and one or both of wind direction φ and wind speed U at
the turbine. The resulting state vectors are thus x = [U γ]T ,
x = [φ γ]T , or x = [U φ γ]T .

C. Action Space

Wei et al. [11] propose an action space of size three, with
an action representing an increase or decrease in turbine rotor
speed by a certain ∆ω or no change in rotor speed. We adapt
this approach for yaw angle control using the action space
shown in (2):

A = {α(∆γ) : α ∈ {−1, 0, 1}} (2)

This action space guarantees that an individual turbine
will only be able to move by a small ∆γ every iteration.

Fig. 1. Top-down view of the wind farm configuration used for simulations
of the distributed RL algorithm.

(In this paper γ represents yaw angle with respect to the
wind direction, which is a convention shared with FLORIS
but is often called yaw error). This convention reduces the
complexity of the Q-table by limiting the set of feasible yaw
angles to a smaller range centered around 0.

As in [11], we use a Boltzmann action search to stochas-
tically select an action. The Boltzmann search shown in
(3) uses the changing Q-table to increase the probability of
selecting actions with higher corresponding rewards.

p(st, αt) =
e
Q(st,αt)

τ∑
i e

Q(s,αi)

τ

(3)

In (3), p(st, αt) is the probability of choosing action, αt, in
state, st, while τ is a learning parameter. Tuning τ balances
between exploration, in which seemingly less promising
actions are chosen in the hopes of traversing local minima
to find higher maxima, and exploitation, in which the action
most likely to yield the highest reward is chosen [13].

D. Turbine Clustering and Value Function

The FLORIS flow field and layout used for simulations in
this paper is shown in Fig. 1. Additionally, the wind direction
convention is such that the wind direction shown in Fig. 1
is 270◦, which is the wind direction used for this study. The
simulation wind speed, unless otherwise specified, is 8 m/s.

To allow the distributed RL algorithm to maximize farm
rather than turbine energy capture, it is necessary to al-
low some degree of communication between turbines so
that agents, rather than a central controller, can accurately
evaluate the impact of their actions on each other. Efficient
communication requires choosing a subset of agents that are
most likely to be impacted by a given agent’s actions. Gionfra
et al. [14] propose a method of clustering turbines into
neighborhoods based on a simple rectangular zone extending
in the crosswind and downwind directions. This paper uses a
similar concept of clustering. Assuming that an agent knows
the position of every turbine in the wind farm, it is possible
to rotate the reference frame to the wind direction as in [4]
and determine the set of neighbors, N (i), with j ∈ N (i)
being a turbine agent that is within a distance downwind,
ψd, and crosswind, ψc, in either direction of turbine i. With
this clustering into neighborhoods, the value function, Vi(t),
that each turbine i aims to maximize is given by (4):

Vi(t) = Pi,t +
∑

j∈N (i)

Pj,t (4)
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with Pi,t representing the power output of turbine i at
iteration t. This value function is used to calculate the reward
signal, rt+1, as in (5), again drawing from [11]:

ri,t+1 =


1 Vi,t+1 − Vi,t > δ

0 | Vi,t+1 − Vi,t |≤ δ
−1 Vi,t+1 − Vi,t < −δ

(5)

In (5), δ > 0 is a small value that defines a dead zone to
ensure that only significant changes generate reward.

By including the power outputs of downstream turbines
in the value function of the upstream turbine, each agent
must balance its own power with those of the downstream
turbines. In the flow field shown in Fig. 1, Turbine 0 has
Turbine 1 and Turbine 2 as neighbors, Turbine 1 has Turbine
2 as a neighbor, and Turbine 2 operates greedily, having
no downstream turbines to consider. The downwind and
crosswind distances, ψd and ψc, break more complicated
wind farms into smaller subgroups based on wind direction.

E. Multiagent Reinforcement Learning

A MAS eliminates an important assumption that provides
RL with its mathematical basis, namely stochasticity [13].
Adding more agents to the system creates an environment
that an individual agent can not completely observe. While
this makes some of the theoretical guarantees of single-
agent RL difficult, [15] shows that applying single-agent
techniques to a MAS can still improve performance, albeit
not necessarily at the global optimum. This approach has
been verified in [16]. In a similar manner, this paper aims to
show that a distributed RL algorithm can yield energy capture
increases while not trying to prove global optimization.

III. SIMULATION SETUP

A. Simulation Environment

The FLORIS wake deflection model is a sequentially ex-
ecuted steady-state simulation environment. To allow down-
stream turbines to influence upstream turbines via control and
include wake propagation delay, we first modify FLORIS’s
execution procedure for its wake deflection calculation to
incorporate time delays to test and tune the RL algorithm.

Ideally, the FLORIS-based simulation model would op-
erate as in Fig. 2, with FLORIS taking the place of the
“Plant” block. This configuration includes a yaw offset error,
γe,offset, which represents an error in the yaw angle or wind
direction measurement. For field operation, the “Plant” block
would be replaced by the actual wind farm.

In practice, because of the need for turbine-turbine interac-
tion, the implementation of the algorithm on the augmented
FLORIS requires several iterations through the wind farm
agents for every simulated time step. This steady-state im-
plementation consists of three primary phases (initialization,
action selection, Q update) at each turbine, as shown in
Fig. 3. Additionally, for most of the ensuing simulations,
unless otherwise noted, the state vector is x = [φ γ]T .

Implementing this steady-state RL algorithm on the wind
farm in Fig. 1 with instantaneous wake propagation (no

Fig. 2. High-level block diagram implementing the distributed multiagent
learning algorithm. Each agent takes in data from the environment and uses
it to choose a yaw angle. The output, P, from the plant is a vector of turbine
power measurements and is passed to the turbines in the farm, which use
their own internal logic to determine which measurements are relevant to
their own value function calculation. Each turbine agent updates its Q-table
using its own value function and yaw angle.

delay) shows the performance of the algorithm in ideal, but
highly unrealistic, circumstances. Results from this ideal case
are shown in Fig. 4. In Fig. 4, yaw angles were limited to
positive values, as they are in the FLORIS yaw optimization
routine. This simulation achieved 8.2% power gain above the
baseline (0◦ yaw angle for all turbines), which is the same
power gain achieved by the FLORIS optimization routine
and demonstrates the ability of the RL algorithm to match
FLORIS’s internal optimization routine in the ideal case.

B. Quasi-Dynamic Simulation

Using Taylor’s frozen wake hypothesis, it is possible to
build an approximation of wake delay into FLORIS such that
a quasi-dynamic environment can be simulated [17]. Bay, et
al. [18] use Taylor’s hypothesis to incorporate wake delay
into FLORIS by using the freestream velocity U∞, as in (6):

tdelay =
d

U∞
(6)

with d representing the downwind distance between the
upstream and downstream turbines. This propagation delay
adds additional complexity for the RL algorithm. When a
turbine changes its yaw angle from 0◦ to some non-zero yaw
angle, the immediate effect is a decrease in total farm power,
since the reduced wake has not yet reached the downstream
turbines. This short-term power decrease is shown in Fig. 5,
starting at times t = 250 s, 500 s, 750 s, and 1000 s. As the
wake propagates first to Turbine 1 and then to Turbine 2,
however, additional power gain is achieved due to the wake
deflection from Turbine 0. For this plot, the dynamics of the
yaw drive are not modeled because they are still substantially
faster than the wake propagation delay time.

When the quasi-dynamic FLORIS environment is used,
the RL algorithm described in Section II cannot achieve a
power gain, which we investigate in Section III-C.

C. Reinforcement Learning Algorithm Locking

Many yaw angle optimization routines assume unrealistic
steady-state conditions and then fail in the quasi-dynamic
environment. Therefore, it is necessary to adapt the algo-
rithm accordingly. Guestrin et al. [19] show that multiagent
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Fig. 3. Simulation of RL turbine operation using the augmented steady-state FLORIS software package The initialization stage is performed just once,
while the action selection and Q update stages are repeated for the desired number of iterations.

Fig. 4. Total wind farm power output of the steady-state distributed Q-
learning algorithm using FLORIS and assuming no wake propagation delay.

learning can be made more efficient if the system can be
broken into subgroups that can be optimized efficiently. If the
subgroups are not known or are time-varying, then “locking”
agents until certain environmental conditions are satisfied is
an effective substitute.

The wind farm can readily be divided into subgroups, or
neighborhoods, based on wake interactions caused by the
wind direction, as in [14]. However, because these neigh-
borhoods change with wind direction, the system structure
cannot be completely predicted at any given moment, so the
agent locking mechanism described above is promising.

Ideally, a time-delayed algorithm would simply calculate
the time it takes for the wake delay to reach downstream
turbines, as in (6) and wait for that period of time before
determining the reward signal. This strategy might work
if it were not possible for one turbine to be upstream

Fig. 5. Visualization of the dynamic modifications to FLORIS. The
yaw angles of either Turbine 0 or Turbine 1 were changed at 250 s
increments. At each yaw angle step, the wind farm yaw angle configuration
moves progressively closer to the optimal value from the baseline FLORIS
optimization. Power does not immediately increase with a change in yaw
angle due to the wake propagation delay time.

relative to some turbines and downstream relative to others.
However, due to multiple turbine interactions and the need
to remain flexible to changing wind direction when defining
neighborhoods, simply waiting a specified period of time
before performing an update on the Q-table is insufficient,
as demonstrated in the following scenario.

Assume that Turbine 0 and Turbine 1 initiate a yaw
misalignment control action at approximately the same time
step. Immediately, farm output decreases (e.g. at t = 250 s, as
shown in Fig. 5), but it eventually rises. Even if both turbines
calculate the approximate wake delay using (6) and wait for
this interval to update their Q-tables, similar to the approach
in [8], when both turbines evaluate their reward signal using
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(4), Turbine 2 will have experienced wake effects from
both Turbine 0 and Turbine 1. Therefore, the reward signal
broadcast to Turbines 0 and 1 will be a combination of
both turbines’ actions, and the algorithm cannot distinguish
between Turbine 0’s and Turbine 1’s actions. Additionally,
when Turbine 1 calculates its value function, it will also be
experiencing the impacts of the wake deflection of Turbine
0, so its own value function calculation will be skewed.

To avoid the confusion created within this scenario, a
system of two-way turbine communication is implemented.
When a turbine yaws, it sends a “lock” signal to all down-
stream turbines, preventing them and itself from moving until
the time determined by (6), at which point the downstream
turbines unlock. A turbine cannot move until both itself
and all turbines in its neighborhood are unlocked. Once a
turbine unlocks after initiating a control action, it calculates
the reward signal as before. The algorithm is outlined in
Algorithm 1. Note that completed action represents a
Boolean value that tracks whether or not a particular turbine
has initiated a control action. The turbine only updates its
Q-table when the Boolean is true.

Algorithm 1 The locking algorithm for turbine i. This
algorithm runs simultaneously for all turbines in the farm.

1: if i and j ∀ j ∈ N (i) are unlocked then
2: select action
3: calculate wake delay for turbines in neighborhood
4: send lock signal to downstream neighbors
5: set completed action boolean
6: end if
7:
8: if turbine i completed action then
9: calculate value function and reward signal

10: update Q-table
11: unset completed action boolean
12: end if

Using the locking procedure in Algorithm 1 allows each
turbine to assess the impacts of its actions on the reward
signal (5). The benefit of the locking procedure is shown in
Fig. 6, which shows results from both the original unlocked
RL and the RL with locking when simulated in the wake-
delay-augmented FLORIS. The unlocked RL was unable to
increase power, whereas the RL with locking can. Although
earlier figures used “# of simulation iterations” as the x-axis,
the FLORIS updates for wake propagation delay necessitate
a time-based independent axis, as shown in Fig. 6.

IV. RESULTS

A. Model-Based/Model-Free Hybrid

The preceding sections have demonstrated that a dis-
tributed RL algorithm can effectively improve the perfor-
mance of a wind farm in both steady-state and quasi-dynamic
environments. These results suggest an opportunity for a two-
stage hybrid control approach. Because the RL algorithm is
able to adjust to modeling inaccuracies, it can be combined

Fig. 6. Comparison of the performances of the dynamic and steady-state
locking RL algorithms in a quasi-dynamic FLORIS environment.

with a fixed LUT of optimal yaw angles. A simplified model
such as FLORIS can be used offline to create a “good-
enough” estimate of what the yaw schedule should be, and
the dynamic Q-learning algorithm then can take over in
the field. The results from this combination of model-based
optimization followed by model-free learning are shown in
Fig. 7. In this case, the steady-state RL training takes place
outside of “real” time, but time in seconds begins upon
implementation on the “farm” (FLORIS model). First, the
three-turbine wind farm was trained on the simple steady-
state FLORIS model for 2000 iterations. Then, the Q-table
was moved to agents “in the field,” represented by the quasi-
dynamic version of FLORIS. The “field” simulation included
a −10◦ yaw offset error, which would cause suboptimal
performance for the fixed FLORIS-based LUT. This error
implementation is shown by the γe,offset signal in Fig. 2.

The quasi-dynamic phase also involved changing the
learning rate, lt, used in (1). In [11], lt is given as:

lt =
k1

k2 + k3n(st)
(7)

with k1, k2, and k3 being tuning coefficients and n(st) being
the number of times that the agent has visited state st. This
means that the learning rate decreases as the turbine visits
a state more often. In our RL algorithm, however, because
agents have to “unlearn” past information, the learning rate
is fixed at lt = 0.9, not decreased with each visit to the state.

As shown in Fig. 7, the algorithm successfully adjusts to
the yaw offset error, eventually reaching almost the same
optimal power value as the ideal case (Fig. 4).

B. Changing Wind Conditions

The preceding simulations, although including wake delay,
are still very unrealistic in that they assume that wind con-
ditions stay constant for unreasonably long times. Changing
wind speeds pose an interesting problem for the yaw control
algorithms, as at higher wind speeds it is less important for
the upstream turbines to be misaligned since the waked wind
is still sufficient for maximum power operation. Fig. 8 illus-
trates the effect of changing wind speeds on each turbine’s
yaw angle. As the ambient wind speed increases, the optimal
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Fig. 7. Steady-state RL training with implementation in a quasi-dynamic
simulation environment with a yaw offset error. In this simulation the
turbines are at their optimal yaw angles when the quasi-dynamic simulation
begins, so power does not drop.

Fig. 8. Yaw angle plots for each of the three turbines in the wind farm,
with respect to a changing wind speed.

yaw angles for Turbine 0 and Turbine 1 move to 0◦. This
means that the RL algorithm correctly identifies that the
upstream turbines do not need to yaw as much out of the
wind to redirect the wake. For this simulation, the state was
given as x = [U γ]T with no yaw offset error.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a proof of concept of the ability of
a distributed reinforcement learning algorithm to maximize
energy capture potential at a farm, rather than a turbine, level,
assuming sufficient communication architecture is in place.

We presented results from four cases, starting with an ideal
case with no wake propagation delay, then incorporating
wake delay and an updated, “locking” version of the RL
algorithm. The third case considered a two-step procedure
that started with a “good-enough” estimate using the FLORIS
wake deflection model and later fine-tuned itself via the wake
delay learning algorithm, and in the fourth case we showed
the algorithm’s responsiveness to changing wind speeds.

There are several avenues for future work. One is to make
the simulation environment more realistic, or to use higher-
fidelity simulators. Another is to create more realistic test
cases, such as using wind distributions that exhibit larger-
scale patterns or less constant wind conditions to examine,
respectively, reinforcement learning’s ability to recognize
and its susceptibility to more variable wind conditions. This
approach also creates new opportunities for wind farms to
respond to disturbances, such as loss of a turbine. The

assumptions of stepwise constant wind speeds and directions
simulated in this paper are unrealistic, and the wind farm size
of just 3 turbines is uncommon in a U.S. context. However,
our results show that it is at least possible in theory to “learn
on the fly” in a multiagent, time-delayed environment and
achieve significant increases in performance at a farm level.
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