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Abstract—Linear parameter-varying (LPV) systems with un-
certainty in time-varying delays are subject to performance
degradation and instability. In this line, we investigate the
stability of such systems invoking an input-output stability
approach. By considering explicit bounds on the delay rate and
time-varying delay uncertainty, the scaled small-gain theorem
is adopted to form an interconnected time-delay LPV system
with input and output vectors of the auxiliary system introduced
for the uncertain dynamics. For such an interconnected time-
delay LPV system subject to external disturbances, a Lyapunov-
Krasovskii functional (LKF) is constructed whose derivative is
augmented with the terms resulted from the descriptor method.
Then, stability conditions and a prescribed induced £>-norm in
terms of the disturbance rejection performance are derived in a
convex linear matrix inequalities (LMIs) setting. Subsequently, a
congruent transformation enables us to compute a gain-scheduled
state-feedback controller for a class of LPV systems with an
uncertain time-varying delay. As a benchmark, we examine the
automated mean arterial blood pressure (MAP) control in an
individual with hypotension where the MAP response dynamics
to drug infusion is characterized in a time-delay LPV represen-
tation. Finally, the closed-loop simulation results are provided to
demonstrate the provided methodology’s performance.

Index Terms—Linear parameter-varying (LPV) time-delay sys-
tems, Scaled small-gain theorem, Lyapunov-Krasovskii functional
(LKF), Induced £2 norm performance, Time-Delay uncertainty,
Mean arterial blood pressure (MAP) regulation,

I. INTRODUCTION

Model-based control design methodologies provide a sys-
tematic and practical framework for addressing stability and
performance challenges in a wide variety of real-world control
applications. The mathematical modeling of such applications
can be carried out via either the certainty equivalence principle
and physics laws or identification techniques, which approx-
imates the model in terms of bias and variance error on an
identified model [1]. However, due to unmodeled and hidden
dynamics and problems like aging and external excursions,
these model-based approaches suffer from mathematical and
real system model mismatches. Consequently, robust control
analysis has been introduced as an effective way of dealing
with such discrepancy issues [2]. However, for varying uncer-
tain parameters in such systems, classical robust methods may
introduce an extra conservatism.

Practical systems are mainly affected by the presence of
delay in their dynamics, which typically leads to performance
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degradation [3]. Moreover, delay uncertainty and, in particular,
time-varying delays further pose a robustness challenge in
the control of such systems. It is noteworthy that in studying
stability analysis of systems with uncertain delays, typically,
the delay is assumed to be the sum of a nominal delay
and a perturbed uncertain part where the system with the
nominal delay is regarded to be asymptotically stable. In
this regard, necessary stability conditions for linear time-
invariant (LTT) systems with an uncertain constant delay via a
frequency-domain approach and sufficient condition for such
systems with an uncertain time-varying delay via a Lyapunov-
Krasovskii functional (LKF), with a prescribed derivative, has
been investigated in [4]. The introduced LKF also does not
explicitly depend on the bounds of the uncertainties. In [5], the
author has used a complete LKF, with a particular functional
form, consisting of a nominal plus additional terms where
the former analyzes the system under the nominal delay, and
the latter deals with delay perturbations and vanishes as the
perturbations disappear. Inspired by this research, the static
state-feedback control of input delay systems with an uncertain
delay has been addressed in [6] in which the derivative of
LKF is constructed based on a delay Lyapunov matrix. The
work in [7] follows the small-gain theorem augmented with
a scaling matrix, which provides a less conservative input-
output stability analysis. Moreover, to handle delay uncer-
tainty, a factor depending on the delay rate bound has been
introduced, which, to further reduce the conservatism, can
be selected based on the bound’s nominal value. Combined
with the LKF strategy, tractable convex conditions in the form
of linear matrix inequalities (LMIs) have been achieved for
the stability analysis. [8] has studied the robustness bounds
of linear retarded systems with discrete delays where each
delay is comprised of a constant part plus a slowly varying
perturbation.

Unlike the LTI systems, linear parameter-varying (LPV)
systems have a varying structure and thus can adequately
describe nonlinear and highly varying systems in a linear
setting [9], [10]. Similarly, control of time-delay LPV systems
with the wealth of linear control techniques has been studied
in the literature [11]-[13]. In this manuscript, stability and
control synthesis of LPV systems with uncertain arbitrarily
varying delay and external disturbances is studied that, to
the best of our knowledge, has not been addressed in the
time-delay LPV control context. To this end, a candidate
LKF is employed to tackle the stability problem with the
use of the less conservative descriptor method [7] analysis.
The input-output approach proposed by [7] is used to address
the stability of the interconnected input-output LPV system
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representation under a varying uncertain delay. Further, the
worst-case disturbance amplification of the LPV system with
uncertain delay in terms of a prescribed induced Ls-norm
performance of the system is examined and presented in a
convex LMI framework. Subsequently, by taking advantage
of a proper congruent transformation, a static gain-scheduled
state-feedback control is designed for such systems to first
asymptotically stabilize the closed-loop system and second
minimize the sub-optimal closed-loop performance index.

As a practical application, the present paper addresses the
problem of mean arterial blood pressure (MAP) regulation and
resuscitation in critical cases involving clinical hypotension.
Such a delicate and time-sensitive task requires advanced and
precise automated drug delivery strategies, which considerably
increases the resuscitation chance while avoids under/over-
regulated incidents [14]. An LPV representation with a varying
delay has been used to describe the MAP response dynamics
to drug injection. For simulation purposes, we use nonlinear
functions to generate the MAP dynamics model parameters in
compliance with clinical observations [15]. Simulation results
confirm that the utilized approach is capable of tracking a
reference MAP signal while rejecting the external disturbances
caused by medical interventions and complications altering the
MAP characteristics. Moreover, the proposed time-delay LPV
methodology tackles the challenge of robustness against the
uncertain varying time-delay effectively.

The notation used in this paper is as follows. R stands
for the set of real numbers, R is the set of non-negative
real numbers, and R™ and R**™ are given to denote the set
of real vectors of dimension n and the set of real k x m
matrices, respectively. S™ and S’} represent the set of real
symmetric and real symmetric positive definite n X n matrices,
respectively. The positive definiteness of the matrix M is
designated M > 0. The inverse and transpose of a real
matrix M are presented by MT and M~!, respectively. In a
symmetric matrix, the asterisk * in the (¢, j) element denotes
the transpose of the (7, ¢) element. C(J, K') stands for the set
of continuous functions mapping a set J to a set K.

This work is structured in the following manner. Section
I provides the mathematical description of an LPV system
with uncertain delay followed by the input-output stability
analysis and control design meeting the performance objec-
tives. In Section III, the MAP modeling and characterization
is presented and the closed-loop simulation results assessing
the implemented proposed LPV control methodology for the
automated MAP regulation objective are discussed. Finally,
the concluding remarks are given in Section IV.

II. PROBLEM STATEMENT

A. Stability and Lo-Gain Analysis of LPV Systems with Un-
certain Delay

We consider the following state-space representation of
a general LPV system with an uncertain time-varying state
delay:

x(t) = A(p(t)x(t) + A (p(t)x(t — 7(p(t)))
+ Bui(p(t)w(t) + Ba(p(t))u(t),
z(t) = Ci(p(t)x(t) + Cr-(p(t)x(t — 7(p(t)))
+ Dulp(t))w(t) + Dia(p(t))u(t),
x(to+0) = ¢0), Voe|-T, 0], |
where x(t) € R™ denotes the state vector of the syste(m),

w(t) € R™ is the exogenous input vector with bounded Ls-
norm, u(t) € R™ is the control input vector, z(t) € R"=
is the vector of controlled outputs, and the matrix coefficients
A(), Az(-), B1(), B2("), Ci1(*), Ci1,~(+), D11(-), and D1 ()
are real-valued matrices which are continuous functions of the
time-varying parameter vector p(-) € #},. The scheduling
parameter vector is assumed to be measurable in real-time
whose trajectories and rate belong to the set %%, defined as

75 2 {p(t) € C(R4,R™) : p(t) € 2,|pi(t)| < i,
i:1,27...,n3}, (2)

where ng is the number of parameters and & is a compact
subset of R™:. Moreover, in (1), ¢(0) € C([-7 0],R")
is the functional system’s initial condition, and 7(p(t)) is
a differentiable scalar function representing the parameter-
varying uncertain time delay as follows:

T(p(1)) = 7 +0(t), In(t)] < p < 7, 3)

where 7,, denotes the nominal delay value and the time-
varying uncertain part of the delay is bounded by . Moreover,
the time-varying delay is considered to be dependent on the
scheduling parameter vector and lies in the set .7%~ defined
as

T 2{r(p(t) € C(Z,Ry):0 < 7() <7 < 00,7(-) < vr ).

“)

Considering the time-delay LPV system (1), with an allow-

able parameter vector trajectory in .%5,, and a time-delay in
T, the design objectives are as follows:

« Internal asymptotic stability of the LPV system with an
uncertain varying time-delay in the presence of parameter
variations, delay uncertainties, and disturbances, and

e Minimization of the worst case amplification of the
desired output, z, to a nonzero disturbance signal, w, with
bounded energy, i.e. solving the problem of «-suboptimal
induced Ly-norm (energy-to-energy gain) of the mapping
T,w : W — z given by

li2 = min sup sup 1=l
PET Y, ||wll270,weL> [[wl]2

min|| T, <7, (5
where 7y is a positive scalar.

In order to examine the stability and L£5-gain analysis of the
LPV system with an uncertain time-varying delay, we utilize
the small-gain theorem. For this purpose, by considering (3),
we rewrite the delayed state of the system as follows

—Tn

x(t—7(t) =x(t —7) — /

—Tn —77(75)

x(t+ s)ds, (6)
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Figure 1: The overall interconnected system

where the time-varying uncertain part of the delayed state is
treated as a disturbance and defined as a new feedback signal:

—Tn

w(t) = (Ay)(t) = ————= yi(t+s)ds, (7)

1

N F (Vr) v —n(t)

where .Z (v;) is a continuous function of the time-delay rate,
v,, which will be defined later using an extension of the small-
gain theorem. By defining a new auxiliary system, A, with
additional input and output vectors, namely, y; and uj, the
overall interconnected feedback system is shown in Fig. 1.
Accordingly, the unforced time-delay LPV system (1), i.e.
no control input or v = 0, is represented as a feedback
interconnected system as follows:

(1) = Alp(t)x(t) + Ar(p()x(t — 72)

AL (p() X i (1) + 7 By (p(0) w(t),
nilt) = VFE)Xk(),
a(t) = Cilp(t)x(1) + Cr-(p(t)x(t — 70)

+ pCir(p()X () + 4 1D11(p(t))V'V(t)&8)
where X denotes a scaling non-singular matrix and w(t) =
yw(t).

The following lemma is used to derive the delay-dependent
conditions for stability and Lo-gain analysis of the LPV time-
delay system with an uncertain time-varying delay.

Lemma 1. (Small-Gain Theorem for Systems with Uncertain
Time-Delay) [7]: Considering y1 = Ty w1, and u; =
Ay1, where both systems Ty, 4, : L£2]0,00] = L£2][0, 0] and
A 1 L5]0,00] = L2]0,00] are considered to be input-output
stable. The interconnected overall system (Ty, v,, A) is input-
output stable if yo(A)vo(Ty,u,) < 1, where 7y is the induced
Lo gain. Moreover, the Lo-gain of the system A is found to

be vo(A) < T/ F (vy) where [16]

17 _OOSVT S 1;
2u, — 1
i 1<, <2,
VT
F(v,) = v, — 8 > 9)
41/7_ _4a T Z &
7 .
T Vr 15 unknown,
1

with HTy1Ul HLQ <

T,

The following theorem provides the sufficient LMI condi-
tion to guarantee the stability and performance objectives:

Theorem 1. The unforced LPV system (1) with an uncertain
delay |n(t)| < p < T,, over the given sets F, and T"~
is asymptotically stable with the ~y-suboptimal induced Lo-
norm, i.e. ||zlla < y||w||a, if there exist continuously differen-
tiable parameter dependent positive-definite matrix functions
Pp(t)) , S(p(t)) : Fy — S, positive-definite matrices
QR 6 S2n <", parameter dependent real matrices V1, Vo,
Vs @ L, — R™ ", and a positive scalar v satisfying the
following LMI condition

P-R+Q+VIA+ATV,

P-VI4+ ATV,

* TAR+.7 (1;)S=V]-V,
* *
* *
* *
R+ VIA, + ATV, pVIA. VIB; CT ]
VIA, —V; uVIA, VIB, 0
-R-Q+VIA, +AlVy uVIA, VIB; Cf,
* -S 0 nCi
* * -1 DI}
* * * I |
(10)

where P = 31" pi(t )dgp(f’(%)) and the parameter dependence
of the matrices is dropped for brevity.

Proof. The proof begins by using the following LKF candidate

V(xer %10 1) = XT(OP(p(t))x(t) + / x"(5)Qux(s)ds

L

The notation x;(6) refers to x(t+0) for € [ —7 0 | where
x; € C([—7 0], R™) is the infinite-dimensional delay state vec-
tor of the system. Considering the Lyapunov stability theory,
in order to assure the asymptotic stability of the investigated
LPV system, we need to evaluate the time derivative of the
LKF (11) along the trajectories of the LPV system (1), that is

Tn

s)Rox(s)dsdf an

V(x¢, %¢, p,t) = 2% ()P (p(t))x(t) + x (t)Px(t)
+xT(1)Qx(t) + x"(t — 7,)Qx(t — 1)

t
+ TuX (1) Ro% — / xT(0)Rox(0)dh. (12)
t—7n

Employing the Jensen’s inequality, the integral term in (12)
can be upper bounded through

[ stomsom <L ([so)( 300

— L [x(t) = x(t — )] Ro[x(t) — x(t — ).

Tn
13)
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Next, in order to derive a relaxed final condition and be
able to formulate the final results as an LMI suitable for
the synthesis conditions, we use the descriptor technique [7].
Introducing three slack variables V1, V5, and V3 and using
the LPV system dynamics (8), we define 7 as:

7= |:xT(t)V¥ + X"V 4+ x"(t - T,L)V§:|
(Ax(t)—i—ATx(t — 7o) F A X g (1) T Biw () —X(t)) =0.

Considering the augmented forward system with all inputs and

. u - .
outputs, i.e. yzl =G v‘; as in Fig. 1, the assumption

[|Glli,2 < 1 is equivalent to [7]

llyallZ, + llzlZ, < llwllZ, + [1W][Z,. (14)

Inequality (14) satisfies both the condition given in Lemma 1

for the input-output stability of the LPV system with uncer-
, and also the

Vr

prescribed performance level given in (5), i.e. [|Towlli2 < 7.

Finally, the augmented derivative of the LKF given in (12) by

the descriptor method’s result and (14) is

V(x¢,%e, pot) + 27 +y1 (t)y1(t) + 2" (t)z(t)
—uj(tu(t) — Wi (t)w(t) < " (H)QC(L) <0,

where the augmented state vector {(t) is defined as:

W2 [xTt) xT@t) xT(t—7) X lu(t) w(t)].
(16)
Using the bound computed for the integral term in the LKF
time-derivative (13), and substituting the dynamics vectors
from (8) in (15), €2 is obtained as

tain time-delay, i.e. || Ty, u,lli2 <

15)

P-R+Q+VIA+ATV,+CIC, P-VI+A™V,

* TERA+F (v:)S— VIV,
* *
* *
* *

Q3 p(ViA: +CiCi;) 7 '(ViB1 + CiDu)
VIA, -V3 WVIA, VIB,
Q3 w(V3A,+Ci,Ci,) v '(ViB1+Ci,Du)l,
* —S+p°Ci,Ci,r 7~ 'uCl D
* * 772D¥1D11 -1
a7
where Q13 = R+VTA, +ATV;3;+CICy ,, Q33 = -R—-Q+

VIA, + ATV, + C] .Ci ., S(p(1) = XX, andR—R

We then pre- and post- multlply (17) by diag(I,I,1,1,~I) and
its transpose, and apply the Schur complement lemma to (15),
to obtain the LMI (10) and the proof is accomplished.

O

B. State-Feedback LPV Controller Design

In this part, we extend the results of Theorem 1 for the
synthesis of a robust state-feedback gain-scheduling H ., con-
troller for the case of general LPV systems with an uncertain
varying time-delay as in (1). Such a parameter-dependent
controller is proposed in the following format:

u(t) = K(p(t))x(1), (18)

where the controller utilizes full-state information and aims
to meet the design objectives as mentioned in Section II-A.
Feeding back the control law (18) into the LPV system
dynamics (1), the resultant closed-loop system will be

x(t)=Au(p(t))x(t) + A-(p(1))x(t — 7(p(1)) + Bi(p(t))w(t),
z(t)=C1.ai(p(t))x(t)+C1 - (p(t))x(t—7(p(t))) +D11(P(t))v‘f((1t9))y

where  Aa(p(t)) = Alp(t)) + Balp(t)K(p(1)).
C1a(p(t)) = Ci(p(t)) +Di2(p(t)) K(p(t)). By substituting
A (p(t)) and Cq i (p(t)) for A and C; in (10), the following
theorem presents a sufficient condition for investigating the
closed-loop stability and performance with an uncertain delay
via such an LPV control design.

Theorem 2. There exists a state-feedback gain-scheduling
LPV controller (18), over the sets F, and T*~, to pro-
vide the closed-loop system (19) with asymptotic stability
and the induced Lo-norm performance index given in (5),
if there exist continuously differentiable parameter dependent
positive-definite matrix functions P(p(t)) , S(p(t)) : 75

St ., positive-definite matrices Q, R € s2n il parameter
dependent real matrix functions U(p(t)) : F4 — R™™",
Y (p(t)) : F — R™*™ a positive scalar 7, and real
scalars /\2 and )\3 such that the LMI (21) is feasible with
2, =P-R+Q+AU+U'AT+B,Y + Y'B. Finally,

such a control law can then be computed as follows
(20

Proof. First, we substitute the closed-loop system matrices in
the LMI condition (17) given by Theorem 1, i.e. A; for A and
Cy,¢ for C;. Next, in order to obtain tractable convex results,
we select the slack variables as V; = V € R"*" V, =
A2V, and V3 = A3V followed by performing a congruent
transformation diag(U™, UT, UT, UT, L 1) on (17). Then, we
define the resultant matrix multiplications as UTHU = [J and
the new decision variables as U = V~! and Y = KU by
which the final LMI (21) is obtained and the proof is complete.

O

In the next section, we will address the MAP response
regulation control problem as a numerical case study to
assess the efficiency and robust performance of the proposed
gain-scheduling LPV control scheme in several simulation
scenarios.

IIT. NUMERICAL EXAMPLE RESULTS AND DISCUSSIONS
A. MAP Response to PHP Drug Dynamics and LPV Modeling

The investigated application is motivated by the problem
of automated MAP regulation using vasoactive drug infusion
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2, P—U+ M (UTAT+Y™B]) R+A, U+ A3 (UTAT+YTB]) pA.U By UTCT+Y™D],]

x  T2R4Z(v;)S—X(U+ UT) XA U — \UT AopA U By 0

* * “R-Q+A3(A, U+ UTAT)  M\puA, U X\3B, u'ct, <0 @b

* * -S 0 pUTCH .

* * * -2 DT,
| * * * -1 ]
in critical hypotensive patients resuscitation, such as severe 95
hemorrhage, maternal cesarean hypotension, severe burn, and -
traumatic brain injury where the inherent feedback loop of IB R, 2 T
body fails to maintain the homeostasis [17]. Conventional € 85 ] %
manual drug administration methods using syringe or infusion E AMAP ~K 2 =
pumps to regulate the blood pressure to a desired value, are 05) 7 | -%
considered to be labor-intensive, sluggish, and inaccurate, and g MAP s : 20 'Gé
can lead to fatal consequences and patient’s death [14]. Thus, <& o
designing an advanced control scheme for such a challenging § 65- i
task to automate and computerize the MAP regulation has @ :migzlﬁrement
gained considerable attention, recently [10], [12], [15], [18], ‘ ‘ ‘ ‘ ‘ ‘
[19]. > 0 200 300 _ 400 _ 50 600 700 809

Time [sec]

To capture the MAP response dynamics subject to vasoac-
tive drug infusion such as phenylephrine (PHP), the following
LPV model is utilized [10], [20]:

- KO
y(t) = a(t) +do(t),

where the state variable is considered to capture the MAP
variations in mmHg from its baseline value, i.e. x(t) =
AMAP(t) = MAP(t) — MAPy(t), u(t) is the drug infusion
rate in ml/h, y(t) is the patient’s measured MAP response
output in mmHg, d,(t) denotes the disturbance signal, K (t)
characterizes the patient’s sensitivity to the drug, 7'(¢) denotes
the lag time representing the uptake, distribution, and biotrans-
formation of the drug, and 7(t) represents the time delay for
the drug to reach the circulatory system from the infusion
pump. Fig. 2 plots the actual MAP measurements due to a step
PHP infusion with a matched response of the utilized model
(22). The experimental data has been collected in a swine ex-
periment performed at the Resuscitation Research Laboratory
at the University of Texas Medical Branch (UTMB), Galve-
ston, Texas [19]. The figure also shows the interpretation of
the model parameters K (t), T'(t), 7(t), M AP,(t) which have
been obtained using the least-squares optimization method to
fit the actual MAP response measurements.

In order to utilize the proposed time-delay LPV control
design framework introduced in Section II-B, we need to
transform the input delay system (22) into a tractable state-
delay LPV representation. For this purpose, we introduce a
low-pass input dynamics:

Q

u(s) = mua(s),

where 2 and A are positive scalars that are selected based on
the bandwidth of the actuators. Then, the state-space state-

(23)

Figure 2: MAP response under step PHP drug infusion

delay LPV representation of the MAP response dynamics
takes the standard time-delay LPV representation (1) with
the augmented state vector of the system defined as x(¢) :=
xa(t) = [2(t) ult) wo(t) 7. wit) = [ r(t) do(t) "
stands for the exogenous disturbance vector including the
MAP reference command, r(¢), and output disturbance sig-
nals. z.(t) is defined for command tracking purposes, i.e.
de(t) = e(t) = r(t) —y(t) = r(t) — (x(t) + do(t)), and
thus the state space matrices of the MAP response dynamics
in the LPV system representation (1) are as follows:

~75 0 0 0 7@ O
Apt)=1 0 —A 0|, A(p)=10 0 0f,
1 0 0 0 0 0
0 0 0
00 ¢
Bi(p(t))=[0 0 |,Ba(p(t))=|2|,Ci(p(t)= ,
P L p 0 p {0 0 0}

Cl,T(P(t))=02x37D11(P(t))=02x2>D12(P(f))2[2)} (24)

where p(t) = [ K(t)
parameter vector.

A major challenge in the precise MAP response regulation
control problem is the patient’s pharmacological variations,
which means that the model parameters and delay, K (t), T'(t),
MAP,(t), and 7(t) could vary significantly from patient-
to-patient (inter-patient variability), as well as, for a given
patient over time (intra-patient variability) [21], [22]. Based
on clinical observations [20], the model parameters variations
can be characterized using the following nonlinear functions

T(t) 7(t) ]T denotes the scheduling
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Table I: Probabilistic distributions of coefficients in (25)

Parameter Distribution

ag U (500, 600)

ko U(0.1,1)

k1 4(0.002,0.007)
br U(1074,3 x 107%)
ar1 U(5,15)
ar,2 U(5,15)

br1 U(80,120)

of the drug injection rate:

arK (t) + K (t) = koexp{—kyu(t)}, (25a)
t

T(t) = st [T, Torae] {bT/ u(t) dt}, (25b)
0

Qr2 T(t) + aT,lﬁ;(t) + T(t) = b7—711l(t) + u(t), t >,

7(t) =0, otherwise,

(25¢)

where ay, ko, ki, br, ar2, ar1, and b, are uniformly
distributed random coefficients given in Table I [23]. Con-
sequently, the parameters variation ranges are K(t) €
[0.2 0.8]mmHg-h/ml, T(t) € [100 400]sec, and 7(t) €
[0 70]sec. Also, the MAP baseline value, M AP,(t), is as-
sumed to stay at a constant 70 mm£H g value. For more details
regarding the MAP response dynamics under drug infusion
and the real-time model parameters estimation algorithm see
[20] and the references therein.

B. Automated Closed-loop MAP Regulation Simulation Re-
sults and Discussion

In this part, we have evaluated the potential of the proposed
delay-dependent LPV control framework in automated regu-
lation of the MAP response of a simulated nonlinear patient
to desired values under different scenarios. Additionally, the
closed-loop MAP command tracking results have been com-
pared to the ones of the conventionally implemented fixed-gain
PI controller.

For the considered MAP response regulation problem, the
controlled output vector, z(t), in (1) is defined to be z(t) =
[0 -xe(t) 1-u(t)]T as (24) suggests. The weighting scalars ¢
and 1) penalize the tracking error, x.(t), and the control effort,
u(t), respectively to fulfill desired performance objectives.
The gain-scheduled state-feedback controller (18) has been
designed to guarantee the closed-loop asymptotic stability
of the LPV time-delay system and to attenuate the worst-
case disturbance amplification, i.e. minimize the suboptimal
induced Ly-norm (or H..-norm) of the closed-loop time-
delay LPV system (5), over the entire range of the the model
parameter trajectories, p € % &, and time-delay variation,
T € ¥, with the varying time-delay uncertainty lies in the
range given in (3). For this purpose, the results of Theorem
2 have been employed to design a robust gain-scheduled
LPV controller for calculating the drug injection rate in the
automated MAP regulation case study.

Remark 1. The conditions in Theorems 1 and 2 result in
infinite-dimensional convex optimization problems with an

—
1)
=]

—LPV
—PI
|_|---Command

g

—

=

=
T

—
=)
=)
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EIR=

-
=

130 T T T T T T T

100

PHP injection [ml/h]

1 1 1 1
0 500 2000 2500 3000 3500

Time [sec|

1000 1500
Figure 3: MAP response tacking performance and PHP in-
jection rate (control effort) of LPV controller against fixed
structure PI controller for disturbance and noise free case

infinite number of LMI constraints. To tackle this obstacle,
we took advantage of the gridding technique to convert the
infinite-dimensional problem to a finite-dimensional convex
optimization problem [24]. Moreover, a quadratic parameter
dependence has been adopted as follows: M(p(t)) = My +
n n

21 pi(H)M;, + 5 Z p2(t)M,,, where M(p(t)) represents any

Zo} the involved LZM} decision matrix variables. Finally, grid-
ding the scheduling parameter space at appropriate intervals
leads to a finite set of LMIs to be solved for the unknown
matrices and ~y. Also, in order to improve the results, a 2-
dimensional search involving the two scalar variables s,
and A3 is performed to obtain the minimum value of . The
MATLAB® toolbox YALMIP with Mosek solver is used to solve
the corresponding LMI optimization problems [25].

First simulation scenario is considered to assess the MAP
command tracking performance of the proposed controller
in the absence of any disturbance and measurement noise.
Such a MAP tracking profile with the associated control effort
are plotted in Fig. 3 where the results of the introduced
gain-scheduled LPV controller have been compared to the
performance of a ubiquitously utilized PI controller taken from
[18]. The favorable control task objectives are to regulate
the MAP response to desirably track the commanded MAP
profile with a minimal settling time and zero steady-state
error while keeping the response overshoot within a narrow
allowable range. As demonstrated in this plot, the proposed
gain-scheduling controller outperforms the fixed design in
satisfying the resuscitation objectives.

Furthermore, during the MAP regulation process via drug
infusion, a patient’s MAP response could be influenced by
factors other than the vasoactive drug administration such as
hemorrhage, unmodeled physiological variations, medications
interference like lactated ringers (LR) or sodium nitroprusside
(SNP), and any other medical interventions. Fig. 4 shows a
typical profile of such incidents modeled as a disturbance
signal. Accordingly, a new scenario has been generated in the
simulation environment and Fig. 5 depicts the performance
of the proposed LPV and PI controllers, where the closed-
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tion rate of LPV controller against fixed structure PI controller

under disturbance and measurement noise

loop system is subject to measurement noise and output dis-
turbances. The considered measurement noise is assumed to be
a white noise signal with the intensity of 10~3. As illustrated,
the proposed LPV control method, due to its scheduling
structure and robustness in the design, demonstrates a superior
MAP command tracking performance with respect to the rise
time and speed of the response while desirably rejecting the
disturbances and measurement noise.

Finally, to examine the robustness of the proposed control
scheme in handling the time-varying delay uncertainty, we
created a scenario in which the model’s varying time-delay has
been under-estimated by 50%. The closed-loop MAP response
of the system with the proposed robust LPV controller has
been compared to the response of a fixed-gain PI controller.
Fig. 6 depicts the MAP tracking result of both controllers in
this scenario and shows that the PI controller which is de-
signed without considering the time-varying delay uncertainty,
demonstrates undesirable oscillatory performance and higher
overshoots both in the closed-loop MAP response tracking
and also in the PHP injection control input signal. The design
parameters are depicted in Table II.

Remark 2. Unlike other methods for time delay systems
analysis, which handle the varying time-delay uncertainty by
considering the largest possible time-delay [26], proposed
results based on Theorem 2 considers time-delay uncertainty
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Figure 6: MAP response tacking performance and PHP injec-
tion rate of LPV controller against fixed structure PI controller

under time delay uncertainty

Table II: Design parameters and performance index

A2 A3 ¢ || A]Q
1045 | —0.55 [ 0.5 | 1T [ 50 | 50

5
33.08

explicitly in the design process, thus, it provides better distur-
bance attenuation, improved induced Lo-norm performance
levels, and less conservative results.

To conclude, as the results of various cases suggest, the
proposed robust gain-scheduled LPV control design is capable
of favorably regulating the patient’s MAP response to the com-
manded MAP values while rejecting disturbances, handling
model parameter variations, and compensating for time-delay
uncertainties.

IV. CONCLUSION

We have proposed sufficient stability and performance con-
ditions for linear parameter-varying systems with uncertain
time-varying delays affected by external disturbances. The
uncertain delay has been treated as a nominal delay plus a
perturbed function, and in order to confine the perturbation
in a stable domain, an input-output stability approach via the
small-gain theorem results has been utilized. The sufficient
conditions have been formulated in a linear matrix inequality
framework using a Lyapunov-Krasovskii functional augmented
with the descriptor method approach. Then, control synthesis
results have been derived using a proper congruent trans-
formation to provide stability and minimize the disturbance
amplification in terms of the induced Lo-norm performance
specification of the closed-loop system. The mean arterial
blood pressure regulation for critical hypotensive patients via
automated drug administration has been studied to assess
the performance and effectiveness of the proposed control
algorithm. The final closed-loop simulation results have proven
the potentials and superiority of the adopted methodology.
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