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Abstract— Privacy is an important concern in various multi-
agent systems in which data collected from the agents are
sensitive. We propose a differentially private controller synthesis
approach for multi-agent systems subject to high-level specifi-
cations expressed in metric temporal logic (MTL). We consider
a setting where each agent sends data to a cloud (computing
station) through a set of local hubs and the cloud is responsible
for computing the control inputs of the agents. Specifically,
each agent adds privacy noise (e.g., Gaussian noise) point-wise
in time to its own outputs before sharing them with a local
hub. Each local hub runs a Kalman filter to estimate the
state of the corresponding agent and periodically sends such
state estimates to the cloud. The cloud computes the optimal
inputs for each agent subject to an MTL specification. While
guaranteeing differential privacy of each agent, the controller
is also synthesized to ensure a probabilistic guarantee for
satisfying the MTL specification. We provide an implementation
of the proposed method on a simulation case study with two
Baxter-On-Wheels robots as the agents.

I. INTRODUCTION

Along with the rapid development of multi-agent systems
(MAS) and cloud computing technologies, protecting the
privacy of collected data has been a major concern [1].
While the detailed available data from the agents in an MAS
helps in decision-making and control, the resolution of the
shared data triggers the possibility of breaching the privacy of
the agents. For example, while smart transportation systems
rely on precise measurements of locations of vehicles, the
shared information can be sensitive as it may reveal traces
of movements of vehicles.

Differential privacy constitutes a strong standard for pro-
tecting the privacy of agents while allowing for general statis-
tical analyses on aggregate data [2]. Differential privacy was
originally developed for static data and it provides several
important properties such as resilience to post-processing
[2]. Besides, privacy guarantees of differential privacy hold
against adversaries with auxiliary information that could
potentially be linked with sensitive data of agents.

More recently, the guarantees of differential privacy have
been extended to dynamical systems in which trajectory-
valued data are protected [3]. Differential privacy for
trajectory-valued data is achieved by adding privacy noise
(e.g., Gaussian noise) to sensitive trajectories in such a way
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Fig. 1. Diagram of information transmission among the agents, local hubs
and the cloud.

that it is provably unlikely for an adversary to infer the
privatized trajectory.

In this paper, we propose a controller synthesis approach
for MAS that combines differential privacy with cloud-based
control subject to high-level specifications. In Fig. 1, we
provide an illustration of the setting that we consider in
this paper. The two agents are supply robots transporting
goods to warehouses which are marked by the green regions.
Each agent reports its location with added privacy noise to
their corresponding local hub. Each local hub runs a Kalman
filter to estimate the corresponding agent’s location and
periodically transmits the estimate to a cloud for decision-
making. The cloud computes control inputs based on the
state estimates and sends the control inputs to the agents.

We express the high-level task specifications in metric
temporal logic (MTL), which has been used in many robotic
applications [4], [5]. As in the example in Fig. 1, MTL
can express task specifications such as “Agent 1 should
reach both Green1 and Green4 at least once in every
consecutive 10 time units. Agent 2 should reach both Green2

and Green3 at least once in every consecutive 10 time units.
The two agents should never collide with each other”.

We model the dynamics of each agent as a stochastic
control system and, it also has a nominal deterministic
control system. The Kalman filter in the local hubs can
estimate the states of the stochastic control system and
probabilistic bounds on the states at the time instants when
the cloud receives data from the local hubs. The cloud
synthesizes the control inputs such that the trajectories of
the nominal deterministic control system satisfy the MTL
specification with certain robustness margins. Then, utilizing
a stochastic control bisimulation function [6], one can bound
the divergence of the trajectories of a stochastic control
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system and its nominal deterministic control system in a
probabilistic fashion. In this way, the cloud can apply the
synthesized control inputs (from the nominal deterministic
control system) to the stochastic control system with a
probabilistic guarantee for satisfying the MTL specification.

We provide an implementation of the proposed method on
a simulation case study with two Baxter-On-Wheels robots as
the agents. The results show that the synthesized controller
can lead to satisfaction of the MTL specifications with a
probabilistic guarantee.

II. PRELIMINARIES

A. Stochastic Control Bisimulation Function

We consider a multi-agent system (MAS) consisting of N
agents. Let the time set be T = R≥0. For each agent i, we
consider the stochastic control system with linear dynamics
as below:

dxi =F i(xi, ui)dt+Gi(xi, ui)dw

= (Aixi +Biui)dt+ Υidw,
(1)

where xi : T → X i ⊂ Rni (ni ∈ Z>0) and ui : T → Rmi

(mi ∈ Z>0) are the state and input of the stochastic control
system for agent i, w is an Rpi -valued standard Brownian
motion (pi ∈ Z>0), and Ai ∈ Rni×ni , Bi ∈ Rni×mi and
Υi ∈ Rni×pi are constant matrices.

We also consider the nominal control system of (1) as the
diffusionless deterministic version:

dx∗i = F (x∗i, ui)dt = (Aix∗i +Biui)dt, (2)

where x∗i : T → X i ⊂ Rni is the state of the nominal
control system for agent i.

To bound the divergence of the trajectories of a stochastic
control system and its nominal control system, the stochastic
control bisimulation function is introduced in [6].

Definition 1. A twice differentiable function φi : X i×X i →
R>0 is a stochastic control bisimulation function between (1)
and its nominal system (2) if it satisfies

φi(xi, x̃i) > 0,∀xi, x̃i ∈ X i, xi 6= x̃i,

φi(xi, xi) = 0, ∀xi ∈ X i,
(3)

and there exist µi, αi > 0 and a control input ui : T→ Rmi

such that

∂φi

∂xi
F i(xi, ui) +

∂φi

∂x̃i
F i(x̃i, ui)

+
1

2
Gi

T
(xi, ui)

∂2φi

∂xi2
Gi(xi, ui) ≤ −µiφi + αi,

(4)

for any xi, x̃i ∈ X i.

If the system is stable, i.e. Ai is Hurwitz, we can construct
a stochastic control bisimulation function of the form

φi(xi, x̃i) = (xi − x̃i)TM i(xi − x̃i),

where M i is a symmetric positive definite matrix.

Based on [6], if we pick αi = tr(ΥiTM iΥi), the inequal-
ity (4) becomes a linear matrix inequality (LMI)

Ai
T
M i +M iAi + µiM i � 0. (5)

We denote agent i’s trajectory starting from xi0 with the input
signal ui(·) as ξi·;xi0,ui . Equation (4) holds for any input signal
ui(·), so ui(·) is free to be designed. It can also be seen that
the matrix M i that satisfies (5) also satisfies:

Ai
T
M i +M iAi � 0. (6)

Thus it can be verified that ψ(xi, x̃i) = φi(xi, x̃i) = (xi −
x̃i)TM i(xi− x̃i) is also a control bisimulation function (see
Definition 2 of [7]) of the nominal system

dx∗i = (Aix∗i +Biui)dt. (7)

We denote the nominal system trajectory starting from xi0
with the input signal ui(·) as ξ∗i·;xi0,ui .

Remark 1. If the system dynamics is not stable but stabi-
lizable, we can introduce another input signal ζi(·) such that
ui = Kixi + ζi, where Ki is chosen such that Ai + BiKi

is Hurwitz, and the above properties still hold by replacing
(5) with (Ai +BiKi)TM i +M i(Ai +BiKi) + µiM i � 0.

Proposition 1. If φ is a stochastic control bisimulation
function between the stochastic system (1) and its nominal
system (7), then for any t > 0 and ηi ∈ [0, 1),

P

{
sup

0≤t′≤t
φ(ξ∗it′;xi0,ui

, ξit′;xi0,ui
) <

αt

1− ηi

}
> ηi. (8)

Proof. Straightforward from Proposition 2.2 of [8] and (4).

In Equation (8), φ provides a probabilistic upper bound
for the distance between the states of the stochastic system
and its nominal system in a finite time horizon.

B. Metric Temporal Logic (MTL)

In this subsection, we briefly review metric temporal logic
(MTL) [9]. The state x of the system belongs to the domain
X ⊂ Rn. The time set is T = R≥0. The domain B =
{True,False} is the Boolean domain, and the time index set
is I = {0, 1, . . . }. We use t[k] ∈ T to denote the time instant
at time index k ∈ I and x[k] , x(t[k]) to denote the value
of x at time t[k]. With slight abuse of notation, we use ξ to
denote an trajectory of the system as a function from T to X .
A set AP is a set of atomic propositions, each mapping X
to B. The syntax of MTL is defined recursively as follows:

ϕ := > | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1UIϕ2,

where > stands for the Boolean constant True, π ∈ AP
is an atomic proposition, ¬ (negation), ∧ (conjunction),
∨ (disjunction) are standard Boolean connectives, U is a
temporal operator representing “until”, I is a time index
interval of the form I = [i1, i2] (i1 ≤ i2, i1, i2 ∈ I). We can
also derive two useful temporal operators from “until” (U),
which are “eventually” ♦Iϕ = >UIϕ and “always” �Iϕ =



¬♦I¬ϕ. We define the set of states that satisfy the atomic
proposition π as O(π) ⊂ X .

We denote the distance from x to a set D ⊆ X as
distd(x,D) ,inf{d(x, x′) | x′ ∈ cl(D)}, where d is a
metric on X and cl(D) denotes the closure of the set D.
In this paper, we use the metric d(x, x′) = ‖x− x′‖, where
‖·‖ denotes the 2-norm. We denote the depth of x in D
as depthd(x,D) , distd(x,X \ D). We define the signed
distance from x to D as Distd(x,D) , −distd(x,D), if x
6∈ D; and Distd(x,D) , depthd(x,D), if x ∈ D.

The Boolean semantics of MTL can be found in [10], with
the slight variation that we only evaluate the satisfaction of
a trajectory with respect to an MTL formula at discrete-time
instants t[k] (k ∈ I). The robustness degree of a trajectory ξ
with respect to an MTL formula ϕ at time index k, denoted
as [[ϕ]] (ξ, k), is defined recursively as follows:

[[>]] (ξ, k) := +∞,
[[π]] (ξ, k) :=Distd(x[k],O(π)),

[[¬ϕ]] (ξ, k) :=− [[ϕ]] (ξ, k),

[[ϕ1 ∨ ϕ2]] (ξ, k) := max
(

[[ϕ1]] (ξ, k), [[ϕ2]] (ξ, k)
)
,

[[ϕ1UIϕ2]] (ξ, k) := max
k′∈(k+I)

(
min

(
[[ϕ2]] (ξ, k′),

min
k≤k′′<k′

[[ϕ1]] (ξ, k′′)
))
.

As defined, [[ϕ]] (ξ, k) ≥ 0 if ξ satisfies ϕ at time index k.

C. Differential Privacy for Dynamical Systems

In this subsection, we review the theoretical framework
of differential privacy for dynamical systems. The notion
of differential privacy in this paper follows the definition
of differential privacy for trajectories introduced in [3] and
applied in [11].

We consider the so-called “input perturbation” approach to
differential privacy. This means that each agent will directly
add noise to its own outputs before sharing them with a
local hub. This has the advantage of privatizing sensitive data
before it is shared. Formally, each agent’s state trajectory will
be made approximately indistinguishable from other nearby
state trajectories which the same agent individually could
have produced; the notions of “nearby” and “approximately
indistinguishable” are formalized below in Definitions 2
and 3.

With slight abuse of notations, we consider discrete-
time trajectories ξi = [xi[0], xi[1], . . . , xi[k], . . . ], where
xi[k] = ξi

t[k];xi0,u
i ∈ Rni for all k. We also use the `p-

norm
∥∥ξi∥∥

`p
:=
(∑∞

k=1

∥∥xi[k]
∥∥p
p

) 1
p

, where ‖.‖p is the or-
dinary p-norm on Rd. We further define the set `dp :={
ξi | xi[k] ∈ Rd,

∥∥ξi∥∥
`p
<∞

}
.

The state trajectory ξi is contained in the set ˜̀ni
2 , which

is the set of sequences of vectors in Rni whose finite
truncations are all in `ni2 . Formally, we define the truncation
operator PL over trajectories as follows: PL

(
ξi
)

= xi[k], if
k ≤ L; and PL

(
ξi
)

= 0, otherwise. We say that ξi ∈ ˜̀ni
2 if

and only if PL[ξi] ∈ `ni2 for all L ∈ N.

A differentially private mechanism makes adjacent trajec-
tories produce outputs which are similar in a precise sense,
making the state trajectories approximately indistinguishable
to the recipient of a system’s outputs. To formulate differ-
ential privacy for trajectories, we next define the adjacency
relation over the space ˜̀ni

2 defined above.

Definition 2. (Adjacency) Fix an adjacency parameter
νi > 0 for agent i. The adjacency relation Adjνi is defined
for all ξi, ξ′i ∈ ˜̀ni

2 as

Adjνi(ξ
i, ξ′i) =

{
1, if ‖ξi − ξ′i‖`2 ≤ νi,
0, otherwise.

(9)

Two state trajectories of agent i are thus adjacent if the `2
distance between them is not more than νi. Differential
privacy must therefore make agent i’s state trajectory ap-
proximately indistinguishable from all others contained in
an `2-ball of radius νi centered on its actual trajectory.

Next is a formal definition of differential privacy for dy-
namical systems which specifies the probabilistic guarantees
of privacy. To state it, we will use a probability space
(Ω, F , P). This definition considers outputs in the space ˜̀qi

2

and uses a σ-algebra over ˜̀qi
2 , denoted Θqi

2 , construction of
which can be found in [12].

Definition 3. ((εi, δi)-Differential Privacy for Agent i) With
εi > 0 and δi ∈ (0, 1/2) for agent i, a mechanism M : ˜̀ni

2 ×
Ω → ˜̀qi

2 is
(
εi, δi

)
-differentially private if for all adjacent

ξi, ξ′i ∈ ˜̀ni
2 and for all S ∈ Θqi

2 , we have

P
[
M
(
ξi
)
∈ S

]
≤ eε

i

P
[
M
(
ξ′i
)
∈ S

]
+ δi. (10)

At time k, agent i has state xi(k) ∈ Rni (ni ∈ N). We
convert the continuous-time linear dynamics in (1) to the
following discrete-time linear dynamics for agent i

xi[k + 1] = Āixi[k] + B̄iui[k] + wi[k],

yi[k] = C̄ixi[k],
(11)

where ui[k] ∈ Rmi is the input, process noise for agent i
is denoted by wi[k] ∈ Rni , and the matrices Āi ∈ Rni×ni ,
B̄i ∈ Rni×mi are derived from Ai and Bi in (1) for the
discrete-time state-space representation of agent i, and C̄i ∈
Rqi×ni . The probability distribution of the process noise is
given by wi[k] ∼ N

(
0,W i

)
, where 0 ≺W i ∈ Rni×ni , and

all process noise terms are assumed to have finite variance.
At each time k, agent i outputs the value yi[k] and

we define ρi = [yi[0], yi[1], . . . , yi[k], . . . ]. Absent any
privacy protections, the values of yi could reveal those of xi

over time, which would compromise agent i’s privacy by
revealing its state trajectory. Therefore, noise must be added
to agent i’s output to protect its state trajectory. Calibrating
the level of noise is done using the “sensitivity” of an agent’s
output, which we define next for the input perturbation
privacy.

Definition 4. (Sensitivity for Input Perturbation Privacy) The
`2-norm sensitivity of agent i’s output map is the greatest



distance between two output trajectories which correspond
to adjacent state trajectories. Formally, for ξi, ξ′i ∈ ˜̀ni

2 ,

∆`2ρ
i := sup

ξi,ξ′i|Adjνi (ξ
i,ξ′i)=1

∥∥C̄iξi − C̄iξ′i∥∥
`2
. (12)

We can bound ∆`2ρ
i via ∆`2ρ

i ≤
∥∥C̄i∥∥ νi [3], where∥∥C̄i∥∥ denotes the largest singular value of C̄i. Various

mechanisms have been developed for enforcing differential
privacy in the literature [2]. The Gaussian mechanism re-
quires adding Gaussian noise to outputs to mask agents’ state
trajectories, and it can be useful in control settings that are
robust to Gaussian noise. We next provide a definition of the
Gaussian mechanism in terms of the Q-function, defined by
Q (y) = 1√

2π

∫∞
y
e−

z2

2 dz.

Lemma 1. (Input Perturbation Gaussian Mechanism for
Linear Systems) Let agent i specify privacy parameters εi >
0 and δi ∈ (0, 1/2). Let ρi ∈ ˜̀qi

2 denote the output of
a system with state trajectories in ˜̀ni

2 , and denote its `2-
norm sensitivity by ∆`2ρ

i. Then the Gaussian mechanism
for
(
εi, δi

)
-differential privacy takes the form

ỹi[k] = yi[k] + vi[k], (13)

where vi is a stochastic process with vi[k] ∼ N
(

0, σi
2
Iqi

)
,

Iqi is the qi × qi identity matrix, and

σi ≥ ∆`2ρ
i

2εi

(
ιδi +

√
ι2δi + 2εi

)
where ιδi := Q−1

(
δi
)
.

(14)
This Gaussian mechanism provides

(
εi, δi

)
-differential pri-

vacy.

Proof: See [3, Corollary 1]. �
In words, the Gaussian mechanism adds i.i.d Gaussian noise
point-wise in time to the output of a system to keep its state
trajectory private. We will use the Gaussian mechanism to
enforce differential privacy for the remainder of the paper.

III. DIFFERENTIALLY PRIVATE CONTROLLER SYNTHESIS
WITH METRIC TEMPORAL LOGIC SPECIFICATIONS

In this section, we first present the problem formula-
tion of differentially private controller synthesis with metric
temporal logic specifications, then provide the theoretical
framework and algorithm for solving the problem.

A. Problem Formulation

To formulate the problem, we first define the network-
level dynamics. We consider the stochastic control system
with the aggregated states as below:

dx = (Ax+Bu)dt+ Υdw, (15)

where x = [(x1)T , . . . , (xN )T ]T and u = [(u1)T ,
. . . , (uN )T ]T , where A = diag(A1, . . . , AN ) is a block
diagonal matrix with blocks A1 through AN , B =
diag(B1, . . . , BN ), C = diag(C1, . . . , CN ), and Υ =
diag

[
Υ1, . . . ,ΥN

]
. We denote the aggregated system trajec-

tory starting from x0 = [(x1
0)T , . . . , (xN0 )T ]T with the input

signal u(·) as ξ·;x0,u.

Each agent reports its state information with added privacy
noise (e.g., Gaussian noise) to a local hub. Each local hub
runs a Kalman filter to estimate the state of the corresponding
agent and periodically (with period T ∈ Z>0) send the
state estimate of the agent to a cloud. The cloud computes
the optimal inputs for a control horizon of T time instants
for each agent with respect to an MTL specification ϕ. We
formulate the controller synthesis problem as follows.

Problem 1. Given an MAS consisting of N agents, N
local hubs, a cloud, an MTL specification ϕ and privacy
parameters εi ∈ [εmin, εmax] (where 0 < εmin ≤ εmax),
δi ∈ [δmin, δmax] (where 0 < δmin ≤ δmax < 1/2),
compute the input signals u1(·), . . . , uT (·) that minimize∑N
i=1

∥∥ui(·)∥∥ while satisfying P{[[ϕ]] (ξ·;x0,u, 0) ≥ 0} ≥ χ
for given χ ∈ (0, 1], i.e., the trajectory ξ·;x0,u satisfies the
MTL specification ϕ with probability at least χ.

B. Kalman Filtering at Local Hubs

We assume that the privatized output of each agent is
transmitted to the local hubs in discrete-time where the
discrete-time dynamics for agent i is as follows:

xi[k + 1] = Āixi[k] + B̄iui[k] + wi[k],

ỹi[k] = C̄ixi[k] + vi[k],
(16)

where the privacy noise vi[k] ∼ N (0, σi
2
Iqi) is a Gaussian

random variable and where σi is chosen according to Equa-
tion (14) corresponding to privacy parameters (εi, δi). We
also define the privacy covariance matrix V i := σi

2
Iqi .

The local hubs are responsible for estimating the agents’
states. For agent i, the prediction step of the Kalman filter
is given by

x̂−i[k + 1] = Āix̂i[k] + B̄iui[k], (17)

where x̂−i[k] is the a priori state estimate. The a posteriori
state estimate x̂i[k] is updated as

x̂i[k+1] = x̂−i[k+1]+Σ
i
C̄i

T
V i
−1

(ỹi[k+1]−C̄ix̂−i[k+1]).
(18)

The a posteriori error covariance matrix Σ
i

is given by

Σ
i

= Σi − ΣiC̄i
T
(
C̄iΣiC̄i

T
+ V i

)−1

C̄iΣi (19)

where the a priori error covariance matrix Σi is the unique
positive semidefinite solution to the discrete algebraic Riccati
equation

Σi = ĀiΣiĀi
T−ĀiΣiC̄iT

(
C̄iΣiC̄i

T
+ V i

)−1

C̄iΣiĀi
T

+W i (20)

Increasing the level of privacy is achieved by adding more
noise, namely, using smaller privacy parameters εi and δi

translates to imposing a larger σi. Larger σi accordingly
makes the estimation more uncertain, hence making the
privacy covariance V i larger. As seen in Equation (20),
increasing the noise naturally results in a larger a priori
covariance matrix Σi and a posteriori covariance matrix



Σ
i

in Equation (19). Therefore, as we increase the strength
of privacy, i.e. decrease the privacy values εi and δi, the
covariance matrices Σi and Σ

i
monotonically get larger.

As we did in Subsection III-A, we assemble the co-
variance matrices Σi and Σ

i
into network-level matrices

Σ = diag
(
Σi, . . . ,ΣN

)
and Σ = diag

(
Σ

1
, . . . ,Σ

N
)

. We
also assume εi ∈ [εmin, εmax] and δi ∈ [δmin, δmax]. The
mean squared error (MSE) of the estimated states by the
Kalman filter is computed by

MSE = E[‖x[k]− x̂[k]‖2
]

= trΣ (21)

and we denote the upper and lower bounds on the MSE by(
trΣ
)

min
≤ MSE ≤

(
trΣ
)

max
, (22)

where
(
trΣ
)

min
corresponds to the lowest level of privacy

achieved by (εmax, δmax) and
(
trΣ
)

max
, corresponds to

the highest level of privacy, achieved by (εmin, δmin). The
following two lemmas bound the MSE values of interest.

Lemma 2. Let R and M be n×n matrices. If R = RT � 0
and M is symmetric, then

λn(M)tr(R) ≤ tr(RM) ≤ λ1(M)tr(R). (23)

Proof: See [13, Fact 5.12.4]. �

Lemma 3. Assume M � 0. Then the MSE of estimation
error scaled by the matrix M is bounded by

λn(M)
(
trΣ
)

min
≤ E

[
(x− x̂)

T
M (x− x̂)

]
≤ λ1(M)

(
trΣ
)

max
.

Proof: By immediate expansion and using Equa-
tion (21) we get

E
[
(x− x̂)

T
M (x− x̂)

]
= tr(MΣ)

and using Lemma 2 we find

λn(M)tr(Σ) ≤ tr(MΣ) ≤ λ1(M)tr(Σ), (24)

which completes the proof. �
Next, we use Markov’s inequality to write

P
[
(x[k]− x̂[k])TM(x[k]− x̂[k]) ≥ β

]
≤

E
[
(x[k]− x̂[k])TM(x[k]− x̂[k])

]
β

, (25)

and using Lemma 3 we can say

P
[
(x[k]− x̂[k])TM(x[k]− x̂[k]) ≥ β

]
≤ tr(MΣ)

β
. (26)

C. Controller Synthesis With MTL Specifications in Cloud

In this subsection, we consider the controller synthesis
problem (in the cloud) with MTL specifications.

We first provide the following theorem that bounds the
robustness degrees of trajectories of a stochastic control
system and those of the nominal deterministic control system
with respect to an MTL specification.

Algorithm 1 Differentially private controller synthesis with
MTL specifications.

1: `← 0, initialize the states and inputs
2: while ` < Tmax do
3: if ` = jT for some j = 0, 1, . . . then
4: Obtain x̂i[`] from the Kalman filter in local hub

i and update the constraints (30)-(32)
5: ϕ← [ϕ]`0
6: Re-solve (29)-(32) to obtain the optimal inputs

u∗i[`+ q] (i = 1, 2, . . . , Q, q = 0, 1, . . . , T − 1)
7: û∗i[`+ q]← u∗i[`+ q] (i = 1, 2, . . . , Q,
8: q = 0, 1, . . . , T − 1)
9: end if

10: end while
11: Return û∗

Theorem 1. For a group of N agents, a cloud and any MTL
specification ϕ, if for a given time τ the following holds

P
[
(xτ − x̂τ )TM(xτ − x̂τ ) < β

]
> γ, (27)

where xτ , ξτ ;x0,u and x̂τ respectively denote the true
network-level state at time τ and the a posteriori state
estimate of the Kalman filter for the network-level state at
time τ , t ≥ τ , β > 0, γ = 1 − tr(MΥ)

β ∈ (0, 1], η ∈ [0, 1)
then we have

P
{
| [[ϕ]] (ξ·;xτ ,u, t)− [[ϕ]] (ξ∗·;x̂τ ,u, t)| < β̂

}
> γη,

where β̂ ,
(√

β+
√

α(t−τ)
1−η

)
‖M‖−

1
2 , α = tr(ΥTMΥ), and

‖M‖ denotes the largest singular value of the matrix M .

Under the conditions of Theorem 1, if [[ϕ]] (ξ∗·;x̂0,u
, 0) ≥

β̂, then P {[[ϕ]] (ξ·;x0,u, 0) > 0} > γη. Therefore, the cloud
can synthesize the control inputs for the nominal determin-
istic control system such that the trajectories of the nominal
deterministic control system satisfy the MTL specification
with certain robustness margins. Then all the synthesized
control input methods for the deterministic system can be
applied to the stochastic control system with probability of
at least γη for satisfying the MTL specification.

We use [ϕ]`k to denote the formula modified from the MTL
formula ϕ when ϕ is evaluated at time index k and the
current time index is `. [ϕ]`k can be calculated recursively
as follows (we use πk to denote the atomic predicate π
evaluated at time index k):

[π]`k =


πk, if k > `

>, if k ≤ ` and x[k] ∈ O(π)

⊥, if k ≤ ` and x[k] 6∈ O(π)

[¬ϕ]`k :=¬[ϕ]`k

[ϕ1 ∧ ϕ2]`k :=[ϕ1]`k ∧ [ϕ2]`k

[ϕ1UIϕ2]`k :=
∨

k′∈(k+I)

(
[ϕ2]`k′ ∧

∧
k≤k′′<k′

[ϕ1]`k′′
)
.

(28)

If the MTL formula ϕ is evaluated at the initial time index
(which is the usual case when the task starts at the initial
time), then the modified formula is [ϕ]`0.



For example, if ϕ = �[0,10](x ≥ 5), the current time is 5
and ϕ is not violated yet, then [ϕ]50 = �[6,10](x ≥ 5).

Algorithm 1 shows the proposed differentially private
controller synthesis approach with respect to MTL specifica-
tions. The controller synthesis problem can be formulated as
a sequence of mixed integer linear programming problems:

arg min
ui[`:`+T−1]

N∑
i=1

∥∥ui[` : `+ T − 1]
∥∥ (29)

subject to: x∗i[`+ k + 1] = Āix∗i[`+ k] + B̄iui[`+ k],

x∗i[`] = x̂i[`],∀i = 1, . . . , N, ∀k = 0, . . . , T − 1,
(30)

uimin ≤ ui[`+ k] ≤ uimax,∀i = 1, 2, . . . , N,

∀k = 0, . . . , T − 1, (31)

[[ϕ]] (ξ∗·;x̂0,u, 0) ≥ β̂, (32)

where the time index ` is initially set as 0, ui[` : `+T−1] =
{ui[`], · · · , ui[`+T−1]} is the control input signal for agent
i and the input values are constrained to [uimin, u

i
max], ξ∗·;x̂0,u

is the nominal trajectory of the aggregated state starting from
x̂0 with input u = [(u1)T , . . . , (uN )T ]T .

At each time index ` = jT (j = 0, 1, . . . ), the local hubs
send the state estimates to the cloud, and we modify the
MTL formula as in (28) (Line 5). The MILP is solved for
time ` = jT with the updated state values and the modified
MTL formula [ϕ]`0 (Line 6). The previously computed control
inputs are replaced by the newly computed control inputs
from time index ` to `+T −1 (Line 8). The same procedure
repeats until a set maximal time Tmax is reached.

IV. IMPLEMENTATION

In this section, we implement our differentially private
controller synthesis approach on the example in Fig. 1 (in
Section I). The nominal deterministic dynamics of the ith
(i = 1, 2) Baxter-On-Wheels robot can be expressed as [14]

%̇i =
vir + vil

2
cos(θi) = vi cos(θi),

κ̇i =
vir + vil

2
sin(θi) = vi sin(θi),

θ̇i =
vir − vil

2d
= ωi,

(33)

where %i, κi and θi denote the x-position, y-position and
the orientation of the wheelchair base, vir and vil are the
wheel speeds of the right and left wheels of the ith robot,
respectively, vi and ωi are the linear and angular velocities
of the ith robot, respectively, and di is the distance of any
one wheel from the center of the robot base of the ith robot.
We feedback linearize the system as follows:[

%̈i

κ̈i

]
=

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

] [
v̇i

viωi

]
. (34)

We choose the intermediate control inputs to the robot to be
v̇i and viωi such that[

v̇i

viωi

]
=

[
cos(θi) sin(θi)
− sin(θi) cos(θi)

] [
ui1
ui2

]
, (35)
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Fig. 2. Obtained optimal input signals for MTL specification ϕ.

where ui1 and ui2 are the new control inputs to be determined.
With (34), (35) and adding the process noise, we have the

following stochastic control system with linear dynamics:[
d2%i/dt2

d2κi/dt2

]
=

[
ui1
ui2

]
+

[
bi1
bi2

]
dw/dt, (36)

where bi1 = bi2 = 0.01 (i = 1, 2).
We denote the aggregated state by x = [%1 κ1 %̇1 κ̇1 %2

κ2 %̇2 κ̇2]T and the output y = x. We add privacy noise to y
using the Gaussian mechanism with the privacy parameters
ε ∈ [log(6), log(10)] and δ ∈ [0.1, 0.4]. We choose M as the
identity matrix and design u = Kx+ ζ, where

K =


−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0

 ,
and ζ(·) is the new input signal.

We use the following MTL specification:

ϕ =
(
�[0,20]♦[0,10](x

1 ∈ Green1)
)

∧
(
�[0,20]♦[0,10](x

1 ∈ Green4)
)

∧
(
�[0,20]♦[0,10](x

2 ∈ Green2)
)

∧
(
�[0,20]♦[0,10](x

2 ∈ Green3)
)

∧
(
�[0,20]¬Collide(x1, x2)

)
,

where x1 = [%1 κ1]T and x2 = [%2 κ2]T are the positions of
the two agents, respectively. The regions Green1, Green2,
Green3 and Green4 are square regions with the side length
of 10 centered at [0 0]T , [100 0]T , [0 100]T and [100 100]T ,
respectively.

The initial positions of the two agents are x1[0] = [0 0]T

and x2[0] = [100 0]T , respectively. The initial velocities are
v1[0] = ω1[0] = 0 and v2[0] = ω2[0] = 0, respectively. We
set uimax = 50, uimin = −50 for i = 1, 2, and we set T = 10
and Tmax = 20. We compute the control inputs for the two
robots such that the MTL specification ϕ is satisfied with
probability at least 90% (we choose γ = η = 95%) with
minimal control efforts. Fig. 2 shows the obtained optimal
input signals u1 and u2.

V. CONCLUSION

We presented a provably correct method for differentially
private controller synthesis with respect to metric temporal
logic (MTL) specifications. For future work, we will extend
the implementations to more complicated MTL specifications
and experiments on a hardware testbed.



APPENDIX

Proof of Theorem 1:
To prove Theorem 1, we first prove that Theorem 1 holds
for any atomic proposition π.

As the metric d satisfies the triangle inequality, for any
given τ ≥ 0, we have ∀y ∈ X , t ≥ τ ,

|d(ξt−τ,xτ ,u, y)− d(ξ∗t−τ,x̂τ ,u, y)|
≤ |d(ξt−τ,xτ ,u, y)− d(ξ∗t−τ,xτ ,u, y)|

+ |d(ξ∗t−τ,xτ ,u, y)− d(ξ∗t−τ,x̂τ ,u, y)|
≤ d(ξt−τ,xτ ,u, ξ

∗
t−τ,xτ ,u) + d(ξ∗t−τ,xτ ,u, ξ

∗
t−τ,x̂τ ,u).

(37)

As P[
(
ξ∗t−τ,x̂τ ,u−ξ

∗
t−τ,xτ ,u

)T
M
(
ξ∗t−τ,x̂τ ,u−ξ

∗
t−τ,xτ ,u

)
<

β] > γ, we have

P[d(ξ∗t−τ,x̂τ ,u, ξ
∗
t−τ,xτ ,u) <

√
β ‖M‖−

1
2︸ ︷︷ ︸

A

] > γ. (38)

On the other hand, as

P[
(
ξt−τ,xτ ,u − ξ∗t−τ,xτ ,u

)T
M
(
ξt−τ,xτ ,u − ξ∗t−τ,xτ ,u

)
<
α(t− τ)

1− η
] > η.

(39)

Thus, we have

P[d(ξt−τ,xτ ,u, ξ
∗
t−τ,xτ ,u) <

√
α(t− τ)

1− η
‖M‖−

1
2︸ ︷︷ ︸

B

] > η.

(40)

From (38) and (40), as event A and event B are indepen-
dent, we have

P[d(ξ∗t−τ,x̂τ ,u, ξ
∗
t−τ,xτ ,u) <

√
β ‖M‖−

1
2 ,

d(ξt−τ,xτ ,u, ξ
∗
t−τ,xτ ,u) <

√
α(t− τ)

1− η
‖M‖−

1
2 ] > γη.

(41)

Therefore, from (41) and (37), we have

P[|d(ξt−τ,xτ ,u, y)− d(ξ∗t−τ,x̂τ ,u, y)| < β̂(t)] > γη, (42)

where β̂(t) ,
(√

β +
√

α(t−τ)
1−η

)
‖M‖−

1
2 .

In the following, we denote B(ξ∗t−τ,x̂τ ,u, β̂(t)) ,

{ξt−τ,xτ ,u, y) | |d(ξt−τ,xτ ,u, y)− d(ξ∗t−τ,x̂τ ,u, y)| < β̂(t)}.
1) ξ∗t−τ,x̂τ ,u ∈ O(π), and B(ξ∗t−τ,x̂τ ,u, β̂(t)) ⊂ O(π),

as shown in Fig. 3 (a). In this case, for any ξt−τ,xτ ,u ∈
B(ξ∗t−τ,x̂τ ,u, β̂(t)),

[[π]] (ξ·,xτ ,u, t) = inf{d(ξt−τ,xτ ,u, y)|y ∈ X\O(π)}.

From (42), it holds with probability at least γη that

[[π]] (ξ·,xτ ,u, t) ≥ inf{d(ξ∗t−τ,x̂τ ,u, y)− β̂(t)|y ∈ X\O(π)}
= inf{d(ξ∗t−τ,x̂τ ,u, y)|y ∈ X\O(π)} − β̂(t)

= [[π]] (ξ∗·,x̂τ ,u, t)− β̂(t).

Fig. 3. Four different cases in the proof.

2) ξ∗t−τ,x̂τ ,u /∈ O(π), and B(ξ∗t−τ,x̂τ ,u, β̂(t)) ⊂ X\O(π),
as shown in Fig. 3 (b). In this case, for any ξt−τ,xτ ,u ∈
B(ξ∗t−τ,x̂τ ,u, β̂(t)),

[[π]] (ξ·,xτ ,u, t) = −inf{d(ξt−τ,xτ ,u, y)|y ∈ cl(O(π))}.

From (42), it holds with probability at least γη that

[[π]] (ξ·,xτ ,u, t) ≥ −inf{d(ξ∗t−τ,x̂τ ,u, y) + β̂(t)|y ∈ cl(O(π))}
= [[π]] (ξ∗·,x̂τ ,u, t)− β̂(t).

3) ξ∗t−τ,x̂τ ,u ∈ O(π), but B(ξ∗t−τ,x̂τ ,u, β̂(t)) 6⊂ O(π), as
shown in Fig. 3 (c). In this case, it holds with probability at
least γη that

[[π]] (ξ·,xτ ,u, t) ≥ min
ξt−τ,xτ ,u∈B(ξ∗t−τ,x̂τ ,u,β̂(t))

[[π]] (ξ·,xτ ,u, t)

= min{X1, X2},
where
X1 =

− max
ξt−τ,xτ ,u∈B(ξ∗t−τ,x̂τ ,u,β̂(t)),

ξt−τ,xτ ,u /∈O(π)

inf{d(ξt−τ,xτ ,u, y)|y ∈ cl(O(π))},

X2 =

min
ξt−τ,xτ ,u∈B(ξ∗t−τ,x̂τ ,u,β̂(t)),

ξt−τ,xτ ,u∈O(π)

inf{d(ξt−τ,xτ ,u, y)|y ∈ X\O(π)}.

As d(ξt−τ,xτ ,u, y) ≥ 0, so X1 ≤ 0, X2 ≥ 0,
min{X1, X2} = X1. For any ξt−τ,xτ ,u ∈ B(ξ∗t−τ,x̂τ ,u, β̂(t))

and ξt−τ,xτ ,u /∈ O(π), there exists zc ∈ B(ξ∗t−τ,x̂τ ,u, β̂(t))
and zc ∈ ∂(O(π)) such that ξt−τ,xτ ,u, zc and ξ∗t−τ,x̂τ ,u are
collinear, i.e.

d(ξ∗t−τ,x̂τ ,u, zc) + d(zc, ξt−τ,xτ ,u)

= d(ξ∗t−τ,x̂τ ,u, ξt−τ,xτ ,u) ≤ β̂(t). (43)

Therefore, as [[π]] (ξ∗·,x̂τ ,u, t) = inf{d(ξ∗t−τ,x̂τ ,u, y)|y ∈
X\O(π)} ≤ d(ξ∗t−τ,x̂τ ,u, zc) and inf{d(ξt−τ,xτ ,u, y)|y ∈
cl(O(π))} ≤ d(ξt−τ,xτ ,u, zc), we have for any x ∈
B(x̂τ , β̂(t)) and ξt−τ,xτ ,u /∈ O(π),

inf{d(ξt−τ,xτ ,u, y)|y ∈ cl(O(π))}+ [[π]] (ξ∗·,x̂τ ,u, t) ≤ β̂(t).

So −X1 + [[π]] (ξ∗·,x̂τ ,u, t) ≤ β̂(t), i.e. X1 ≥
[[π]] (ξ∗·,x̂τ ,u, t) − β̂(t). Therefore, it holds with probability



at least γη that [[π]] (ξ·,xτ ,u, t) ≥ min{X1, X2} = X1 ≥
[[π]] (ξ∗·,x̂τ ,u, t)− β̂(t).

4) ξ∗t−τ,x̂τ ,u /∈ O(π), but B(ξ∗t−τ,x̂τ ,u, β̂(t)) 6⊂ X\O(π),
as shown in Fig. 3 (d). In this case, we have

[[π]] (ξ∗·,x̂τ ,u, t) = −inf{d(ξ∗t−τ,x̂τ ,u, y)|y ∈ cl(O(π))}.

For any ξt−τ,xτ ,u ∈ B(ξ∗t−τ,x̂τ ,u, β̂(t)) and ξt−τ,xτ ,u /∈
O(π), it holds with probability at least γη that

[[π]] (ξ·,xτ ,u, t) = −inf{d(ξt−τ,xτ ,u, y)|y ∈ cl(O(π))}
≥ −inf{d(ξ∗t−τ,x̂τ ,u, y) + β̂(t)|y ∈ cl(O(π))}
= [[π]] (ξ∗·,x̂τ ,u, t)− β̂(t).

Therefore, it holds with probability at least γη that
[[π]] (ξ·,xτ ,u, t) ≥ min{X1, X2} = X1 ≥ [[π]] (ξ∗·,x̂τ ,u, t) −
β̂(t).

In sum, we have proven that [[π]] (ξ·,xτ ,u, t) ≥
[[π]] (ξ∗·,x̂τ ,u, t)−β̂(t) holds with probability at least γη. Sim-
ilarly, we can prove that [[π]] (ξ·,xτ ,u, t) ≤ [[π]] (ξ∗·,x̂τ ,u, t) +

β̂(t) holds with probability at least γη.
Therefore, Theorem 1 holds for any atomic proposition π.

Next, we use induction to prove that Theorem 1 holds for
any MTL formula ϕ.

(ii) We assume that Theorem 1 holds for ϕ and prove
Theorem 1 holds for ¬ϕ.

If Theorem 1 holds for ϕ, then as [[¬ϕ]] (ξ∗·,x̂τ ,u, t) =
− [[ϕ]] (ξ∗·,x̂τ ,u, t), it holds with probability at least γη

that − [[¬ϕ]] (ξ∗·,x̂τ ,u, t) − β̂max ≤ − [[¬ϕ]] (ξ·,xτ ,u, t) ≤
− [[¬ϕ]] (ξ∗·,x̂τ ,u, t) + β̂max, thus it holds with probability at
least γη that [[¬ϕ]] (ξ∗·,x̂τ ,u, t)− β̂max ≤ [[¬ϕ]] (ξ·,xτ ,u, t) ≤
[[¬ϕ]] (ξ∗·,x̂τ ,u, t) + β̂max.

(iii) We assume that Theorem 1 holds for ϕ1, ϕ2 and prove
Theorem 1 holds for ϕ1 ∧ ϕ2.

If Theorem 1 holds for ϕ1 and ϕ2, then it holds
with probability at least γη that [[ϕ1]] (ξ∗·,x̂τ ,u, t) −
β̂max ≤ [[ϕ1]] (ξ·,xτ ,u, t) ≤ [[ϕ1]] (ξ∗·,x̂τ ,u, t) + β̂max,
[[ϕ2]] (ξ∗·,x̂τ ,u, t) − β̂max ≤ [[ϕ2]] (ξ·,xτ ,u, t) ≤
[[ϕ2]] (ξ∗·,x̂τ ,u, t) + β̂max. As [[ϕ1 ∧ ϕ2]] (ξ∗·,x̂τ ,u, t) =
min([[ϕ1]] (ξ∗·,x̂τ ,u, t), [[ϕ2]] (ξ∗·,x̂τ ,u, t)), it holds with
probability at least γη that

min([[ϕ1]] (ξ∗·,x̂τ ,u, t), [[ϕ2]] (ξ∗·,x̂τ ,u, t))− β̂max

≤ [[ϕ1 ∧ ϕ2]] (ξ·,xτ ,u, t) ≤ min([[ϕ1]] (ξ∗·,x̂τ ,u, t),

[[ϕ2]] (ξ∗·,x̂τ ,u, t)) + β̂max,

therefore it holds with probability at least γη that
[[ϕ1 ∧ ϕ2]] (ξ∗·,x̂τ ,u, t) − β̂max ≤ [[ϕ1 ∧ ϕ2]] (ξ·,xτ ,u, t) ≤
[[ϕ1 ∧ ϕ2]] (ξ∗·,x̂τ ,u, t) + β̂max.

(iv) We assume that Theorem 1 holds for ϕ and prove
Theorem 1 holds for ϕ1UIϕ2.

As

[[ϕ1UIϕ2]] (ξ∗·,x̂τ ,u, t) = max
t′∈(t+I)

(
min

(
[[ϕ2]] (ξ∗·,x̂τ ,u, t

′),

min
t≤t′′<t′

[[ϕ1]] (ξ∗·,x̂τ ,u, t
′′)
))
,

if Theorem 1 holds for ϕ1 and ϕ2, then it holds
with probability at least γη that [[ϕ1]] (ξ∗·,x̂τ ,u, t

′′) −
β̂max ≤ [[ϕ1]] (ξ·,xτ ,u, t

′′) ≤ [[ϕ1]] (ξ∗·,x̂τ ,u, t
′′) +

β̂max, [[ϕ2]] (ξ∗·,x̂τ ,u, t
′) − β̂max ≤ [[ϕ2]] (ξ·,xτ ,u, t

′) ≤
[[ϕ2]] (ξ∗·,x̂τ ,u, t

′)+ β̂max, so it holds with probability at least
γη that

max
t′∈(t+I)

(
min

(
[[ϕ2]] (ξ∗·,x̂τ ,u, t

′),

min
t≤t′′<t′

[[ϕ1]] (ξ∗·,x̂τ ,u, t
′′)
))
− β̂max

≤ max
t′∈(t+I)

(
min

(
[[ϕ2]] (ξ·,xτ ,u, t

′), min
t≤t′′<t′

[[ϕ1]] (ξ·,xτ ,u, t
′′)
))

≤ max
t′∈(t+I)

(
min

(
[[ϕ2]] (ξ∗·,x̂τ ,u, t

′),

min
t≤t′′<t′

[[ϕ1]] (ξ∗·,x̂τ ,u, t
′′)
))

+ β̂max.

Thus Theorem 1 holds for ϕ1UIϕ2.
Therefore, it is proved by induction that Theorem 1 holds

for any MTL formula ϕ.
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