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Abstract— Bayesian hybrid models fuse physics-based in-
sights with machine learning constructs to correct for systematic
bias. In this paper, we compare Bayesian hybrid models against
physics-based glass-box and Gaussian process black-box surro-
gate models. We consider ballistic firing as an illustrative case
study for a Bayesian decision-making workflow. First, Bayesian
calibration is performed to estimate model parameters. We then
use the posterior distribution from Bayesian analysis to compute
optimal firing conditions to hit a target via a single-stage
stochastic program. The case study demonstrates the ability
of Bayesian hybrid models to overcome systematic bias from
missing physics with less data than the pure machine learning
approach. Ultimately, we argue Bayesian hybrid models are
emerging paradigm for data-informed decision-making under
parametric and epistemic uncertainty.

I. INTRODUCTION

Both model-based and data-driven paradigms are regularly
employed for control and decision-making [1], [2], [3],
[4]. So-called glass-box (a.k.a., white-box) models [5], [6]
are created from scientific theories, expert knowledge, and
human intuition. They are regularly used to test scientific
hypotheses and develop deeper fundamental understandings.
When all dominant phenomena are included, glass-box mod-
els offer superior predictive power for extrapolation. Yet
glass-box models are tedious to build and validate. With
the availability of massive-scale data, black-box surrogate
models [7], [8], [9], [10], [11], [12], [13], [14] are growing
in popularity. Statistical machine learning paradigms are
preferred over scientific theories for their ability to automate
model (re)learning and extract undiscovered trends. At the
intersection of these two paradigms are hybrid (a.k.a., grey-
box) models which augments physics-based models with
data-driven constructs to learn missing phenomena.

All mathematical models are burdened by uncertainty.
Aleatoric or statistical uncertainty corresponds to random
phenomena, such as variability between experiments or
observation noise. In contrast, epistemic uncertainty corre-
sponds to systematic bias or model inadequacy, such as
omitting control variables in an experiment or missing phys-
ical phenomena in a model. Robust and stochastic model
predictive control are well-establish paradigms to accom-
modate parameter uncertainty [15]. Closely related, model-
based design of experiments provides a principled approach
to gather information to reduce parametric uncertainty, with
recent work considering approximate models [16], [17].
From a data-driven perspective, Bayesian optimization [18]
uses probabilistic surrogate models to manage exploration

1Department of Chemical and Biomolecular Engineering, University
of Notre Dame, Notre Dame, IN 46556 USA. † Contributed equally. ∗
Corresponding author: adowling@nd.edu

(reducing model uncertainty) and exploitation (improving
the objective). In this paper, we explore Kennedy-O’Hagan
hybrid models as an alternative to pure glass-box and pure
data-driven surrogate models.

The paper is organized as follows. In Section II, we define
Bayesian hybrid models and review literature. In Section
III, we demonstrate the advantages of hybrid models in
illustrative case study for Bayesian calibration and optimiza-
tion with epistemic uncertainty. Finally, in Section IV, we
summarize our conclusions and propose future work.

II. BAYESIAN HYBRID MODELS

Statisticians Kennedy and O’Hagan [19] proposed a
Bayesian framework to simultaneously quantify both
aleatoric and epistemic uncertainty:

yi︸︷︷︸
observation

= η(xi, θ)︸ ︷︷ ︸
glass-box model

+ δ(xi;φ)︸ ︷︷ ︸
discrepancy model

+ εi︸︷︷︸
observation error

(1)

Here, observation yi is modeled with three components: a
glass-box model η(·, ·) with physically meaningful global
parameters θ and inputs xi for experiment i; a stochas-
tic discrepancy function δ(·) to counteract systematic bias
in the glass-box model; and observation error εi such as
uncorrelated white noise, i.e., εi ∼ N (0, σ2I). Outputs
of the Gaussian Process (GP) discrepancy function δ(·) ∼
GP(µ(·), k(·, ·)) follow a conditional normal distribution
with the mean and covariance fully specified by µ(·), the
mean function, and k(·, ·), the kernel function, which include
hyperparameters φ [20], [21].

p(ω|D)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(D|ω)

prior︷︸︸︷
p(ω)∫

p(D|ω)p(ω)dω︸ ︷︷ ︸
evidence

(2)

For Bayesian model calibration, parameters ω = [θ, φ, σ]
are interpreted as random variables. One seeks to express
their belief about the true value of ω using a joint proba-
bility distribution. The standard workflow is to encode one’s
current belief in a prior probability distribution, then observe
data D, and finally apply Bayes rule, Eq. (2), to obtain the
posterior probability distribution p(ω|D) [22]. For Eq. (1)
and unobserved input conditions xi, the posterior distribution
p(θ, φ, σ|D) can be propagated through η(xi, θ), δ(xi;φ) and
εi to obtain the posterior predictive distribution p(y∗|y) for
prediction yi. Thus Kennedy and O’Hagan [19] provide a
fully Bayesian framework to calibrate global model parame-
ters θ, quantify model inadequacy (i.e., systematic bias), and
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make probabilistic predictions. This is an extremely powerful
and flexible approach that has been used in diverse fields
such as computational fluid dynamics [23], electrochemical
energy storage [24], and CO2 capture [25], [26], [27], [28].

III. ILLUSTRATIVE COMPUTATIONAL EXAMPLE

In this paper, we explore the performance of glass-box,
data-driven, and hybrid models for decision-making. Specif-
ically, we consider an illustrative problem of firing a ballistic
to hit a desired target. We demonstrate Bayesian calibration
and stochastic programming approaches for all three model
classes using several training sets.

A. Mathematical Models

We start by describing the three mathematical models
for the illustrative example. To avoid confusion with
observations yi in Eq. (1), we use x and z to represent
horizontal and vertical positions, respectively. We consider
a ballistic with mass m (kg) fired at the origin (x = 0,
z = 0) at angle ψ (◦) and initial velocity v0 (m/s).

1) Glass-box, full physics model: We start with four cou-
pled differential equations and initial conditions to describe
the ballistic trajectory. Here vx and vz correspond with the
horizontal and vertical velocities (m/s), respectively.

m
dvz
dt

= −mg − CDvz|vz|, (3)

m
dvx
dt

= −CDv2x, (4)

dx

dt
= vx,

dz

dt
= vz, (5)

vx(0) = v0 cos(ψ), vz(0) = v0 sin(ψ),

x(0) = 0, z(0) = 0.
(6)

The full physics glass-box model, Eqs. (3) - (6), describes
projectile motion while accounting for air-resistance effects.
Model parameters include g, acceleration due to gravity
(m/s2), and CD, the coefficient of drag (kg/m). To account for
the sign change in vertical velocity (i.e., vz decreases after
being shot, vz reaches zero at the projectile’s peak height,
and finally vz increases during the projectile’s downward
motion), Eq. (3) is solved in two time domains: t ∈ [0, tp)
(upward motion) and t ∈ [tp, tf ] (downward motion). The
absolute value in Eq. (3) ensures that the drag is always in
the opposite direction of the vertical velocity vector. For the
first time domain (upward motion), Eq. (3) becomes:

m
dvz
dt

= −mg − CDv2z , (7)

vz(0) = v0 sin(ψ), vz(tp) = 0, (8)

The above boundary value problem is analytically solved
for the time tp when the projectile reaches peak height and
vz(tp) = 0. The analytic expression for tp is given in Eq. (9).

tp =

√
m

CDg
arctan

(
vz(0)

√
CD
mg

)
(9)

Next, we solve Eq. (10) to determine the peak height z(tp):

dz

dt
= vz

vz(0) = v0 sin(ψ), vz(tp) = 0
(10)

z(tp) =

m

CD

(
ln

(∣∣∣∣∣cos

(√
CDg

m
t− arctan

(√
CD
mg

vz(0)

))∣∣∣∣∣
)

− ln

(∣∣∣∣∣cos

(
arctan

(√
CD
mg

vz(0)

))∣∣∣∣∣
))

(11)

The second time domain (downward motion) is described by
Eqs. (12) - (13) and boundary conditions Eqs. (11) and (14).

m
dvz
dt

= −mg + CDv
2
z (12)

dz

dt
= vz (13)

vz(tp) = 0, vz(tf ) = vf , z(tf ) = 0 (14)

The analytic solution for this system is given by Eq. (15).

z(tf ) =

√
mg

CD

(
tp − tf +

(
ln(2)

−
√

m

CDg
ln

(
exp

(
2

√
CDg

m
(tp − tf )

)
+ 1

)))
+z(tp)

(15)

To compute tf , we set z(tf ) = 0 and numerically solve
Eq. (15). Finally, we use tf in Eq. (16) to compute the total
horizontal distance traveled. Our analysis assumes no change
in elevation.

ŷ(tf ) =
m

CD
ln (CDv0 cosψ)tf +m) (16)

y(tf ) = ŷ(tf ) + ε, ε ∼ N (0, σ2I) (17)

In this paper, we use Eq. (17), which includes observation
noise, in place of physical experiments.

We now describe three predictive surrogate models with
inputs xi = [v0i, ψi] where v0i is the initial velocity and
ψi is the launching angle for experiment i. The input
dimensionality is D = 2.

2) Glass-box, simple physics surrogate model: Often
in engineering applications, the full physics model is not
known, computationally intractable, or otherwise cumber-
some to work with. Instead, a simplified surrogate model
is often used. For the ballistics problem, we consider a
parabolic trajectory that neglects air resistance:

yi = η(xi, θ) + εi

η(xi, θ) =
2(v0i)

2

g
sin(ψi) cos(ψi)

(18)

The impact location y (horizontal distance traveled) given
by Eq. (18) does not depend on m, the projectile mass.



3) Black-box, Gaussian Process (GP) surrogate model:
Another approach is to construct a surrogate model com-
pletely from data, without incorporating (significant) knowl-
edge or physical intuition. Here, we will consider yi ∼
GP(µ(·), k(·, ·)), i.e., a GP model with observation error:

yi = δ(xi;φ) + εi. (19)

We use a Gaussian distribution with a zero mean and a
covariance (K) constructed by the kernel function (k) as a
prior distribution for δ:

p(δ) = N (δ|0,K) (20)

where Kmn = k(xm,xn). We use the radial-based function
(RBF) with automatic relevance determination (ARD) [29]:

k(xm,xn) = σ2
f exp[−1

2

D∑
i=1

(xmi − xni)2

l2i
] (21)

where σ2
f is the kernel variance and li is the lengthscale.

Also a Gaussian likelihood is assumed for the N training
data points:

p(y|δ) = N (y|δ, σ2IN ) (22)

where σ2 is the variance of the observation noise. Using
the properties of linear Gaussian models, one can derive the
marginal likelihood function [20]:

p(y) =

∫
p(y|δ)p(δ)dδ = N (y|0,C) (23)

where C = K + σ2IN . Conditioning on the training data,
we then derive the predictive distribution:

p(y∗|y) = N (y∗|mGP (x∗), σ2
GP (x∗)) (24)

Here, y∗ is the predicted observation for a new input x∗

that is not contained in the training data. Notice y∗ is a
random scalar and its predictive distribution is Gaussian with
predictive mean mGP (x∗) and predictive variance σ2

GP (x∗)
functions:

mGP (x∗) = kTC−1y

σ2
GP (x∗) = c− kTC−1k

(25)

These functions depend on x∗ through c = k(x∗,x∗) and
k = [k(x1,x

∗), ..., k(xN ,x
∗)]T .

4) Hybrid surrogate model: As we will see later, there
are advantages and disadvantages to both physics-based and
data-driven surrogate models. We now consider a Kennedy-
O’Hagan hybrid model:

yi = η(xi, θ) + δ(xi;φ) + εi,

η(xi, θ) =
2v20
g

sin(ψ) cos(ψ)

δ(xi;φ) + εi ∼ GP(µ(·), k(·, ·))

(26)

Here, we combine the simple physics surrogate model
Eq. (18) and the data-driven Gaussian process Eqs. (19) -
(25) to establish the Bayesian hybrid model Eq. (26). We

note that the GP surrogate is now trained on the difference
between the observations y and the simple physics model
outputs η(x, θ).

B. Training Data

We assume g = 9.8 m/s2 and CD/m = 0.01 kg/m2 and
simulate the full physics model, Eq. (3) - (16), to generate
training data. Each experiment consists of the initial velocity
v0, firing angle ψ, and observed impact location y (horizontal
distance traveled). We add Gaussian observation noise with
mean zero and standard deviation 5 m to represent aleatoric
uncertainty. Figure 1 and Table I summarizes the training
data. In this paper, experiments 1-5 act as a base training
dataset. We compare the impact of selecting either experi-
ment 6a, 6b, or 6c as the sixth experiment on both Bayesian
model calibration and optimization under uncertainty.

TABLE I
TRAINING DATA GENERATED FROM FULL PHYSICS MODEL.

Experiment Angle (◦) Initial velocity (m/s) Impact location (m)
ψ v0 y

1 25 60 118.18
2 30 70 159.79
3 36 80 174.14
4 45 90 181.67
5 60 75 143.21
6a 10 42 47.305
6b 80 53 54.294
6c 85 71 43.239

Fig. 1. Trajectories for training data generated from the full physics model.
Significant air resistance causes the trajectories to be not parabolic. x marks
the observed distance traveled and includes observation error.

C. Bayesian Calibration

For each of the three postulated models, we wish to use
a subset of the training data to infer the unknown model
parameters. We use a Bayesian approach, i.e., Eq. (2), which
takes a prior distribution and computes a posterior distribu-
tion. For all three surrogate models, Bayesian calibration is
performed using Markov Chain Monte Carlo implemented
in Python using the PyMC3 package [30].



1) Simple physics surrogate model: In the simple physics
model, Eq. (18), we seek to estimate parameter g. We use a
uniform prior distribution:

1

g
∼ U (0.001, 1) (27)

The likelihood p(D|ω) is assumed to follow a normal
distribution. This is equivalent to assuming the observation
error is normally distributed.

p(D|ω) = N
(
η(xi, g), τ−1

)
(28)

Here, η(xi, g) is the simple model and τ is the precision,
i.e., inverse of the observation error variance. We assume a
gamma prior for hyperparameter τ :

τ ∼ G (0.25, 2.5) (29)

For the simple model, only one model parameter (g) and
one model hyperparameter (τ ) needs to be estimated, thus:

ω = [g, τ ] (30)

2) GP surrogate model: Recall for the ballistics problem,
D = 2. The hyperparameters φ = [σ2

f , l1, l2, σ
2] includes the

kernel variance σ2
f , length scales l1 and l2 and likelihood

variance σ2. The hyperparameters are given the following
prior distributions:

σf ∼ U(0.1, 1)

li ∼ U(1, 50)

σ ∼ N (0, 5)

(31)

We combine these prior distributions with the marginal
likelihood, Eq. 23, which gives the the unnormalized poste-
rior. We then compute a maximum a posteriori (MAP) point
estimate for the four GP hyperparameters:

φ = [σ2
f , l1, l2, σ

2] (32)

With the estimated φ and an arbitrary input x∗, predictive
mean and variance can be calculated by Eq. (25).

3) Hybrid surrogate model: Calibrating the hybrid model
requires inferring the parameters in both the glass-box and
data-driven components. Thus,

θ = g, φ = [σ2
f , l1, l2, σ

2] (33)

To train this hybrid model, we first infer g using Bayesian
regression. We then compute the residual yi − η(xi, g).
Finally, we train the GP via MAP estimation on the residual
with the prior distributions in Eq. (31).

D. Optimization under Uncertainty

We now use the posterior distribution from Bayesian
calibration for optimization under uncertainty. Specifically,
we seek a velocity v0 and angle ψ pair to hit a target at ȳ
= 100 m, which we formulate as a single-stage stochastic
program:

max
v0,ψ

E[u(ȳ − yj)], u(∆y) = 1− 1

100
min (∆y, 100)

(34)

The utility function u(·) varies linearly from unity for a
direct hit to zero for a miss of 100 meters or more. We
approximate the expectation in Eq. (34) using 4500 samples
from the posterior distribution of θ. For computational sim-
plicity, we use a MAP point estimate for hyperparameters
φ. For all three surrogate models, we use a Gauss-Hermite
quadrature rule with 7 nodes to approximate the expected
value from the GP prediction (if applicable) and observation
error distributions. We perform optimization by grid search
from v0 = 40 to 100 m/s and ψ = 1◦ to 90◦ to facilitate
visualization.

E. Results

We now compare the Bayesian calibration and optimiza-
tion under uncertainty workflow for combinations of three
training datasets (A, B, C) and three models (simple physics,
GP, hybrid). For each training dataset, we perform Bayesian
calibration and then compute v†0 and ψ† that maximize
Eq. (34). Each training dataset has six experiments. The
first five experiments are consistent across all training sets.
Table II shows how changing the 6th experiment impacts
the optimization results. From Table II, we observe several
trends:

1) The glass-box simple physics surrogate model be-
haves poorly and consistently overshoots the target
by at least 39 m each time. This is due to the fact
that the simple model fails to account for all physical
phenomena governing projectile motion, specifically,
air-resistance effects. The maximum objective value
calculated using the simple physics model to find the
optimum firing angle and velocity is 0.698. Recall the
objective value 1 indicates a direct hit of the target
with exact certainty.

2) The black-box GP surrogate model also consistently
misses the target, but the maximum distance overshot is
32 m which is less than the simple model. The superior
performance of the GP model can be attributed to
its purely data-driven nature, with no reliance on the
physics governing the process. The maximum objective
value calculated when using the pure GP model is
0.818.

3) The hybrid surrogate model outperforms the simple
and GP models. Out of the nine model and data set
combinations, the maximum overshooting is restricted
to 18 m. We attribute the success of the hybrid model to
its ability to learn missing physics with less data from
the pure data-driven approach. The maximum objective
value obtained when using the hybrid model is 0.987.

Next, we examine training dataset C to further compare
the models. Figures 2 - 4 show the contours of the objective
function in Eq. (34) for all three models. Recall, the utility
function u(·) varies linearly between 1.0 for a direct hit
and 0.0 for a miss of 100 m or more. The dashed blue
line shows ψ, v0 combinations for a direct hit with the full
physics model, i.e., the truth simulation. We make several
observations from these plots:



TABLE II
RESULTS FOR CALIBRATION AND OPTIMIZATION WITH NINE MODEL AND TRAINING DATASET COMBINATIONS.

Training Training Calibrated Optimum Optimum Expected Observed
set experiments model angle (◦) velocity (m/s) distance (m) distance (m)

ψ† v†0 y
Simple 40 60.0 97.0 141

A 1,2,3,4,5,6a GP 29 57.5 137 120
Hybrid 22 57.5 77.7 113
Simple 18 77.5 97.0 139

B 1,2,3,4,5,6b GP 31 57.5 138 132
Hybrid 22 57.5 77.7 118
Simple 13 90.0 96.0 139

C 1,2,3,4,5,6c GP 26 60.0 137 118
Hybrid 72 72.5 97.7 116

Fig. 2. The wide contours of the objective function E[u] indicate high
uncertainty using the simple model. The highest objective value achieved
is 0.698 (E[u] = 1 indicates a direct hit with probability 1).

Fig. 3. The narrower contours of the objective function with the GP model
indicate lower uncertainty than the simple model. The highest objective
value calculated is 0.818 (E[u] = 1 indicates a direct hit with probability
1). The model is insensitive to variations in firing angle indicating the need
to refine the training procedure.

1) In Figure 2 we see wide contours for the objective
that peak below 0.7. This indicates that there is high
uncertainty with the simple model. Moreover, the
average value for g in the posterior is 35.933 m/s2.

Fig. 4. The hybrid model performs the best out of the three models with
the highest objective value of 0.987 (E[u] = 1 indicates a direct hit with
probability 1). The physics from the simple model makes the model sensitive
to the firing angle and the GP accounts for the neglected air resistance in
the simple model to provide the optimal firing conditions.

The estimate of g is biased to offset the missing air
resistance in the model.

2) While Figure 3 shows higher objective values (above
0.8), it also reveals oblong contours. The GP model
is fairly insensitive to angle ψ. This suggests further
refinement of the kernel and/or input transformations
should be explored.

3) Figure 4 illustrates the superior performance of the
hybrid model. The glass-box component provides the
basic shape and the data-driven component corrects
for missing physics. As expected, the contours of the
hybrid model best align with the truth simulation in
regions near training data.

IV. CONCLUSIONS

Through the ballistics illustrative example, we compare
three surrogate modeling paradigms: glass-box, data-driven,
and hybrid. We establish Bayesian workflow for data-
informed decision-making under uncertainty, where the pos-
terior distribution from Bayesian inference is directly used
for stochastic programming. We see how model-form un-
certainty, specifically neglecting air resistance, biases both
parameter estimates (g is 4 times larger than reality) and



predictions (always overshoots). Moreover, a pure data-
driven approach using GP regression requires careful tuning
and struggles with limited data. We found the Kennedy-
O’Hagan hybrid models overcome limitations of both of
these approaches.

More broadly, Kennedy-O’Hagan hybrid models provide
a new direction to account for epistemic (i.e., model-form)
uncertainty in stochastic control and decision-making. We
specifically advocate for a Bayesian approach, which pro-
vides a rich statistical framework to obtain probability dis-
tributions from data that are needed for stochastic program-
ming. As future work, we plan to expand the ballistics case
study to understand how each modeling approach performs
with additional data. We seek to compare sequential and
simultaneous inference of parameters θ and hyperparameters
φ. We hypothesize the latter can reduce bias. We are also
interested in other acquisition functions to manage the trade-
off between exploration (reducing model uncertainty) and
exploitation (direct hit) [18]. Finally, we plan to consider
large-scale applications such as chemical reactor kinetic
modeling, design, and control.
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