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Abstract— In this paper we prove the existence of a
fundamental trade-off between accuracy and robustness in
perception-based control, where control decisions rely solely on
data-driven, and often incompletely trained, perception maps.
In particular, we consider a control problem where the state
of the system is estimated from measurements extracted from
a high-dimensional sensor, such as a camera. We assume that
a map between the camera’s readings and the state of the
system has been learned from a set of training data of finite
size, from which the noise statistics are also estimated. We
show that algorithms that maximize the estimation accuracy
(as measured by the mean squared error) using the learned
perception map tend to perform poorly in practice, where the
sensor’s statistics often differ from the learned ones. Conversely,
increasing the variability and size of the training data leads to
robust performance, however limiting the estimation accuracy,
and thus the control performance, in nominal conditions.
Ultimately, our work proves the existence and the implications
of a fundamental trade-off between accuracy and robustness in
perception-based control, which, more generally, affects a large
class of machine learning and data-driven algorithms [1]–[4].

I. INTRODUCTION

Machine learning methods are rapidly being deployed for a
broad class of applications, ranging from speech recognition
and malware detection, to control design and dynamic deci-
sion making. These data-driven algorithms often outperform
classical methods and require, typically, substantially less
knowledge about the specifics of the problem. For control
applications, in particular, data-driven algorithms promise
to overcome the limitations of traditional model-based ap-
proaches, and to provide solutions to complex control prob-
lems where a detailed model of the plant and its operating
environment is either too complex to be useful, or too dif-
ficult to estimate or derive from first principles [5]–[7]. Yet,
the lack of strong guarantees for the safety and robustness of
data-driven algorithms questions their deployment, especially
in applications such as autonomous driving and exploration.

In this paper, we characterize a fundamental trade-off
between accuracy and robustness in a data-driven control
problem. We consider a perception-based control scenario,
Fig. 1, where a camera is used to partially measure the
state of a dynamical system and construct an estimator of
the full state. We assume that the output map between the
high-dimensional camera stream and the system state has
been learned accurately [8], although the estimated statistics
of the measurement noise are inaccurate. Such inaccuracies,
which can arise from limited training data, sudden changes in
environmental conditions, and adversarial manipulation, are
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Fig. 1. Panel (a) shows a perception-based control scenario, where
the partial state of a dynamical system (vehicle) is extracted from the
measurements of a high-dimensional sensor (camera) and used to implement
a feedback control algorithm. A perception map is learned from a set of
training data of finite size, which relates the sensor’s readings to the system’s
state. Panel (b) shows the probability density functions of the perception
error when operating in nominal (clear weather, as represented by the
training data) and non-nominal (rainy weather, as it may occur in practice)
conditions (error statistics are computed numerically using the simulator
CARLA [11]). Due to inaccuracies and uncertainties in the sensed data, the
error statistics of the perception map differ from the statistics learned during
the training phase. As shown in panel (c), discrepancies in the error statistics
lead to poor estimation performance in practical conditions. As we prove in
this paper, a fundamental trade-off exists between accuracy and robustness of
a linear estimator (consequently, in the considered perception-based control
setting), so that estimators that perform well on the training data may exhibit
poor performance with non-nominal conditions, while robust estimators may
exhibit mediocre yet robust performance in a broad set of conditions.

unknown to the estimator and induce incorrect confidence
bounds on the estimated state variables. In turn, inaccurate
confidence bounds can lead to harmful control decisions [9].
Further, we show that, because of the incorrect noise statis-
tics, accuracy of the estimation algorithm can be improved
only at the expenses of its robustness. Thus, estimation
algorithms that are optimal in the nominal training phase may
underperform in practice compared to suboptimal algorithms.
Our analytical results provide an explanation as to why
nominally suboptimal data-driven algorithms can exhibit
better generalization and robust properties in practice [10].

Related work. Machine learning and, more generally, data-
driven algorithms have shown remarkable performance under
nominal and well-modeled conditions in a variety of ap-
plications. Yet, the same algorithms have proven extremely
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fragile when subject to small, yet targeted, perturbations of
the data [12], [13]. A detailed understanding of this unreli-
able behavior is still lacking, with recent theoretical results
proving robustness and generalization guarantees for learning
algorithms subject to adversarial disturbances, e.g., see [14]–
[16], and showing that, in certain contexts, robustness to
perturbations and performance under nominal conditions are
inversely related [1]–[4]. Compared to these works, we prove
that a fundamental trade-off between accuracy and robustness
also arises in linear estimation algorithms, which may lead
to a critical degradation of the closed loop performance [9].

Related to this work is the literature on robust control and
estimation [17], [18]. However, the primary focus of this
paper is not on designing a robust estimator or controller,
but rather on proving the existence of a fundamental trade-
off between accuracy and robustness, which plays a critical
role in the deployment of learning and data-driven methods
in control applications, including perception-based control.

Finally, the literature on perception-based control is also
very rich, with results ranging from integrating camera
measurements with inertial odometry [19], to control of
unmanned aerial vehicles [20] and vision-based planning
[21], to name a few. To the best of our knowledge, the trade-
off between accuracy and robustness that we highlight here
was not discussed in any of the above research streams.

Paper contributions. This paper features two main contri-
butions. First, we study a perception-based control problem,
where the state of a dynamical system is reconstructed using
a high-dimensional sensor. We prove the existence of a
fundamental trade-off between the accuracy of the estimation
algorithm, as measured by its minimum mean squared error,
and its robustness to variations and inaccuracies of the data
statistics. Thus, (i) estimation algorithms that are optimal for
the nominal data tend to perform poorly in practice, where
the operating conditions may differ from the nominal data,
and, conversely, (ii) estimation algorithms that are robust to
data variations exhibit suboptimal performance in nominal
conditions. Second, we characterize estimators that lie on the
Pareto frontier between accuracy and robustness, that is, es-
timators that are maximally robust for a desired performance
level, and estimators that are maximally accurate for a given
bound on the data variations and inaccuracies. We also show,
numerically, that the trade-off for estimation algorithms also
affects the performance of the closed-loop system, and even
when the measurement error is not normally distributed, as
we assume for the derivation of our analytical results.

In a broader context, the results of this paper further char-
acterize a fundamental limitation of machine learning and
data-driven algorithms, as described for different settings in
[1]–[4], and clarify its implications for control applications.

Paper’s organization. The rest of the paper is organized as
follows. Section II contains our mathematical setup. Section
III contains the trade-off between accuracy and robustness,
and the design of optimal estimators. Section IV contains
our numerical example, and Section V concludes the paper.

Notation. A Gaussian random variable x with mean µ and
covariance Σ is denoted as x ∼ N (µ,Σ). The n×n identity

matrix is denoted by In. The expectation operator is denoted
by E[·]. The spectral radius and the trace of a square matrix
A are denoted by ρ(A) and Tr(A), respectively. A positive
definite (semidefinite) matrix A is denoted as A > 0 (A ≥ 0).
The Kronecker product is denoted by ⊗, and vectorization
operator is denoted by vec(·).

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

Consider the discrete-time, linear, time-invariant system

x(t+ 1) = Ax(t) + w(t), (1)
y(t) = Cx(t) + v(t), t ≥ 0, (2)

where x(t) ∈ Rn denotes the state, y(t) ∈ Rm the output,
w(t) the process noise, and v(t) the measurement noise. We
assume that w(t) ∼ N (0, Q), with Q ≥ 0, v(t) ∼ N (0, R),
with R > 0, and x(0) ∼ N (0,Σ0), with Σ0 ≥ 0, are
independent of each other at all times t ≥ 0.1 Finally, we
assume that A is stable, that is, ρ(A) < 1. Note that this
implies that (A,C) is detectable and (A,Q

1
2 ) is stabilizable.

We use a linear filter with constant gain K ∈ Rn×m to es-
timate the state of the system (1) from the measurements (2):

x̂(t+ 1) = Ax̂(t) +K[y(t+ 1)− CAx̂(t)] t ≥ 0, (3)

where x̂(t) denotes the state estimate at time t. Let e(t) =
x(t) − x̂(t) and P (t) = E[e(t)e(t)T] denote the estimation
error and its covariance, respectively. For t ≥ 0, we have

e(t+ 1) = AKe(t) +BKw(t)−Kv(t+ 1), (4)

P (t+ 1) = AKP (t)AT
K +BKQB

T
K +KRKT, (5)

where AK , A −KCA and BK , In −KC. We assume
that the gain K is chosen such that AK is stable, that is,
ρ(AK) < 1. Under this assumption, lim

t→∞
P (t) , P (K) ≥ 0

exists, and satisfies the Lyapunov equation

P (K) = AKP (K)AT
K +BKQB

T
K +KRKT. (6)

The performance of the filter is quantified by P(K) ,
Tr(P (K)), where a lower value of P(K) is desirable. Note
that the steady-state gain Kkf of the Kalman filter [22]
minimizes P(K) and depends on the matrices A, C, Q, R.

We allow for perturbations to the covariance matrix R,
which may result from (i) modeling and estimation errors,
as in the case of perception-based control, or (ii) accidental
or adversarial tampering of the sensor, as in the case of false
data injection attacks [23]. To quantify the effect of such
perturbations to the covariance matrix R on the performance
of the estimator, we define the following sensitivity metric:

S(K) , Tr

[
d

dR
P(K)

]
. (7)

Intuitively, if S(K) is large, then a small change in R can
result in a large change (possibly, large increment) in P(K).

Remark 1: (Comparison with adversarial robustness) In
adversarial settings, the adversary designs a small determin-
istic perturbation added to a given observation (e.g., pixels

1See Section IV for numerical examples showing that our main results
seem to be valid also when some of these assumptions are not satisfied.



of an image) to deteriorate the performance of a machine
learning algorithm. This perturbed observation can be viewed
as a realization of a multi-dimensional distribution. Instead,
in this work we consider perturbations to the sensor’s noise
covariance, which accounts for all possible realizations.
Thus, our sensitivity metric captures the average performance
change over all possible perturbations, rather than the degra-
dation caused by a single worst-case perturbation. �

Lower values of sensitivity S(K) are desirable, and indi-
cate that the filter (3) is more robust to perturbations. This
motivates the following optimization problem:

S∗(δ) = min
K

S(K)

s.t. P(K) ≤ δ,
(8)

where δ ≥ P(Kkf) for feasibility. In what follows, we
characterize the solution K∗ to (8), and the relations between
the sensitivity S(K∗) and the error P(K∗) as δ varies. To
facilitate the discussion, in the remainder of the paper we
use accuracy to refer to any decreasing function of the error
P(K) obtained by the gain K, and robustness to denote any
decreasing function of the sensitivity S(K) of the gain K.

III. ACCURACY VS ROBUSTNESS TRADE-OFF IN
LINEAR ESTIMATION ALGORITHMS

We begin by characterizing the sensitivity S(K).
Lemma 3.1: (Characterization of sensitivity) Let the sen-

sitivity S(K) be as in (7). Then, S(K) = Tr(S(K)), where
S(K) ≥ 0 satisfies the following Lyapunov equation:

S(K) = AKS(K)AT
K +KKT. (9)

Lemma 3.1 allows us to compute the sensitivity of the
linear estimator (3) as a function of its gain. Before proving
Lemma 3.1, we present the following technical result.

Lemma 3.2: (Property of the solution to Lyapunov equa-
tion) Let A, B, Q be matrices of appropriate dimension with
ρ(A) < 1. Let Y satisfy Y = AY AT +Q. Then, Tr(BY ) =
Tr(QTM), where M satisfies M = ATMA+BT.

Proof: Since ρ(A) < 1, Y and M can be written as

Y =

∞∑

i=0

AiQ(AT)i and M =

∞∑

i=0

AiB(AT)i. (10)

The result follows by pre-multiplying Y and M by B and
QT respectively, and using the cyclic property of trace.

Proof of Lemma 3.1: Taking the differential of (6) with
respect to the variable R, we get

dP (K) = AKdP (K)AT
K +KdRKT

⇒ dTr(P (K)) = Tr(dP (K))
(a)
= Tr(KdRKTM), (11)

where M > 0 satisfies: M = AT
KMAK+In, and (a) follows

from Lemma 3.2. From (11), we get

dP(K) = Tr(KTMKdR)⇒ d

dR
P(K) = KTMK. (12)

Using (12) and (7), we have that S(K) = Tr(KTMK) =
Tr(KKTM) = Tr(S(K)), where S(K) is defined in (9) and
the last equality follows from Lemma 3.2. To conclude, the
property S(K) ≥ 0 follows by inspection from (9). �

Notice that, since S(K) ≥ 0, S(K) = Tr(S(K)) is a
valid norm of S(K) and captures the size of S(K). Further,
S(K) = 0 for K = 0, that is, K = 0 achieves the
lowest possible value of sensitivity. This implies that δ in the
optimization problem (8) can be restricted to [P(Kkf),P(0)]
to characterize the accuracy-robustness trade-off.

Next, we characterize the optimal solution to (8). We
will show that, despite not being convex, the minimization
problem (8) exhibits a unique local minimum. This implies
that the local minimum is also the global minimum.

Theorem 3.3: (Solution to the minimization problem (8))
Let δ ∈ [P(Kkf),P(0)] and λ ≥ 0. Let X ≥ 0 be the unique
solution to the following Riccati equation:

X = AXAT−AXCT(CXCT+Im+λR)−1CXAT+λQ.
(13)

Then, the global minimum of problem (8) is given by

K∗(λ) = XCT
(
CXCT + Im + λR

)−1
, (14)

where λ is selected such that P(K∗(λ)) , P∗(λ) = δ.
Proof: First-order necessary conditions: We begin by

computing the derivatives of P(K) and S(K) with respect
to the variable K. For notational convenience, we denote
AK , BK , P (K) and S(K) by Ā, B, P and S, respectively.
Taking the differential of (9), we get

dS = ĀdSĀT − dKCASĀT − ĀS(dKCA)T + dKKT

+KdKT , ĀdSĀT + Z (15)

⇒ dS(K)
(a)
= Tr(dS)

(b)
= Tr(ZTM)

= 2Tr[(−CASĀT +KT)MdK]

⇒ d

dK
S(K) = 2M(K − ĀSATCT), (16)

where M > 0 satisfies M = AT
KMAK + In, and (a) and

(b) follow from Lemmas 3.1 and 3.2, respectively. A similar
analysis of (6) yields

d

dK
P(K) = 2M(KR− ĀPATCT −BQCT). (17)

Define the Lagrange function of problem (8) as

L(K,λ) = S(K) + λ
(
P(K)− δ

)
, (18)

where λ is the Karush-Kuhn-Tucker (KKT) multiplier. The
stationary KKT condition implies d

dKL(K,λ) = 0, which
using (16) and (17) becomes

2M [K − ĀSATCT + λ(KR− ĀPATCT −BQCT)] = 0.
(19)

Substituting Ā = A−KCA in the above equation, defining
X , A(S + λP )AT + λQ, and using M > 0, we obtain
(14). Next, we show that X satisfies (13). From (6) and (9):

S + λP = Ā(S + λP )ĀT + λBQBT +K(Im + λR)KT

⇒ X = A(S + λP )AT + λQ

= A
[
Ā(S + λP )ĀT + λBQBT +K(Im + λR)KT

]
AT

+ λQ.



Using Ā = A −KCA and substituting the gain K in (14)
in the above equation, we obtain the Riccati equation (13).

The KKT condition for dual feasibility implies that
λ ≥ 0, so (13) has a unique stabilizing solution. Further,
the KKT condition for complementary slackness implies
λ[P(K∗(λ))− δ] = 0. Thus, if λ > 0, then P(K∗(λ)) = δ.
If λ = 0, then the solution to (13) is X = 0. This implies
that K∗(0) = 0, which is feasible only if δ = P(0). Thus,
for any δ ∈ [P(Kkf),P(0)], it holds P(K∗(λ)) = δ.

Second-order sufficient conditions: We show that the station-
ary point (14) corresponds to a local minimum. We begin by
computing the second-order differential of S(K). Taking the
differential of (15) and noting that d2K = 0, we get

d2S = Ād2SĀT − 2dKCAdSĀT − 2ĀdS(dKCA)T

+ 2dK(Ip + CASATCT)dKT , Ād2SĀT + Y

⇒ d2S(K) = Tr(d2S) = Tr(YM) = −4Tr(dKCAdSĀTM)

+ 2Tr(dK(Ip + CASATCT)dKTM). (20)

Similar analysis of (6) yields

d2P(K) = −4Tr(dKCAdPĀTM) (21)

+ 2Tr[dK(R+ CAPATCT + CQCT)dKTM ].

Adding (20) and (21), we get

d2L = −4Tr(dKCA (dS + λdP )︸ ︷︷ ︸
(a)
= 0.

ĀTM)

+ 2Tr[dKWdKTM ] = vecT(dK)(2W ⊗M)vec(dK),

where W , Ip + λR+CA(S + λP )ATCT + λCQCT, and
where (a) holds because dL(K,λ) = 0 at the stationary
point. The above expression implies that the Hessian of the
Lagrangian is given by H = 2W ⊗M , which is positive-
definite because W > 0 and M > 0. Thus, the considered
stationary point corresponds to a local minimum.
Uniqueness of λ: Next, we show that for a given δ, the
equation P(K∗(λ)) = δ has a unique solution. Note that
for a given λ > 0, the optimal gain K∗(λ) in (14) is the
unique minimizer of the cost C(K) = S(K) + λP(K). Let
λ2 > λ1 > 0. Then, we have

S(K∗(λ1)) + λ1P(K∗(λ1)) < S(K∗(λ2)) + λ1P(K∗(λ2)),

S(K∗(λ2)) + λ2P(K∗(λ2)) < S(K∗(λ1)) + λ2P(K∗(λ1)).

Adding the above two equations, we get P(K∗(λ2)) <
P(K∗(λ1)). Thus, P(K∗(λ)) is a strictly decreasing func-
tion of λ, and therefore, it is one-to-one.

To conclude the proof, since the necessary and sufficient
conditions for a local minimum are satisfied by a unique
gain, the local minimum is also the global minimum.

Corollary 3.4: (Properties of P∗(λ)) The error P∗(λ)
defined in Theorem 3.3 is a strictly decreasing function of λ.

Theorem 3.3 shows that the optimal gain can be charac-
terized in terms of a scalar parameter λ, which depends on
the performance level δ according to the relation P∗(λ) = δ.
Notice that λ = 0 if δ = P(0), and λ approaches infinity as
δ approaches P(Kkf). In other words, lim

λ→∞
K∗(λ) = Kkf.

Further, Corollary 3.4 implies that for a given δ, the solution
of P∗(λ) = δ can be found efficiently. For instance, one can
use the bisection algorithm on the interval [0, λmax], where
P∗(λmax) > δ. These results also imply a fundamental trade-
off between performance and robustness of the estimator.

Theorem 3.5: (Accuracy vs robustness trade-off) Let
S∗(δ) denote the solution of (8). Then, S∗(δ) is a strictly
decreasing function of δ in the interval δ ∈ [P(Kkf),P(0)].

Proof: From the proof of Theorem 3.3, we have

∂S(K)

∂K

∣∣∣∣∣
K∗(λ)

= −λ∂P(K)

∂K

∣∣∣∣∣
K∗(λ)

. (22)

Since λ > 0 for δ ∈ [P(Kkf),P(0)] and P∗(λ) = δ,
(22) implies that the sensitivity decreases when the error
increases, and vice versa, so that a strict trade-off exists.

Theorem 3.5 implies that there exists a fundamental trade-
off between the accuracy and robustness of a linear fil-
ter against perturbations to measurement noise covariance
matrix. Therefore, the robustness of the linear filter in (3)
in uncertain or adversarial environments can be improved
only at the expenses of its accuracy in nominal conditions.
Conversely, improving the robustness of the filter leads to a
lower accuracy in nominal conditions.

Remark 2: (Design of optimally robust filters) Let ∆R ≥
0 denote a sufficiently small perturbation to R such that the
approximation ∆P(K) ≈ Tr(KTMK∆R) holds (see (12)).
Further, let ∆R be bounded as Tr(∆R) ≤ γ. Then, we have

∆P(K) = Tr(KTMK∆R) ≤ Tr(KTMK)ρ(∆R)

= Tr(S(K))ρ(∆R) ≤ γS(K).

Thus, given a gain K, the worst case performance degra-
dation due to a bounded perturbation to R is given by
Pworst(K) = P(K) + γS(K). Therefore, a filter that is op-
timally robust (that is, it exhibits optimal worst-case perfor-
mance in the presence of norm-bounded perturbations of the
noise statistics) can be obtained by minimizing Pworst(K).
Note that this minimization problem is akin to the problem
(8), and that its solution is given by (14) with λ = γ−1. �

Remark 3: (Analysis when the system matrix A is un-
stable) The accuracy-robustness trade-off shown above also
holds when A is unstable and (A,C) is detectable. The
analysis for this case follows the same reasoning as above,
except that the range of interest for the error becomes δ ∈
[P(Kkf),P(K∗S)], with K∗S = arg min

K
S(K). If A does not

have eigenvalues on the unit circle, then the Riccati equation
(13) has a unique solution for λ = 0 [24] (Theorem 12.6.2),
and K∗S = K∗(0) (c.f. (14)). In this case, P(K∗S) is finite.
The case when A has eigenvalues on the unit circle is more
involved, finding K∗S is not trivial, and P(K∗S) may become
arbitrarily large. This aspect is left for future research (see
Section IV for an example with unit eigenvalues). �

We conclude this section with an illustrative example.
Example 1: (Robustness versus performance trade-off)
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Fig. 2. Panel (a) shows the accuracy versus robustness trade-off for the
linear estimator (3) and the system described in Example 1. The red dot
denotes the Kalman filter, and the green dot denotes the linear filter with zero
gain. The Kalman filter achieves optimal performance with the nominal data,
yet it is the most sensitive to changes of the noise statistics. The opposite
trade-off holds for the filter with zero gain. Panel (b) shows the estimation
error as a function of λ for the system described in Example 1. The green
dot denotes the filter with zero gain. The performance of the Kalman filter
does not appear in the plot since it requires λ =∞.

Consider the system in (1) and (2) with matrices

A =

[
0.9 0
0.02 0.8

]
, C =

[
0.5 −0.8
0 0.7

]
,

Q =

[
0.5 0
0 0.7

]
, R =

[
0.5 0.1
0.1 0.8

]
.

(23)

Fig. 2(a) shows the values S∗(δ) obtained from (8) over the
range δ ∈ [P(Kkf),P(0)]. Several comments are in order.
First, as predicted by Theorem 3.5, the plot shows a trade-
off between accuracy and robustness. Second, in accordance
with Theorem 3.3, the solution to the minimization problem
(8) implies that the equality constraint in (8) is active. Third,
when δ = P(Kkf), the minimization problem (8) returns the
Kalman gain. Fourth, although the Kalman filter (depicted
by the red dot) achieves the highest accuracy, it features
the highest sensitivity (thus, lowest robustness) among the
solutions of (8) over the range δ ∈ [P(Kkf),P(0)]. Thus,
the estimator that is most accurate on the nominal data,
is also the most sensitive to perturbations. Fifth, the linear
filter obtained when δ = P(0) exhibits the worst nominal
performance, but is the most robust to changes in the noise
statistics. Fig. 2(b) shows the values of P∗(λ) as a function
of λ. We observe that P∗(λ) is a strictly decreasing function
in λ in accordance with Corollary 3.4. We also observe that
the linear filter obtained when δ = P(0), depicted by the
green dot, has λ = 0. Finally, the value P∗(λ) obtained when
δ = P(Kkf) cannot be shown since it requires λ =∞. �

IV. ACCURACY VERSUS ROBUSTNESS TRADE-OFF IN
PERCEPTION-BASED CONTROL

In this section we illustrate the implication of our theoret-
ical results to the perception-based control setting shown in
Fig. 1. We consider a vehicle obeying the dynamics [8]

x(t+ 1)=




1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1




︸ ︷︷ ︸
A

x(t)+




0 0
Ts 0
0 0
0 Ts




︸ ︷︷ ︸
B

u(t)+w(t),

(24)
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Fig. 3. Panel (a) shows the trajectory tracking performance for the
controller (27) with the Kalman filter (dashed red line) and a robust filter
(dotted green line) in nominal noise statistics (the desired trajectory is shown
by the solid blue line). The controller with the Kalman filter outperforms the
other. Panel (b) shows the tracking performance for the two controllers using
non-nominal noise statistics. In non-nominal conditions, the controller with
the Kalman filter performs worse than the controller with the robust filter.
The performance of a controller is measured based on the mean squared
deviation between the controlled and nominal trajectories (see also Fig. 4).

where x(t) ∈ R4 contains the vehicle’s position and velocity
in cartesian coordinates, u(t) ∈ R2 is the input signal, w(t) ∈
R4 is the process noise which follows the same assumptions
as in (1), and Ts is the sampling time. We let the vehicle be
equipped with a camera, whose images are used to extract
measurements of the vehicle’s position. In particular, let

y(t) = fp
(
Z(t)

)
(25)

denote the measurement equation, where y(t) ∈ R2 con-
tains measurements of the vehicle’s position, Z(t) ∈ Rp×q
describes the p × q pixel images taken by camera, and
fp : Rp×q → R2 is the perception map between the camera’s
images and the vehicle’s position. We approximate (25) with
the following linear measurement model (see also [8]):

y(t) =

[
1 0 0 0
0 0 1 0

]

︸ ︷︷ ︸
C

x(t) + v(t), (26)

where v(t) ∈ R2 denotes the measurement noise, which is
assumed to follow the same assumptions as in (2).

We consider the problem of tracking a reference trajectory
using the measurements (26) and the dynamic controller

xc(t+ 1) =(I −KC)(A−BL)xc(t)

+K(y(t+ 1)− Cxd(t+ 1)),

u(t) =− Lxc(t) + ud(t), (27)

where L denotes the Linear-Quadratic-Regulator gain with
error and input weighing matrices Wx > 0 and Wu > 0, K
the gain of a stable linear estimator as in (3),2 xd the desired
state trajectory, and ud the control input generating xd.

The statistics of the measurement noise in (26) depend
on how the perception map is trained and the data samples
used for the training. We aim to show that, if the estimator’s
gain in (27) is designed to minimize the estimation error
based on the learned noise statistics, then the performance
of the perception-based controller (27) degrades significantly
if the learned statistics differ from the actual noise statistics.
Conversely, if the estimator’s gain in (27) is designed based

2If K equals the gain of the Kalman filter for the given system, then the
controller (27) corresponds to the Linear-Quadratic-Gaussian regulator.
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Fig. 4. This figure shows the root mean square error (RMSE) of the
controller (27) with the Kalman filter (solid blue line) and the robust filter
(dashed red line), as a function of deviation between the measurement
noise statistics. For small deviations, the controller using the Kalman filter
outperforms the other. For large deviations, the controller using the robust
filter outperforms the controller using the Kalman filter.

on Remark 2, then the performance of the perception-based
controller (27) remains robust across different values of
the noise statistics, although lower than the performance
of the optimal estimator operating with the nominal noise
statistics. Fig. 3 shows the trajectory tracking performance
for the controller (27) for the Kalman filter and a ro-
bust filter with Ts = 1, Q = 0.1I4, R = 0.1I2,Wx =
diag(100, 10−3, 100, 10−3),Wu = 10−3I2. The robust filter
corresponds to λ = 0.307 (see (14)). The non-nominal co-
variance is R̄ = 2.5I2. We observe that the controller based
on the Kalman filter performs better in nominal conditions,
while the controller based on the robust filter performs better
in non-nominal conditions, as predicted by our theoretical
results. Fig. 4 shows the error of the Kalman filter and the
robust filter as a function of the changes of the measurement
noise covariance. We notice that for small deviations (near-
nominal conditions), the controller based on the Kalman filter
performs better than the controller based on the robust filter.
However, when the deviation of the noise statistics becomes
substantially large, the controller based on the robust filter
performs better, thereby validating our theoretical trade-off.

As shown in Fig. 1(b), the perception error may not be nor-
mally distributed, especially in the case of non-nominal mea-
surements. Although our theoretical results were obtained
under the assumption that the measurement (perception) error
is normally distributed, we next numerically show that a
trade-off still exists when the measurement (perception) error
is not Gaussian. To this aim, we consider the system in (24)
and (26), where the measurement noise is distributed as in
Fig. 1(b) (these distributions are computed numerically using
the simulator CARLA [11]). We design 6 estimators using
(14) with different values of δ, and test the performance of
each estimator in nominal and non-nominal conditions. The
performance of each estimator in nominal and non-nominal
environments, denoted by Pnom and Padv, respectively, is
computed using the sample error covariance computed from
the obtained samples of the estimation error in nominal and
non-nominal conditions. We approximate the sensitivity of
these estimators as the relative degradation of the nominal
performance when operating in non-nominal conditions, that
is, as (Padv−Pnom)/Pnom. Fig. 5 shows the performance and
approximate sensitivity of the estimators. It can be seen that,

1,000 1,500 2,000 2,500 3,000
0

1

2

3

4

Pnom

(P
ad

v
−
P n

om
)/
P n

om

Fig. 5. For the system (24) and (26) with measurement error distributed as
in Fig. 1(b), this figure shows the performance Pnom (i.e., trace of estimation
error covariance) and the approximate sensitivity (Padv −Pnom)/Pnom for
6 different estimators obtained from (14) by varying the desired accuracy
δ. Although the measurement error is not normally distributed, a trade-off
still emerges between the accuracy of the estimators and their sensitivity.

even when the measurement error is not normally distributed,
the estimator with largest (respectively, smallest) accuracy
also has highest (respectively, smallest) sensitivity. These
numerical results suggest that a tradeoff exists independently
of the statistical properties of the measurement error.

We conclude by showing that the identified trade-off
between accuracy and robustness of linear estimators also
constrain the performance of closed-loop perception-based
control algorithms. To this aim, consider the system (24)
with controller (27), where both the estimator gain K and the
controller gain L are now design parameters. For weighing
matrices Wx > 0 and Wu > 0, let the performance of (27) be

J (K,L) = E

[
1

T

( T∑

t=0

x(t)TWxx(t) + u(t)TWuu(t)

)]
,

(28)

where T denotes the time horizon. Notice that a lower value
of the cost J is desirable, and the minimum (for T →∞) is
achieved by choosing the Kalman gain Kkf with the linear
quadratic regulator gain Llqr for the matrices Wx and Wu.
We adopt the following definition of sensitivity (this metric
is the equivalent of (7) for the closed-loop performance):

SJ (K,L) ,Tr

[
∂J (K,L)

∂R

]
, (29)

where R is the noise covariance matrix of (26). To see if
a trade-off exists beween performance and sensitivity of the
closed-loop controller, we solve the following problem:

S∗J (δ) = min
K,L

SJ (K,L)

s.t. J (K,L) ≤ δ,
(30)

where δ is a constant satisfying δ ≥ J (Kkf, Llqr). Notice
that the minimization problem (30) is similar to (8) for the
considered closed-loop control setting. The results of the
minimization problem (30) are reported in Fig. 6, where it
can be seen that a trade-off between the performance of the
controller (27) and its sensitivity still exists. Interestingly,
our numerical results show that the trade-off curve can be
obtained, equivalently, by optimizing over both the controller
and the estimator gain, by fixing the controller gain to be
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Fig. 6. This figure shows the accuracy versus robustness trade-off in the
closed loop setting described in Section IV. The blue, green, and yellow lines
denote the solution of (30), where in the blue line we optimize over both
gains, in the green line we fix the controller to the LQR gain and optimize
over the estimator only, and in the yellow line we fix the estimator to the
Kalman gain and optimize over the controller only. The red line denotes the
trade-off between the accuracy in (28) and the sensitivity in (29) with the
estimator gain given in (14) and the controller fixed to the LQR gain.

the LQR gain and optimizing over the estimator gain, or
by fixing the estimator gain to be the Kalman gain and
optimizing over the controller gain. Further, if the controller
gain is chosen to be the optimal LQR gain, then the estimator
gain that solves (30) coincides with the estimator gain
obtained in Theorem 3.3. We leave a formal characterization
of these properties as the subject of future investigation.

V. CONCLUSION AND FUTURE WORK

In this paper we show that a fundamental trade-off exists
between the accuracy of linear estimation algorithms and
their robustness to unknown changes of the measurement
noise statistics. Because of this trade-off, estimators that
are optimal with nominal sensing data may perform poorly
in practice due to variations of the measurements statistics
or different operational conditions. Conversely, robust es-
timators obtained through a more detailed design process
may maintain similar performance levels in nominal and
non-nominal conditions, but considerably underperform in
nominal conditions when compared to nominally optimal
estimators. To complement these results, we characterize the
structure of optimal estimators, for desired levels of accuracy
and robustness, and show that the trade-off also constrain the
performance of closed-loop perception-based controllers.

The results in this paper complement a recent line of
research aimed at deriving provable guarantees and perfor-
mance limitations of machine learning and data-driven algo-
rithms [1]–[4], and extend such results, for the first time, to
an estimation and control setting. This research area contains
several timely and challenging open problems, including
an explicit quantification of the performance of data-driven
control algorithms when data is scarce and corrupted, and
the design of provably robust data-driven control algorithms.
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