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Abstract

We study the problem of tracking multiple diffusing particles using a laser scanning fluorescence

microscope. The goal is to design trajectories for the laser to maximize the information contained

in the measured intensity signal about the particles’ trajectories. Our approach consists of a two

level scheme: in the lower level we use an extremum seeking controller to track a single particle

by first seeking it then orbiting around it. In the higher level controller, we decide which particle

should be observed at each instant, with the goal of efficiently estimating each particle position

while not losing track of any of them. Using simulations, we show that this technique is able to

collect photons efficiently and to track multiple particles with low position estimation error.

I. Introduction

In the study of cellular biological systems, it is necessary to track and identify components

of the cell such as enzymes, RNA, molecular machinery, and viral pathogens. One

generically refers to these as “particles”. One set of methods for studying biology at these

length scales are a group of techniques collectively referred to as single particle tracking

(SPT) [1], [2]. In these methods, particles of interest are smaller than the diffraction limit of

light but can be visualized by labeling them with a fluorescent tag, making them visible to a

fluorescence microscope [3]. By tracking a particle over time, one can understand the

particle’s motion model and the value of its motion parameters. Additionally one can

directly observe the particle’s behavior and interactions within the cellular environment.

The application of SPT to the study of cellular biology has led to many breakthroughs in our

understanding of subcellular processes. A few specific examples include measuring the

behavior and roles of molecular motors [4], observing protein complex behavior in

membrane localized processes [5], and discovering viral infection pathways [6]. In each of

these cases, the transport of the target particles can only be interpreted with reference to the

cellular context. In many cases, this context includes observing the transport of multiple

particles simultaneously.

Tracking multiple particles in a fluorescence microscope can be achieved in a variety of

ways. One common method is to acquire images with a laser scanning microscope, such as a

confocal fluorescence microscope or two-photon fluorescence microscope. These
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microscopes work by scanning a laser through a raster pattern to create an image.

Unfortunately, the time to acquire a single image grows with the number of pixels in the

image, making large area or high resolution images too slow for imaging dynamic particles.

A paradigm change happened when feedback began to be used to control the laser position

to track a single particle continuously without spending time away from the particle [7].

Previous work by one of the authors implemented this concept using an extremum seeking

feedback formulation [8]. While there are benefits in terms of speed and resolution, the main

limitation of feedback methods is that only one particle at a time can be tracked.

The need to track multiple particles motivated the development of more efficient (non-raster

scanned) multiple particle tracking (MPT) methods. Earlier work extended the single

particle feedback methods by tracking each particle individually and switching between

particles at a constant rate [9], [10]. However, issues still remain such as the lack of a

process to design efficient switching rules, the inability to simultaneously handle particles

with different diffusion coefficients, and the challenge of collecting intensity signals that

optimize the collected information in order to improve the particle position estimation

performance. The contribution of this paper is to demonstrate a multiple particle tracking

method that addresses these issues by combining a feedback driven tracking method with

ideas from persistent monitoring (PM) of multiple uncertain targets. The feedback scheme is

drawn from the extremum seeking (ES) approach, introduced in [11], where the trajectory of

the laser is adapted based on the detected fluorescence. We contribute to this algorithm by

showing that there is a set of parameters for which this tracking algorithm is maximally

informative, i.e., we show that the laser converges to an orbital behavior where the collected

data can be used to estimate the particle positions with minimal mean uncertainty. The

system autonomously decides which particle should be tracked at each instant, using

algorithms originally developed by our group in the context of PM [12]. In PM, the goal is to

plan the trajectory of an autonomous agent that has to visit a set of targets in order to collect

data that minimizes the targets states’ estimation error. We integrate PM to the context of

multiple particle tracking, where the SPT algorithm plays the role of “data collection” and

PM is responsible for deciding the optimal time to switch from tracking one particle to

another. After describing the approach, we demonstrate its effectiveness through

simulations.

II. Problem Statement

In this section, we formally define the problem of tracking multiple particles with a laser

scanning microscope. The goal of tracking these particles is to estimate their positions over

time in the cellular context so that one can identify their motion model, as well as the values

of the parameters that define the motion model accurately and precisely. For simplicity of

exposition, we assume the dynamics of the particles of interest are given by a Brownian

motion process, described in discrete time as

Xi[k] = Xi[k − 1] + W i[k], W i[t] 𝒩 0, Qi . (1)
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In this equation, Xi is a random variable taking values in ℝ2 which represents the x and y
location of particle i, where i = 1, …, N, and N is the number of tracked particles. Wi[k] is a

zero mean white noise with covariance matrix Qi = diag(2DiT, 2DiT), where Di is the i-th
particle diffusion coefficient, and T is the sampling period.

Photon detection is a Poisson random process called shot noise. The mean detected photon

rate, Ii, for the fluorescent signal of a single particle at Xi and excited by a tightly focused

leaser beam centered at Xl is given by:

Ii = I0, iexp −2
Xi − Xl

2

b2 , (2)

where b is the laser beam width and I0,i is particle i’s peak mean detected photon rate, i.e. it

is the mean intensity when the laser is positioned exactly above particle i. Given a sampling

period T, the total mean detected intensity I for an integration time is the sum of each

particle’s contribution, given by

I = ∑
i = 1

N
IiT . (3)

We can directly control the laser position velocity (i.e., Ẋl is the control input), and the laser

maximum velocity is upper bounded by υmax. Our goal is to control the laser position Xl

such that the detected intensity signals can be used to efficiently estimate the particle

trajectories. In other words, we want to define an online control strategy where the laser

position is updated using some feedback law that aims to minimize the estimation error

given by

∑
i = 1

N
∑

k = 1

Ns
E ∥ Xi[k] − Xi[k] ∥2 , (4)

where Ns is the total number of samples collected, and Xi is estimated position of particle i

generated using an offline estimator. Note that even though we use feedback while capturing

the intensity data, the estimates of the particle positions are not necessarily computed

simultaneously with the data acquisition process. Estimation can then be done offline. As a

result there are no strict computational time constraints and the estimation can benefit from

the entire dataset (as opposed to online methods, where the estimator must be causal). While

the goal of this paper is the efficient acquisition of informative measurements, we do apply

an offline estimator in our simulation results in Sec. V to help illustrate the results. However,

a detailed study of estimator design is out of the scope of this paper. Interested readers

should see e.g. [11], [13].
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A. Proposed Solution

Our approach to this problem is to implement a two level control scheme. This allows us to

divide the problem into two distinct parts, measurement and tracking of single particles (low

level control), and planning which particle to measure and the duration of the measurement

(high level control). One key assumption that enables this scheme is that the particles are

separated enough so that detected photons comes from a single particle chosen by the high

level controller. This assumption, while not always true in practice, is a common one in SPT

and it allows us to approach the multiple particle tracking problem as being constituted of

tracking individual particles sequentially and then cycling the laser between them.

Extensions to denser collections of particles is left to future work. The low level control will

be discussed in Sec. III and the higher level one in Sec. IV. Algorithm 1 describes precisely

how the integration between the two controllers is to be done.

In Alg. 1, Xi
on is an online estimate of the position of particle i, which means we need an

online estimator for the interface between the lower level and the higher level controllers.

We highlight that this online estimate needs to be computationally cheap and causal, and is

usually not the same estimate that will be used offline (i.e. after all the data has been

collected) to estimate the particle position with a high accuracy. In Alg. 1 the procedure

ScheduleNextObservedTarget(·, ·) is what we call the “high level algorithm”.

III. Extremum Seeking Single Particle Tracking

In this section, we discuss the lower level controller, responsible for tracking a single

particle for some duration. Considering the goal of minimizing the estimation error in (4),

one would like to design this controller such that the laser collects a photon signal that is

maximally sensitive to small changes in particle position. In this context, we first analyze

where is the best region to place the laser. We consider the random observation model with

mean given by (2), and from it derive the Fisher Information Matrix (FIM) for estimating the

particle position under the assumption of a fixed particle position. The FIM for a Poisson

temporal random process is

FIM Xi − Xl = ∫
t0

t1 1
Ii Xi − Xl

∂Ii Xi − Xl
∂Xl

∂Ii Xi − Xl
T

∂Xl
dt, (5)

where the expected intensity Ii is given by (2) and [t0, t1] is the time interval when particle i
is being tracked [14]. We next apply the T-Optimality criteria to the FIM [15] to get the cost

function
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J Xi − Xl = tr FIM Xi − Xl

= − 16
b4∫t0

t1
Xi − Xl

2Ii Xi − Xl dt .
(6)

Optimizing (6) gives that the laser positions that minimize the trace of the FIM are given by

a circle centered on the particle position with a radius of b
2  [16]. We denote this set of

positions as the information optimal orbit. In practice, the assumption we made about the

particle position being fixed is not true. However, this information optimal orbit provides a

near optimal result as long as the speed of the laser is fast relative to the particle motion.

The next step is to determine how to move the laser to the information optimal orbit when

the particle position is not known exactly. The search for a practical controller to track a

single particle leads us to select an extremum seeking controller (ESC). Extremum seeking

is a model free method that locally explores a scalar field and drives the system state towards

an extremal point in the field. In the case of SPT, the scalar field is the expected amount of

detected photons which has a maximum centered on the particle’s location. The use of ESC

allows for tracking using only the collected intensity data, without the need of an online

estimation scheme. (Note that our complete tracking scheme described in Subsec. II-A only

needs an online estimate for the high level controller and, as will be discussed in Sec. IV,

ESC can be used to provide this estimate.) A particular implementation of ESC that

converges to an orbit around a field extremum and that has been shown to work well in SPT

applications is that of a non-holonomic, reactive ESC [8], [17], [18] given by

ΔI = I[k] − I[k − 1],

θ[k] = θ02π f T −
K p
T ΔI,

xl[k] = xl[k − 1] + 2πR f Tcosθ[k − 1],
yl[k] = yl[k − 1] + 2πR f Tsinθ[k − 1] .

(7)

In these equations, f is its oscillation frequency, ω = 2π f is its angular frequency, T is the

controller time step, and R is a positive constant. When ΔI = 0, this controller imposes a

circular orbit with radius R. The feedback term is responsible for guiding the system to an

orbit centered at the extremum and radius R [18]. Therefore, when we set R = b/ (2), ESC

gives us a practical method for converging to the information optimal orbit and enables us to

adapt the orbit as the particle moves.

We characterized the behavior of this lower level controller empirically. Fig. 1 shows the

behavior of the ESC from two initial conditions with the particle being tracked at the origin.

If the initial conditions are too far away, the photon rate is not high enough to drive the ESC

to the target on any practical timescale. If the initial conditions are close enough, the ESC
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converges to a cycle around the target. Empirically, we found there was a region of

convergence defined by a circle with a radius approximately given by

rc = b
ln I0, iT

2 + R . (8)

To illustrate the behavior of the convergence rate, we picked Kp = 0.6 and ω = 60 Hz and

plotted the number of cycles until convergence as a function of the starting position within

the trackable region. The results are shown in Fig. 2.

The ESC is defined by three parameters, ω, Kp, and R. The radius is determined by the

information optimal orbit while the other two can be tuned to minimize the tracking error.

Using Monte Carlo simulations (that consider shot noise and used a diffusion coefficient of

D = 0.1), we picked f = 60 Hz. The mean squared tracking error as a function of Kp is given

in Fig. 3.

IV. Scheduling Multiple Particle Tracking

With the low level controller of Sec. III in place, in this section we turn to the specifics of

our high level algorithm. In previous work by two of the authors [12], we explored the

problem of persistent monitoring of a collection of targets using a (smaller) collection of

agents. In this problem, an agent (the laser in the MPT setting) has to track the state

(position) of a set of targets (the particles). This state was assumed to evolve with linear,

time invariant stochastic dynamics (e.g. Brownian motion, given by a continuous time

version of the dynamical model in (1)). Moreover, it was also assumed that when the agent

dwelled at a target, the target state could be observed with the linear, stochastic observation

model given by

Z(t) = CiXi(t) + V i(t), V i(t) 𝒩 0, ℛi , (9)

where Xi is the target state, ℛi is the covariance matrix of the observation and Vi(t) is white

noise process (i.e. Vi(t1) and Vi(t2) are uncorrelated if t1 ≠ t2).

The goal of PM is to find the sequence of targets to be tracked and the dwelling time at each

of them in order to minimize the worst-case estimation error over long time horizons, i.e.

min
𝒯, 𝒱

max
1 ≤ i ≤ N

lim sup
t ∞

tr(Ωi(t)), (10)

where Ωi(t) is the covariance matrix of an online estimator Xi
on(t) of the state Xi(t), 𝒯 is the

vector that contains the time spent tracking each particle, and 𝒱 is the sequence of particles

visited.

For this cost function (10), for any given dwelling times 𝒯, the optimal visiting sequence is

given by the solution of the Traveling Salesman Problem (TSP) [12], [19], which consists of

finding the shortest path that is able to track all the particles. While the TSP is NP-hard and
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finding an exact solution is infeasible for a large number of targets, there are well-known

efficient sub-optimal solutions that can be applied in practice. Then, given a visiting

sequence, the optimal visiting times can be calculated using a consensus-type algorithm; see

[12] for details.

To deploy the PM algorithm, we need a simple online estimate that fits our estimation model

(9). This is provided by ESC since, after convergence to the radius R, it produces unbiased

observations Z according to the following relation:

Z = Xl + −R sin θ
R cos θ

= Xi + V i, (11)

where V i is a noise term.

With this estimator, the PM algorithm determines the sequence for visiting the particles and

the time to spend at each particle. Intuitively, PM seeks to balance the time spent at each of

the particles, trading off estimation accuracy at any given particle for performance over the

entire collection of particles.

In the MPT setting, when the laser transitions to visit a given particle, it moves to the

particle’s last estimated position (as indicated in Alg. 1), as this is the most likely particle

position and the expected intensity signal is higher when the particle is closer to the laser.

The cost function (10) aims to minimize the worst case uncertainty on the particles’

estimated position and this maximizes the chances that the observations acquire enough

photons for ESC to converge to an orbit centered in the particle.

Finally, we note that in the original PM formulation in [12], the targets (particles) were

assumed to be fixed. Here we rely on the assumption that their movement is slow compared

to the laser speed and thus the PM algorithm produces near optimal schedules.

V. Simulation and Results

In this section, we provide a set of simulations (with three particles in each) with the goal of

illustrating the performance of our proposed approach for tracking multiple particles. For

these simulations, we used the Brownian motion model in (1) and the laser observation

model in (2), with the parameters: Di = 0.1 μm2/s, I0,i = 5 × 104 photons/s, b = 0.5 μm. The

maximum laser speed was limited to υmax = 300 μm/s and the simulation time-step was set

to T = 10−4 s. The extremum seeking oscillation frequency was set to f = 60 Hz, its gain to

kp = 0.2 and the radius to R = b/ (2). The value of the covariance of the noise V i in the

observation model was obtained using the simulated mean squared tracking error, given in

Fig. 3. The particles’ initial positions were drawn from a uniform distribution in [0 μm, 10

μm] × [0 μm, 10 μm]. In the initialization, we assumed that the controller had access to the

approximate initial position of the particles plus some zero mean Gaussian noise (with

covariance equals to diag(0.022, 0.022)) μm2. In practical settings, this initial position could

be obtained using, for example, a widefield image. The initial position of the laser was [5

μm, 5 μm] and the total simulation time was 1 s.
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To characterize the performance of the tracking algorithm, we analyzed the rate of collected

photons. Note that although the number of collected photons does not directly translate into

estimation performance (in particular the position where the photons were collected is also

important), it is still a good proxy for evaluating tracking performance, since in general,

increasing the number of collected photons increases the estimation performance.

The trajectory and the collected photons per sample for typical run of the simulation are

shown in Figs. 4 and 5, respectively. The colors in the intensity figure match the particle

from which those photons came from. Note that since the particles were widely spaced, all

photons collected at each time step were from a single particle. In this run, the mean

collected photons rate (normalized by I0) was 0.2905/sec. This typical run is also displayed

in a video available in the link [20].

To get a sense of the average performance of the tracking scheme, we ran 100 simulations

with the same parameters, but with different initial positions and Brownian motion

realizations. The average detected photons rate over these runs was 0.2958 × I0.

While the ESC does not use any model information, the high-level PM planner uses prior

knowledge of the process and observation noises. In practice, of course, these terms are at

best known only approximately. In order to illustrate the performance of our tracking

scheme to perturbations in the system parameters, we ran set of simulation with almost the

same setup as in the previously described scenarios, except that the values of the peak

intensity and diffusion coefficient were modified to I0 = 4 × 104 photons/s and D = 0.11

μm2/s. The controller was the same as with the nominal parameters. In these simulations, the

average detected photons rate per second was 0.2703 × I0.

Finally, in order to give a sense of how our approach compares to a simple raster scan, we

also used the intensity signal for a raster scan trajectory. In this setup, the laser moved along

a zig-zag (raster) pattern with constant speed, equal to υmax. The raster scan trajectory is

shown in Fig. 6. Note that while the raster scan images a large region without any particles,

this is normal to raster scanning as the region is set in open loop fashion. This simulation run

yielded a normalized average photon rate of 0.0132.

Table I summarizes the results simulation using the setups above mentioned. Each setup was

run 100 times, with random initial positions and diffusion noise realizations. The rate of

acquired photons was consistent among the different simulation runs using our tracking

method and much higher than when using a raster scan.

A. Trajectory estimation from photon data

Although this paper focuses on data collection, the overall goal of MPT is to accurately

estimate the particles’ positions offline. To illustrate how this can be done using the intensity

data from our simulations, we estimated the particles’ positions by applying a Particle Filter

and Rauch-Tung-Striebel Smoother (see e.g. [13]). We note that we have not extensively

explored different offline estimators and likely other approaches could yield estimation with

lower errors. The mean estimation error over time in the first scenario is shown in Fig. 7.

The RMSE was calculated using
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RMSE = ‖(Xi − Xi)‖ . (12)

RMSE results for the third simulation setting (with perturbed parameters) is shown in Fig. 8.

In these plots, the shaded regions indicate times when an individual particle is being tracked.

The RMSE of all runs and considering all simulation setups is given in Table II. Our

estimation algorithm was able to keep the average error at around 100 nm when the nominal

parameters were used in this simulation. However, the mismatch in Di I0,i, generated a

higher estimation error. In future work we plan to also estimate the model parameters along

with the particles’ positions, aiming to improve our estimation performance and robustness

to modeling imperfections.

VI. Conclusions and Future Work

In this paper, we proposed an approach to control the laser position of a laser scanning

microscope in order to generate intensity data that can be efficiently used to track multiple

particles in a sample. Our algorithm consisted of two controllers, one responsible for locally

tracking a single particle and another one that plans which particle to be tracked at each

instant. Simulation results showed that our algorithm was able to efficiently track each of the

particles and acquire a large number of photons and initial results indicate much better

performance than a simple raster scan.

In future works, we plan to drop the assumption that the particle diffusion parameters and

the peak intensity are known beforehand, estimate them while we run our control algorithm,

and then refine this estimate offline using, for example, Expectation Maximization to jointly

optimize the particle position and model parameter estimates. Additionally, we plan to run

physical experiments to validate our approach in a real world scenario.
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Fig. 1.
Extremum Seeking Controller trajectories starting at two different positions showing failure

to converge (blue), and convergence (black).
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Fig. 2.
Number of cycles to convergence as a function of the initial relative position of the laser and

particle. The initial distance is normalized by the radius R.
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Fig. 3.
Mean squared tracking error as a function of Kp, for f = 60 Hz and particle diffusion

coefficient Dx = Dy = 0.1 μm2/s.

Pinto et al. Page 13

Proc Am Control Conf. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4.
Particle and laser trajectories, while tracking three particles in the first simulation scenario.

The laser trajectory is in black and the particles are in blue, yellow and red.
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Fig. 5.
Photons collected at each time step (T = 10−4 s) in the first simulation scenario. The colors

in the plot indicate which particle emitted those photon.
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Fig. 6.
Illustration of a raster scanning trajectory considering a similar simulation setup. The agent

trajectory is in black, while the particle trajectories are colored.
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Fig. 7.
Estimation error over time using the offline estimator. The colors of the plots match the

colors of the particle in Fig. 4. The shaded areas mark when the laser was orbiting around

each particle.
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Fig. 8.
Estimation error over time with perturbed parameters. The shaded areas mark when the laser

was orbiting around each particle.
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TABLE I

Mean number of collected photons per second normalized by I0,i for 100 runs of each of the simulation setups.

Nominal params. Perturbed params Raster scan

0.2958 ± 0.0235 0.2703 ± 0.0795 0.0111 ± 0.0033
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TABLE II

RMSE Estimation error of 100 simulation runs.

Nominal params. Perturbed params

100.3 ± 38.1 nm 138.4 ± 66.3 nm
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