
ar
X

iv
:2

10
3.

14
19

3v
1

 [
ee

ss
.S

Y
]

 2
6

M
ar

 2
02

1

Control Synthesis using Signal Temporal Logic Specifications with

Integral and Derivative Predicates

Ali Tevfik Buyukkocak, Derya Aksaray, and Yasin Yazıcıoğlu

Abstract— In many applications, the integrals and deriva-
tives of signals carry valuable information (e.g., cumulative
success over a time window, the rate of change) regarding the
behavior of the underlying system. In this paper, we extend the
expressiveness of Signal Temporal Logic (STL) by introducing
predicates that can define rich properties related to the integral
and derivative of a signal. For control synthesis, the new
predicates are encoded into mixed-integer linear inequalities
and are used in the formulation of a mixed-integer linear
program to find a trajectory that satisfies an STL specification.
We discuss the benefits of using the new predicates and illustrate
them in a case study showing the influence of the new predicates
on the trajectories of an autonomous robot.

I. INTRODUCTION

Motion planning and control of cyber-physical systems

often require the satisfaction of complex tasks. One way of

expressing such complex tasks is via temporal logics [1].

For example, Linear Temporal Logic (LTL) [2] has been

extensively used in planning and control of autonomous

robots (e.g., [3]–[6]).

Temporal logics such as Metric Temporal Logic (MTL)

[7] and Signal Temporal Logic (STL) [8], [9] are expressive

specification languages that can define properties of dense-

time real-valued signals with explicit spatial and time pa-

rameters. Different than the existing temporal logics with an

automaton representation, MTL and STL contain predicates

in the form of inequalities and are endowed with a metric

called robustness degree that can quantify how good a signal

satisfies a specification [9]. Robustness degree not only gives

a yes/no answer but also provides a real value that quantifies

the degree of satisfaction. Such a metric also enables to

formulate an optimization problem that solves for a trajectory

satisfying the temporal logic specifications (e.g., [4], [10]–

[12]).

Standard STL capabilities are enhanced by several studies

in the literature (e.g., [13]–[17]). For example, since con-

ventional robustness degree focuses on critical time instants,

authors of [13] and [14] define new measures to differ-

entiate the satisfaction of predicates achieved at multiple

time instants from the instantaneous satisfaction of them.

With a similar motivation, a temporal operator is defined

in [15] that explicitly specifies how long a predicate must be

satisfied. However, existing approaches do not accommodate

predicates expressing cumulative success or local behavior

A.T. Buyukkocak and D. Aksaray are with the Department of Aerospace
Engineering and Mechanics, University of Minnesota, Minneapolis, MN,
55455, buyuk012@umn.edu, daksaray@umn.edu, and Y.
Yazıcıoğlu is with the Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN, 55455, ayasin@umn.edu

over a time interval. To this end, this paper introduces inte-

gral and derivative predicates for STL. While the derivative

predicate enables to define properties for the rate of change

of the signal, the integral predicate allows the definition of

properties such as average or cumulative progress at desired

time intervals.

This paper is closely related to [18] which defines pred-

icates to compare signal values at different time instants to

find local extrema of the signal. Also in [19]–[21], authors

propose the notions of cumulative and average robustness

metrics calculated via the signal values at different time

steps. With these methods, while the system can satisfy a

conventional predicate as long and robust as possible by max-

imizing the new metrics, it does not result in the satisfaction

of cumulative properties such as getting a specific amount

of reward/value within a given time window. To this end,

we propose to define new integral and derivative predicates

that can take into account the signal values at different time

steps to define cumulative and relative specifications within

desired time windows. By the proposed predicates, the local

and global signal characteristics can be controlled extensively

without losing the existing STL capabilities.

This paper is organized as follows. We provide the notation

and an overview of STL in Sec. II. In Sec. III, we motivate

our approach, introduce the new predicates, and state the op-

timization problem that solves for the trajectories satisfying

the specifications defined with the proposed syntax. Then we

present mixed-integer linear program (MILP) encodings of

the new predicates in Sec. IV. Simulation results of a case

study with an autonomous robot are presented in Sec. V.

II. PRELIMINARIES

A. Notation

In this paper, R≥0 refers to the set of nonnegative real

numbers, and R
n denotes the set of n-dimensional real-

valued vectors. We represent l1 and l2 norms by the operators

of | · | and ‖ · ‖. Right and left time derivatives of a function

are denoted as d(·)/dt+ and d(·)/dt−, respectively.

B. Signal Temporal Logic

Rich time series can compactly be expressed by the Signal

Temporal Logic [8]. In this paper, we use the following STL

fragment:

φ ::= µ | ¬φ | φ1 ∧ φ2 | F[t1,t2]φ, (1)

where t1, t2 ∈ R≥0 are time bounds with t2 ≥ t1; F[t1,t2], ¬,

∧ are finally (i.e., eventually), negation, and conjunction (i.e.,

and) operators, respectively; φ is an STL formula, and µ is a

http://arxiv.org/abs/2103.14193v1

predicate in the inequality form such as µ = g(x) ≥ c with

a constant c ∈ R, a signal x : R≥0 → R
n, and a function g :

R
n → R. Remaining useful operators are generated from the

others as follows: G[t1,t2]φ = ¬F[t1,t2]¬φ is globally (i.e.,

always) operator, and φ1∨φ2 = ¬(¬φ1∧¬φ2) is disjunction

(i.e., or) operator. We can also define an implication operator

as φ1 ⇒ φ2 = ¬φ1 ∨ φ2.

Let xt denote the value of x at time t where x represents

the run (or trajectory) of the system. Satisfaction of an STL

formula by the part of the signal starting from t, i.e., (x, t),
is determined as follows:

(x, t) � µ ⇐⇒ g(xt) ≥ c,

(x, t) � ¬µ ⇐⇒ ¬
(

(x, t) � µ
)

,

(x, t) � φ1 ∧ φ2 ⇐⇒ (x, t) � φ1 and (x, t) � φ2,

(x, t) � φ1 ∨ φ2 ⇐⇒ (x, t) � φ1 or (x, t) � φ2,

(x, t) � G[t1,t2]φ ⇐⇒ ∀ t′ ∈ [t+ t1, t+ t2], (x, t
′) � φ,

(x, t) � F[t1,t2]φ ⇐⇒ ∃ t′ ∈ [t+ t1, t+ t2], (x, t
′) � φ.

(2)

While (x, t) � F[t1,t2]φ implies that φ must hold at least

in one time instant between [t+ t1, t+ t2], (x, t) � G[t1,t2]φ
requires the satisfaction of φ at all time instants within the

same interval. The horizon of an STL formula φ, i.e., hrz(φ),
can be defined as the minimum amount of time required

to decide whether the formula is satisfied [22]. Formally,

hrz(φ) is found as:

µ = g(x) ≥ c =⇒ hrz(µ) = 0,

φ = ¬ϕ =⇒ hrz(φ) = hrz(ϕ),

φ =

m
∧

i=1

ϕi or

m
∨

i=1

ϕi =⇒ hrz(φ) = max
i∈{1,...,m}

hrz(ϕi),

φ = G[t1,t2]µ or φ = F[t1,t2]µ =⇒ hrz(φ) = t2,

φ = G[t1,t2]ϕ or φ = F[t1,t2]ϕ =⇒ hrz(φ) = t2 + hrz(ϕ).
(3)

For instance, the formula G[0,5]F[0,4]x ≥ 0 has a horizon of

5 + 4 = 9, and the formula G[0,5]x ≥ 0 ∧ F[0,4x ≥ 10 has a

horizon of max(5, 4) = 5.

The satisfaction of specifications is indicated as either

True or False for the most of the temporal logics. STL, on

the other hand, is endowed with a metric called robustness

degree, r(x, φ, t) ∈ R, a real-valued function that is used to

quantify the satisfaction of an STL formula φ with respect

to a signal (x, t). While positive robustness degree indicates

the satisfaction of φ, negative one represents a violation. In

general, zero robustness degree is considered inconclusive,

but we consider this case as satisfaction in this paper. The

robustness degree metric can be formally and recursively

defined as follows [9]:

r(x, g(x) ≥ c, t) = g(xt)− c,

r(x,¬(g(x) ≥ c), t) = −r(x, g(x) ≥ c, t),

r(x, φ1 ∧ φ2, t) = min
(

r(x, φ1, t), r(x, φ2, t)
)

,

r(x, φ1 ∨ φ2, t) = max
(

r(x, φ1, t), r(x, φ2, t)
)

,

r(x, F[t1,t2]φ, t) = max
t
′∈[t+t1,t+t2]

r(x, φ, t′),

r(x, G[t1,t2]φ, t) = min
t
′∈[t+t1,t+t2]

r(x, φ, t′).

(4)

Robustness degree has limitations due to its main focus

on the critical time instances and neglecting the remaining

parts of the signal. For instance, suppose that eventually

the value of x needs to be at least 1 within [0, 100], i.e.,

φ = F[0,100] x ≥ 1. Consider two trajectories x and x
′

shown in Fig. 1. Since, the degree of satisfaction is evaluated

over any critical instant at which the predicate xt ≥ 1 is

satisfied for t ∈ [0, 100], although the signal x satisfies the

predicate for a longer time, robustness degree of both signals

would be equal, i.e., r(x, φ, 0) = r(x′, φ, 0). Therefore, the

conventional robustness degree cannot differentiate between

such cases and cannot provide comprehensive information

about the signals x and x
′. To address this issue, [13]–

[15] define new measures that can capture the duration of

predicate satisfaction. While existing metrics can track how

long a predicate x(t) ≥ δ is satisfied within an interval [0, T],
they are not able to address a notion of cumulative success

such as
∫ t

0
x(τ)dτ ≥ δ within an interval [0, T].

Fig. 1: Signal functions x and x
′ in blue and cyan, respectively in

logarithmic scale, and portions of the curves generated by integrating x

over three different relative time intervals. The values in the red, orange,
and magenta curves are generated from the previous, closest, and next 10 s
of the blue x curve, respectively.

III. PROBLEM STATEMENT

A. Motivation

While the duration of satisfaction of a conventional pred-

icate may be important for certain applications; it may

also be desired to meet some cumulative success criteria.

For instance, in [16] cumulative properties are defined over

a swarm. Authors in [19]–[21], propose discrete-time cu-

mulative and average robustness degrees calculated by the

summation of the robustness degrees of the same predicate at

different time steps. This enables to have a predicate satisfied

as long and robust as possible. In [18], a freezing operator

is used to store the signal values at different time instants

in memory and to compare them inside the predicates which

enables to find local extrema and examine the oscillatory

behavior. In other words, the satisfaction of a predicate now

depends on more than one signal values at different time

instants. Similarly, in the case of progressive events, one

may desire to evaluate the contributions of the past, future, or

both signal values to determine a satisfaction at the current

time. Therefore, the success may depend on the accumulation

of signal values from different time instants. We can define

such success criteria inside the same predicate, and use the

integral of a signal over a given bounded time interval to

assess satisfaction.

Example 1. Consider a continuous signal function that

represents the speed, ‖v‖. Let trajectory of ‖v‖ be the same

with the signal x in Fig. 1. Assume that at t = 20, system

is desired to travel more than 11 m within the last 10 s.

In other words, integration of ‖v‖ over [10, 20] must be at

least 11. One may check the satisfaction of this specification

at t = 20 by inspecting the red curve in Fig. 1 obtained

by the integration of ‖v‖ (i.e., x) over the window of the

previous 10 s at each time instant.

The interval of interest over which the integrated signal

may not depend only on the past values. One may also specify

thresholds on the integrals defined partially or fully over

the future signal values. In Fig. 1, sample intervals defined

in the past, future, or both are partially shown with red,

magenta, and orange, respectively. For each time instant,

the window of 10 s is shifted throughout the time axis to

generate the integral curves. While at t = 50 total distance

traveled between [45, 55] (depending on both past and future

values) is more than 11 m, at t = 80 this time the distance

traveled during [80, 90] (depending on only future values) is

less than the given threshold.

In the next section, we introduce STL predicates whose

satisfaction can depend on part of the past, present, or

future of the signal. The new predicates are not the same

as using the standard predicates with temporal operators.

For example, consider some specifications defined between

t = 80 and t = 90 over x represented in Fig. 1. Trajectory

of (x, 80) does not satisfy the predicate x ≥ 5 because

x80 < 5. Moreover, the trajectory (x, 0) does not satisfy an

STL formula F[80,90]x ≥ 5 because there is no t ∈ [80, 90]
such that xt ≥ 5. Now, consider another predicate including

an integral over time whose satisfaction does not depend

only on the current time step but determined by the signal

values within the bounds of the integral. The same signal

(x, 0) satisfies such a predicate
∫ 90

80 xτdτ ≥ 5 as shown in

Fig. 1 with magenta. Furthermore, temporal operators can

also be used with such a predicate to create more complex

specifications by shifting the integral interval.

One may try to represent such specifications by simply

considering the integral or derivative of the original signal,

and using it with conventional predicates. For example, again

consider the magenta signal in Fig. 1. Let the specification

be “the integrations of x within the time windows of [t +
a, t+ b] need always to be at most 11 for t ∈ [70, 90], i.e.,

G[70,90]

∫ b

a xτdτ ≤ 11. This specification could be expressed

by first defining a new signal depicting the integral of x, i.e.,

H(t) =
∫ t

0
xτdτ . Then, we can write G[70,90]H(t + b) −

H(t + a) ≤ 11. While such predicates with multiple time

instants (i.e., H(t+ b)−H(t+ a)) are not commonly used,

they can be accommodated by the syntax and semantics of

STL [23]. Alternatively, we introduce an integral predicate

that can explicitly define certain progress over the given

time interval, together with a derivative predicate to evaluate

local characteristics of the signal. These predicates take time

bounds as input and shift these bounds in accordance with the

outer temporal operators. Accordingly, they do not require

creating the integral and derivative of x as additional signals.

B. Definition of Integral and Derivative Predicates

We first introduce the integral predicate to express a

specific amount of progress in preemptable and cumulative

properties via STL specifications.

Definition 1. (Integral predicate) An integral predicate over

a bounded time interval [a, b] ⊂ R with b > a is defined as:

µi
[a,b] =

∫ b

a

g(xτ)dτ ≥ c, (5)

where c ∈ R is a constant, x : R≥0 → R
n is the signal, and

g : Rn → R is an integrable function.

Notice that the integral predicate requires the input of the

time bounds as the temporal operators like eventually and

globally. With the new integral predicate, one may explicitly

define these integral bounds, and specify some progress

threshold over a certain time interval.

Example 1 (Cont’d). We can represent the specifications

mentioned in Example 1 and shown in Fig. 1 with the integral

predicates as follows. Both µi
[−10,0](t) =

∫ t

t−10 ‖v‖ dτ ≥

11 defined on the past values (in red) and µi
[−5,5](t) =

∫ t+5

t−5 ‖v‖ dτ ≥ 11 depending on both past and future

values (in orange) are satisfied for t = 20 and t = 50,

respectively. However, for t = 80 the integral predicate

µi
[0,10](t) =

∫ t+10

t ‖v‖ dτ ≥ 11 that uses a future time

interval (in magenta) is violated.

In addition to cumulative properties, it is possible to have

volatility over the signal. To explicitly bound such behavior,

we introduce the derivative predicate.

Definition 2. (Derivative Predicate) A derivative predicate

is defined to specify the queries on the rate of change of the

signal function g(x) with the time by the first derivative of

it as follows:

µd
+ =

dg(x)

dt+
≥ c

∣

∣

∣

∣

µd
− =

dg(x)

dt−
≥ c, (6)

where µd
+ and µd

− denote the right and left derivative.

By using the newly defined predicates together with the

standard STL predicates, we can define diverse specifications

related to the local and global characteristics of the signals

accordingly to the following STL syntax:

φ ::= µ | µi
[a,b] | µ

d
+,− | ¬φ | φ1 ∧ φ2 | F[a,b]φ, (7)

where the satisfactions of µi
[a,b] and µd

+,− are determined for

any signal x : R≥0 → R
n as follows:

(x, t) � µi
[a,b] ⇐⇒

∫ t+b

t+a

g(xτ)dτ ≥ c,

(x, t) � µd
+ ⇐⇒

dg(xt)

dt+
≥ c,

(x, t) � µd
− ⇐⇒

dg(xt)

dt−
≥ c,

(x, t) � ¬µi
[a,b] ⇐⇒ ¬

(

(x, t) � µi
[a,b]

)

,

(x, t) � ¬µd
+,− ⇐⇒ ¬

(

(x, t) � µd
+,−

)

.

(8)

Note that the signal x is undefined for t < 0, therefore we

assume t + a ≥ 0 throughout the paper. By preserving the

quantitative semantics for the common operators defined in

(4), we can quantify the satisfaction of the new predicates

similarly as:

r(x, µi
[a,b], t) =

∫ t+b

t+a

g(xτ)dτ − c,

r(x, µd
+ , t) =

dg(xt)

dt+
− c,

r(x, µd
− , t) =

dg(xt)

dt−
− c,

r(x,¬µi
[a,b], t) = −r(xt, µ

i
[a,b], t),

r(x,¬µd
+,− , t) = −r(xt, µ

d
+,− , t).

(9)

Again a nonegative robustness degree indicates the sat-

isfaction of the predicates, e.g., r(x, µi
[a,b], t) ≥ 0 ⇒

(x, t) � µi
[a,b], while negative one represents a violation

(r(x, µi
[a,b], t) < 0 ⇒ (x, t) 2 µi

[a,b]).

Remark 1. In STL control synthesis, the satisfaction of

temporal operators such as eventually and globally at t are

generally decided by the assessment of the future time steps

t′ ≥ t. An integral predicate µi
[a,b] for [a, b] ⊂ R, or the

derivative one, µd
+,− , can depend both on the past and future

signal values by enabling negative time bounds.

An integral predicate can have negative time bounds

with respect to the bounds of the outer temporal operators

(e.g., eventually and globally). We can also use the integral

predicate alone by using nonnegative time bounds or defining

it with the negative time bounds at future time steps. The

horizon definition of STL [22] can be extended for the

integral predicate and nested use of it with the temporal

operators as follows:

µi
[a,b] =

∫ b

a

g(xτ)dτ ≥ c

=⇒ hrz(µi
[a,b]) = max

(

|a|, b, b− a
)

,

φ = G[t1,t2]µ
i
[a,b] or φ = F[t1,t2]µ

i
[a,b]

=⇒ hrz(φ) = max(t2, t2 + b),

(10)

where t1, t2 ∈ R≥0 and a, b ∈ R are time bounds with

t2 ≥ t1, b > a, and a constraint of t1 + a ≥ 0 for the sake

of nonnegative global time.

Remark 2. For discrete-time signals, we define the integral

and derivative predicates at time t assuming a discrete-time

signal function g(x) as:

µi
[a,b] =

k+b/δt−1
∑

k′=k+a/δt

g(xk′δt) δt ≥ c ,

µd
+= g(x(k+1)δt)−g(xkδt) ≥ c δt

µd
−= g(xkδt)−g(x(k−1)δt) ≥ c δt,

(11)

where k ∈ Z is the step number, and δt is the time step such

that t = kδt.

Modified robustness metrics [19]–[21] can also be used

to quantify cumulative properties. However, instead of mod-

ifying the semantics of existing temporal operators, we

introduce the integral predicate as a new operator with its

own qualitative and quantitative semantics that can easily

be used with the standard STL syntax and semantics. For

example, consider a signal x = {1, 1, 1, 1, 1, 2, ǫ}, where ǫ
is a small arbitrary number since µi

[a,b] does not consider the

last signal value in discrete-time signals. Suppose that the

sum of any two consecutive signal values need to eventually

be at least 3. The proposed integral predicate enables to

define this as ϕ = F[0,4]µ
i
[0,2] ≥ 3 where µi

[0,2] =
∫ 2

0
x dt,

for which the robustness degree of x with respect to ϕ is

r(x, ϕ) = 0. Thus, x barely satisfies the specification ϕ.

Now, consider the cumulative robustness degree, ρ+(·) [19]

that is the closest measure to our proposed idea. One can

express the task in ϕ by using the cumulative robustness

degree as ϕ′ = F[0,4]

(

ρ+(x, F[0,1]x ≥ 0) ≥ 3
)

for the same

signal, which has ρ+(x, ϕ′) = −4 implying a violation while

x actually satisfies ϕ.

Overall, there is no specific syntax in STL that can capture

the cumulative properties, and the proposed integral predicate

is introduced to facilitate the definition of cumulative signal

properties via STL.

C. Optimal Control Problem

We consider a discrete time system x+ = f(x, u) evolving

over a continuous state space with state and input vectors

of x ∈ R
n and u ∈ R

m, respectively. Accordingly, the

signal we evaluate becomes the finite state trajectory, x =
[

x0δt x1δt · · · xHδt

]

∈ R
n×(H+1) where H is the length of

the mission horizon.

The state trajectory, x, is desired to achieve an STL

specification, Φ. Note that the mission horizon has to be

longer than the specification horizon, i.e., H ≥ hrz(Φ)/δt
to determine the satisfaction or violation of Φ.

Problem 1. Given a system with discrete-time dynamics,

x+ = f(x, u), find the optimal control policy over the

horizon u
∗ =

[

u∗0δt u
∗
1δt · · · u

∗
(H−1)δt

]

∈ R
m×H to achieve

a global specification Φ:

u
∗ =arg min

H−1
∑

k=0

J
(

xkδt, ukδt
)

s.t. x+ = f(x, u),

x0 = x0, r(x,Φ, 0) ≥ 0

(12)

where J
(

xkδt, ukδt
)

is a running cost as a function of state

vector and control inputs, J : Rn×R
m → R; x0 is the initial

state vector, and r(x,Φ, 0) ≥ 0 enforces the satisfaction of

the temporal logic constraints by requiring the robustness

degree to be nonnegative.

IV. SOLUTION APPROACH

The solution of (12) requires a nonnegative robustness de-

gree ((4) and (9)) to enforce satisfaction. However, it is com-

puted via recursive definitions of computationally expensive

and non-smooth min and max functions. Therefore, using

it as a constraint in the optimization or feasibility problems

makes the problem non-trivial. Alternatively, satisfaction of

Φ can be encoded as a set of constraints with binary variables

in the form of zΦ[k] ∈ {0, 1} [4], [10]. For each predicate

in the form of inequality, a couple of big M constraints can

be written depending on a binary variable as

µ = g(x) ≥ c

{

g(x)− c ≥ M(zµ − 1),
g(x)− c ≤ Mzµ,

(13)

where M ∈ R
+ is a sufficiently large number. Similarly, the

satisfaction of an integral predicate can also be encoded as

φ = µi
[a,b]































k+b/δt−1
∑

k′=k+a/δt

g(xk′δt)δt− c ≥ M(zφ[k]− 1),

k+b/δt−1
∑

k′=k+a/δt

g(xk′δt)δt− c ≤ Mzφ[k].

(14)

The derivative predicate is encoded in a similar fashion as

follows:

µd
+ =

dg(x)

dt+
≥ c







g(x(k+1)δt)− g(xkδt)− c δt

≥ M(zµ
d
+ [k]− 1),

g(x(k+1)δt)− g(xkδt)− c δt ≤ Mz
µd
+ [k],

µd
− =

dg(x)

dt−
≥ c











g(xkδt)− g(x(k−1)δt)− c δt

≥ M(zµ
d
− [k]− 1),

g(xkδt)− g(x(k−1)δt)− c δt ≤ Mzµ
d
− [k].

(15)

Starting with the predicates, remaining binary constraints

corresponding to an STL formula can be built into each

other. The connections of the Boolean operators with other

temporal operators and predicates can be constructed with

the following rules and encoded as integer constraints con-

sidering two sample formulas φ and ϕ [10].

Negation: φ = ¬ϕ

zφk = 1− zϕk . (16)

Conjunction: φ =
∧m

i=1 ϕi

zφk ≤ zϕi

k , i = 1, . . . ,m,

zφk ≥ 1−m+

m
∑

i=1

zϕi

k .
(17)

Disjunction: φ =
∨m

i=1 ϕi

zφk ≥ zϕi [k], i = 1, . . . ,m,

zφk ≤

m
∑

i=1

zϕi

k .
(18)

Globally: φ = G[t1,t2]ϕ

zφk =

k+t2/δt
∧

k′=k+t1/δt

zϕk′ . (19)

Eventually: φ = F[t1,t2]ϕ

zφk =

k+t2/δt
∨

k′=k+t1/δt

zϕk′ . (20)

As a result, the satisfaction of the general formula, Φ,

which is previously implied by r(x,Φ, k) ≥ 0, is now

rendered to zΦk = 1. Since we handle the specifications on

the trajectory of the state vector, xk, inside the temporal logic

constraints, in the optimization, we penalize only control

inputs, uk. Therefore, we define the running cost as the

l1−norm of the control input, i.e., J
(

uk
)

=
∣

∣uk
∣

∣.

Nonlinear systems can be linearized around known equi-

librium points. Furthermore, the mission constraints can be

encoded as linear inequalities with binary variables as in

(13), (14), (15). Accordingly, under linear dynamics and

predicates, the constrained optimization problem in (12) can

be posed as a mixed-integer linear program.

Problem 2.

u
∗ =arg min

H−1
∑

k=0

∣

∣uk
∣

∣

s.t. xk+1 = Axk +Buk,

x0 = x0, z
Φ
0 = 1,

(21)

where A ∈ R
n×n and B ∈ R

n×m are the relevant system

and input matrices, respectively.

Note that solving Problem 2 enforces the satisfaction of the

STL specification (due to the existence of constraint zΦ0 =
1). It can be solved via several off-the-shelf tools such as

MATLAB’s built-in integer programming solver, intlinprog,

and Gurobi [24]. This problem can also be formulated for

maximal satisfaction of the STL specification by relaxing

each predicate with a slack variable to be minimized with

the negation-free STL specifications [13], [14].

(a) (b) (c)

Fig. 2: Comparisons of the blue trajectory that achieves the original specification (23) with the ones achieving the same specification except a) the integral
and derivative predicates (cyan) b) the derivative predicates (magenta) c) the integral predicates (red). All trajectories start from (0.5, 0.5) m.

V. CASE STUDY

To illustrate the the functionality of the new predicates,

here we define a complementary example.

Example 2. Consider an autonomous robot with discrete-

time double integrator dynamics

xk+1 =









1 δt 0 0
0 1 0 0
0 0 1 δt
0 0 0 1









xk +









0.5δ2t 0
δt 0
0 0.5δ2t
0 δt









uk, (22)

with the state vector x = [x, vx, y, vy]
T where vx, vy ∈ R

are the velocities in x, y ∈ R directions, respectively;

and the input vector u = [ux, uy]
T where ux,uy ∈ R

are the specific forces in given directions. The goal of the

mission is monitoring the natural habitat in predefined areas

by observing as much as possible without disturbing the

members of it. Mission specifications are given as follows: i)

Continuously service regions A and B for at least 3 s and 6 s,

respectively, and while in B, travel inside it for at least 2 m
in both directions. ii) Whenever in A or B, do not disturb the

members of the natural habitat by limiting the acceleration

to 0.25 m/s2 in each direction. iii) Overall the robot cannot

exceed an acceleration of 0.5 m/s2 in any direction. iv)

Since the habitants of region C are adversarious, whenever

you are in C keep the horizontal velocity at least 1 m/s
to leave the C immediately (its shortest edge lies in the

horizontal direction). With a total mission time of 20 s, we

can express these specifications as follows:

Φ = F[0,17]

(

G[0,3]RA

)

∧ F[0,14]

(

G[0,6]RB ∧ µi,1
[0,6] ∧ µi,2

[0,6]

)

∧G[1,20]

(

(RA ∨RB) ⇒ (µd,1
− ∧ µd,2

−)
)

∧G[0,19]

(

µd,3
+ ∧ µd,4

+

)

∧G[0,20]

(

RC ⇒ |vx| ≥ 1
)

,
(23)

where the integral predicates are defined to constrain the

total traveled distance as µi,1
[0,6] =

∫ 6

0 |vx|dτ ≥ 2 and

µi,2
[0,6] =

∫ 6

0
|vy|dτ ≥ 2; the derivative predicates limit the

acceleration either temporarily or throughout the mission as

µd,1
− = |v̇x| ≤ 0.25, µd,2

− = |v̇y| ≤ 0.25, µd,3
+ = |v̇x| ≤ 0.5,

(a)

(b)

Fig. 3: For four different cases, change of velocities with time in a) x and
b) y directions. The only trajectory that enters the region C is the cyan one
by increasing its speed to 1 m/s in x direction which is a requirement for
all cases (23).

and µd,4
+ = |v̇y| ≤ 0.5. The reason for specifying left-

derivatives for the predicates inside the A and B is to

avoid an aggressive entrance into them. The regions in two-

dimensional x − y plane can be represented with linear

predicates as follows:

RA = x ≥ 1.5 ∧ x ≤ 2 ∧ y ≥ 4.75 ∧ y ≤ 5.25,

RB = x ≥ 4 ∧ x ≤ 5 ∧ y ≥ 1 ∧ y ≤ 3,

RC = x ≥ 2 ∧ x ≤ 4 ∧ y ≥ 1 ∧ y ≤ 5.

(24)

To bound the total traveled distance, we define integral

predicates (Def. (1)) that will keep the distance in each

particular direction at least 2 m by integrating the speeds in

that direction. Moreover, we also constrained the maximum

acceleration in any direction using derivative predicates de-

fined in Def. 2. Although one can limit the control inputs

to do that in this particular example, where the inputs

are the acceleration, it is not generally the case for other

(a)

(b)

Fig. 4: Change of accelerations with time in a) x and b) y directions,
calculated via the right-derivative of the velocities. For all the four cases the
general limit of 0.5 m/s2 is obeyed. Moreover, blue and red trajectories
satisfy a stricter limit of 0.25 m/s2 defined by the left-derivative of the
velocities inside the areas A and B.

systems. It is also worth to mention that the expressions with

the absolute value operators in (23) can be represented by

multiple linear inequalities.

A. Simulations

We develop a control synthesis tool that generates trajec-

tories satisfying the given temporal logic specifications in-

cluding the new predicates. Specifications are not necessarily

in negation-free form unlike [13], [14], and [19], in which

the robustness degree is used directly in the algorithms.

The global specification is encoded as binary constraints

as described in Sec. IV. YALMIP [25] is used to model

the problem in (21), which is solved via Gurobi [24] in

MATLAB R2019b. A laptop computer with 1.8 GHz, Intel

Core i5 processor is used to run the simulations with δt =
1 s..

First, the system trajectory is computed according to the

original specification (23). Then, for comparison, the system

trajectories are computed to satisfy specifications 1) without

the integral and derivative predicates defined in the green

areas, 2) without the integral predicates, µi,1
[0,6] and µi,2

[0,6],

and 3) without the derivative predicates, µd,1
− and µd,2

− . The

generated trajectories are illustrated in Fig. 2. It is evident

from the figures that with the integral predicates, the robot

does not only service B but also it is required to travel

inside the region more to monitor the natural habitat better.

Moreover, the derivative predicates constrain the acceleration

of the robot successfully both inside and outside of the

regions. For instance, compared to no integral and derivative

predicates case, given in cyan in Fig. 2a, when region-

based derivative constraint is applied, red in Fig. 2c, robot

cannot accelerate enough to enter region C and go around

instead. This can also be observed in Fig. 3a where the only

trajectory that enters the C is the cyan one by increasing

its horizontal velocity to 1 m/s inside it. A similar effect

of the derivative predicate can be seen in Fig. 4 in which

the trajectories without it (cyan and magenta) violates the

acceleration limit (0.25 m/s2) in each direction inside the

regions A and B. On the other hand, all four trajectories

obey the general acceleration limit of 0.5 m/s2. Finally,

when there is no derivative predicate applied, the trajectory

in magenta also avoids C since it has to slow down inside

B to travel the minimum required distance. This makes the

magenta trajectory a more aggressive one compared to the

blue trajectory with both integral and derivative predicates

inside B. The comparison of these four scenarios in terms of

the control effort and computation time are also presented in

Table I.

TABLE I: Results of the simulation scenarios in Fig. 2.

Int.&Der.

Pred.

(blue)

Only Int.

Predicates

(magenta)

Only Der.

Predicates

(red)

None of

Them

(cyan)

Total Cost

J ∗ [−]
6.5363 4.8253 4.0749 3.9930

Soln.

Time [s]
4.53 15.43 1.13 2.29

VI. CONCLUSION AND FUTURE WORK

In this study, we introduce integral and derivative predi-

cates for Signal Temporal Logic. These new predicates can

be used to define specifications regarding the cumulative

effects and the rate of change in a signal. We show that the

integral and derivative predicates can be encoded as mixed-

integer linear constraints. Optimal trajectories satisfying the

complex temporal logic specifications are then obtained by

solving a mixed-integer linear program. A case study on the

control of an autonomous robot in two-dimensional continu-

ous space is included. We show how the new predicates can

be used in the design of the mission specifications in a richer

and more expressive way compared to the conventional STL.

As a future direction, we plan to extend this work to multi-

agent systems that are coupled through the specifications of

their objectives and constraints (e.g., [26]–[28]).

REFERENCES

[1] C. Baier and J. Katoen, Principles of model checking. MIT press,
2008.

[2] A. Pnueli, “The temporal logic of programs,” in Symposium on

Foundations of Computer Science. IEEE, 1977, pp. 46–57.
[3] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-

based reactive mission and motion planning,” IEEE transactions on

robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[4] S. Karaman, R. Sanfelice, and E. Frazzoli, “Optimal control of mixed
logical dynamical systems with linear temporal logic specifications,”
in Conf. Decis. Control, 2008, pp. 2117–2122.

[5] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[6] D. Aksaray, K. Leahy, and C. Belta, “Distributed multi-agent persistent
surveillance under temporal logic constraints,” IFAC-PapersOnLine,
vol. 48, no. 22, pp. 174–179, 2015.

[7] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-time syst., vol. 2, no. 4, pp. 255–299, 1990.

[8] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Proc. Formal Techn., Modelling and Anal. of Timed

and Fault-Tolerant Syst., 2004, pp. 152–166.
[9] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over

real-valued signals,” in Int. Conf. on Formal Modeling and Anal. of

Timed Syst., 2010, pp. 92–106.
[10] V. Raman, A. Donzé, M. Maasoumy, R. Murray, A. Sangiovanni-

Vincentelli, and S. Seshia, “Model predictive control with signal
temporal logic specifications,” in Conf. on Decision and Control.
IEEE, 2014, pp. 81–87.

[11] Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control
using the smooth robustness of temporal logic,” in Conf. on Control

Tech. and Applications, 2017, pp. 1235–1240.
[12] A. T. Buyukkocak, D. Aksaray, and Y. Yazıcıoğlu, “Distributed

Planning of Multi-Agent Systems with Coupled Temporal Logic
Specifications,” in AIAA Scitech, 2021, p. 1123.

[13] T. Akazaki and I. Hasuo, “Time robustness in MTL and expressivity
in hybrid system falsification,” in Int. Conf. on Computer Aided

Verification, 2015, pp. 356–374.
[14] A. Rodionova, E. Bartocci, D. Nickovic, and R. Grosu, “Temporal

logic as filtering,” in Proc. Int. Conf. on Hybrid Systems: Computation

and Control, 2016, pp. 11–20.
[15] S. Silvetti, L. Nenzi, E. Bartocci, and L. Bortolussi, “Signal convo-

lution logic,” in Int. Symposium on Automated Tech. for Verification
and Analysis. Springer, 2018, pp. 267–283.

[16] Z. Xu and A. A. Julius, “Census signal temporal logic inference for
multiagent group behavior analysis,” IEEE Transactions on Automa-

tion Science and Engineering, vol. 15, no. 1, pp. 264–277, 2016.
[17] D. Sadigh and A. Kapoor, “Safe control under uncertainty with

probabilistic signal temporal logic,” in Robotics: Sci.and Sys., 2016.
[18] L. Brim, P. Dluhoš, D. Šafránek, and T. Vejpustek, “STL*: Extending

signal temporal logic with signal-value freezing operator,” Inform. and

Comp., vol. 236, pp. 52–67, 2014.
[19] I. Haghighi, N. Mehdipour, E. Bartocci, and C. Belta, “Control

from signal temporal logic specifications with smooth cumulative
quantitative semantics,” in Conf. on Decision and Control, 2019, pp.
4361–4366.

[20] N. Mehdipour, C.-I. Vasile, and C. Belta, “Arithmetic-geometric mean
robustness for control from signal temporal logic specifications,” in
American Control Conference, 2019, pp. 1690–1695.

[21] L. Lindemann and D. V. Dimarogonas, “Robust control for signal
temporal logic specifications using discrete average space robustness,”
Automatica, vol. 101, pp. 377–387, 2019.

[22] A. Dokhanchi, B. Hoxha, and G. Fainekos, “On-line monitoring for
temporal logic robustness,” in International Conference on Runtime
Verification. Springer, 2014, pp. 231–246.

[23] A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and
S. Smolka, “On temporal logic and signal processing,” in International

Symposium on Automated Technology for Verification and Analysis.
Springer, 2012, pp. 92–106.

[24] Gurobi-Optimization, “Gurobi Optimizer Ref. Manual,” 2019.
[25] J. Löfberg, “YALMIP : A Toolbox for Modeling and Optimization in

MATLAB,” in Proc. of the CACSD Conf., Taipei, Taiwan, 2004.
[26] R. Bhat, Y. Yazıcıoğlu, and D. Aksaray, “Distributed Path Plan-

ning for Executing Cooperative Tasks with Time Windows,” IFAC-

PapersOnLine, vol. 52, no. 20, pp. 187–192, 2019.
[27] R. Peterson, A. T. Buyukkocak, D. Aksaray, and Y. Yazıcıoğlu,

“Decentralized safe reactive planning under TWTL specifications,” in
IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2020.

[28] A. T. Buyukkocak, D. Aksaray, and Y. Yazıcıoğlu, “Planning of
Heterogeneous Multi-Agent Systems Under Signal Temporal Logic
Specifications With Integral Predicates,” IEEE Robotics and Automa-

tion Letters, vol. 6, no. 2, pp. 1375–1382, 2021.

	I Introduction
	II Preliminaries
	II-A Notation
	II-B Signal Temporal Logic

	III Problem Statement
	III-A Motivation
	III-B Definition of Integral and Derivative Predicates
	III-C Optimal Control Problem

	IV Solution Approach
	V Case Study
	V-A Simulations

	VI Conclusion and Future Work
	References

