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Abstract— As robotic swarm systems emerge, it is increas-
ingly important to provide strong guarantees on energy con-
sumption and safety to maximize system performance. One ap-
proach to achieve these guarantees is through constraint-driven
control, where agents seek to minimize energy consumption
subject to a set of safety and task constraints. In this paper,
we provide a sufficient and necessary condition for an energy-
minimizing agent with integrator dynamics to have a continuous
control input at the transition between unconstrained and
constrained trajectories. In addition, we present and analyze
barycentric motion and collision avoidance constraints to be
used in constraint-driven control of swarms.

I. INTRODUCTION

Control of swarms systems is an emerging topic in the

fields of controls and robotics. Due to their adaptability and

flexibility [1], swarm systems have attracted considerable

attention in transportation [2], construction [3], and surveil-

lance [4] applications. As we advance to experimental swarm

testbeds [5], [6] and outdoor experiments [7], it is critical to

minimize the cost per agent in the swarm by considering

energy-minimizing algorithms with strong guarantees on

safety and performance.

Safety and performance have recently been explored in the

context of control barrier functions [8], where agents react

to the environment in real-time to satisfy task and safety

constraints. In this paper, we seek to advance the state of the

art in real-time optimal control by providing: (1) a necessary

and sufficient condition for continuity of the control input of

an energy-minimizing agent with integrator dynamics, (2)

a barycentric motion constraint that guarantees an agent’s

arrival to a desired set in finite time, and (3) a system

of equations involving only the state and control variables

that guarantees optimality for the barycentric motion and

collision avoidance constraints.

Our first contribution has been explored on a case-by-case

basis [9]–[11]; however, there has been no general continuity

result reported in the literature. Our main result is applicable

as a coarse high-level plan for many systems, particularly

with applications in connected and automated vehicles [12]

and drone swarming [13]. Our barycentric motion constraint
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is inspired by the distributed formation control law presented

in [14]. In particular, it was shown that swarms of agents

constrained to move toward a target point, e.g., a barycenter,

are very robust to noise and disturbances. This is partially

due to the large space of feasible control inputs. Due to this

property, we believe barycentric motion is a natural approach

to drive agents into a desired set under the constraint-driven

paradigm.

The remainder of the paper is organized as follows. In

Section II, we provide our main result that gives sufficient

and necessary conditions for our proposed agent to have

a continuous control input. In Section III, we propose the

barycentric motion constraint, and in Section IV, we derive

the corresponding optimal motion primitive. In Section IV-C,

we derive the remaining optimality conditions in terms of

the state and control of the agent, and in Section IV-D, we

present the optimality conditions for the agent to constrain

itself to the surface of a closed disk, and equivalently,

collision avoidance. Finally, we draw concluding remarks

and future work in Section V.

II. MAIN RESULT

Consider a dynamical system S(t) with k states in R
n at

time t ∈ R,

S(t) = {x1(t),x2(t), . . . ,xk(t)}, (1)

where xi(t) ∈ R
n, i = 1, . . . , k, k ∈ N. Let the system

obey integrator dynamics, i.e.,

ẋp(t) =

{

xp+1(t), if p ∈ {1, 2, . . . , k − 1},

u(t), if p = k,
(2)

where u(t) ∈ R
n is the bounded control input, i.e., ||u(·)|| <

∞. Let e(t) be the rate of energy consumption of the system

given by

e(t) =
1

2
||u(t)||2, (3)

i.e., rate of energy consumption is proportional to the L2

norm of the control input. Finally, we impose the following

constraint,

g(x(t), t) ≤ 0, (4)

where (4) is a class Cq−1 function, and q ∈ N is the

minimum number of time derivatives of g(x(t), t) required

for u(t) to appear in g(q)(x(t), t).

Lemma 1. Given real vectors a,b ∈ R
m, the unique real

solution to the equation ||a||2 + ||b||2 = 2 a · b is a = b.
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Proof. By the definition of the dot product, ||a||2 + ||b||2 =
2||a|| ||b|| cos θab, where θab is the angle between the vectors

a and b. Rearranging and applying the quadratic formula for

||a|| yields

||a|| =
1

2

(

2||b|| cos θab±
√

4||b||2 cos2 θab − 4||b||2
)

. (5)

Since a ∈ R
m, ||a|| ∈ R, hence

4||b||2(cos2 θab − 1) ≥ 0, (6)

which implies cos θab = ±1.

If cos θab = 1, then θab = 0 and ||a|| = ||b|| by (5), which

implies a = b.

If cos θab = −1, then ||a|| = −||b|| by (5), which implies

a = b = 0.

To compute the energy-optimal control input for the sys-

tem we follow the standard procedure for constrained optimal

control [15]. First we take q − 1 time derivatives of (4) to

construct a vector of tangency conditions,

N(x(t), t) =









g(x(t), t)
g(1)(x(t), t)

...

g(q−1)(x(t), t)









, (7)

where g(x(t), t) is a class Cq−1 function. Next, we seek the

optimal control input u(t) that minimizes the Hamiltonian,

H =
1

2
||u(t)||2+λ(t)·f(x(t),u(t))+µ(t) g(q)(x(t), t), (8)

where λ(t) ∈ R
k×n are the influence functions, f(x(t),u(t))

are the integrator dynamics defined by (2), and µ(t) ∈ R≥0

is a Lagrange multiplier where

µ(t)

{

= 0, if g(x(t), t) < 0,

≥ 0, if g(x(t), t) = 0.
(9)

The optimal control input must satisfy ∂H
∂u

= 0, thus the

optimal unconstrained input is

u(t) = −λk(t), (10)

where λk(t) is the influence function corresponding to the

state xk(t) and k = |S(t)|.

Theorem 1. Consider the dynamical system S(t) in (1) with

an energy cost (3), and a scalar functional constraint on the

state trajectory g(x(t), t). Suppose S(t) transitions between

the constrained and unconstrained cases at time t1, and let

N(x(t), t) denote the tangency conditions (7). If there exists

t2 > t1, t1, t2 ∈ R, such that g(x(t), t) = 0 for all t ∈
[t1, t2], and Nt(x(t1), t1) = 0, then the optimal control input

u(t) is continuous at the junction t1.

Proof. The jump conditions of the influence functions and

Hamiltonian at time t are

λ
T (t+) = λ

T (t−)− π
T ∂N

∂x

∣

∣

∣

t
, (11)

H(t+)−H(t−) = π
T ∂N

∂t

∣

∣

∣

t
, (12)

where t− and t+ correspond to the left and right limits of t,

respectively, and π is a q × 1 vector of constant Lagrange

multipliers. Substituting (8) into (12) yields

1

2
||u+||2 + λ

+ · f+ −
1

2
||u−||2 − λ

− · f− = π
TNt, (13)

where the superscripts − and + correspond to variables

evaluated at t− and t+, respectively. Note that µ(t−) = 0
and g(q)(x(t+), t+) = 0, thus those terms do not appear in

(13). Substituting (11) into (13) yields

1

2
||u+||2 +

(

λ
− − (πTNx)

T
)

· f+ −
1

2
||u−||2 − λ

− · f−

= π
TNt. (14)

Next, we simplify the influence functions in (14) using

continuity of the states and (10),

λ
− · f+ − λ

− · f− = (λ−
1 · x2 + ...+ λ

−
k · u+)

− (λ−
1 · x2 + ...+ λ

−
k · u−)

= λ
−
k · u+ − λ

−
k · u−

= −u− · u+ + ||u−||2. (15)

Substituting (15) into (14) and rearranging yields

1

2
||u+||2+

1

2
||u−||2−u+ ·u− = π

TNt+(πTNx)f
+. (16)

By Lemma 1, the control input u(t) is continuous at the

junction if and only if the right hand side of (16) is zero,

hence we may formulate the equivalent condition,

π
T
(

Nt +Nxf
+
)

= 0. (17)

Since π is generally nonzero, we seek to satisfy

Nt +Nxf
+ = 0. (18)

Since g(x(t), t) = 0 for all t ∈ [t1, t2], its q derivatives

exist and are equal to zero for all t ∈ [t+1 , t
−
2 ] [16]. Thus,

N(x(t), t) = 0 for all t ∈ [t+1 , t
−
2 ]. Equating the time

derivative of (7) at t+1 to (18) yields the equivalent condition

d

dt
N(x(t+1 ), t

+
1 ) = Nt +Nxf

+ = 0. (19)

Eq. (19) can be expanded into a system of equations for the

right-hand derivative of each row r, namely

d

dt
g(r)

+

=
∂

∂t
g(r)

+

+
∂g(r)

+

∂x

dx+

dt
, (20)

where r = 0, 1, 2, ..., q − 1. Condition (20) is the definition

of right q-derivatives of g(x, t), which exist by our premise.

Thus, (18) is always satisfied and the control input u(t) is

continuous.

The analysis for the system when exiting the constrained

arc to the unconstrained arc is the same, and thus due to

space limitations, the proof is omitted.

Corollary 1. Consider the dynamical system described in

Theorem 1. If the system is traveling along the trajectory

imposed by the constraint g(x(t), t) = 0, and the tangency

conditions, N(x(t), t), are discontinuous at some time t1,



then the control input at u(t1) is continuous if and only if a

feasible u(t1) exists.

Proof. Let t1 be the time where any element of N(x(t1), t1)
is discontinuous, while N(x(t−1 ), t

−
1 ) = 0. Continuity in the

system state implies that at least one row of N(x(t+i ), t
+
1 )

must be nonzero. To satisfy g(x(t), t) = 0 for t > t1 requires

an infinite impulse control input at t1 [15], which contradicts

the boundedness of u(t). Thus, if a feasible control input

exists, the system must transition to an unconstrained arc at

t1, hence u(t1) is continuous by Theorem 1.

Next, we present a case study for Theorem 1 and Corollary

1 for a double-integrator system in R
2 under a barycen-

tric motion constraint. This is presented in the context of

constraint-driven optimal control, where the agent seeks to

minimize energy consumption under a path constraint.

III. PROBLEM FORMULATION

As a step toward real-time constraint-driven optimal con-

trol of swarm systems, consider a single agent in R
2 with

double integrator dynamics

ṗ(t) = v(t), (21)

v̇(t) = u(t), (22)

where p and v are the agent’s position and velocity, respec-

tively. The state of the agent is given by

x(t) =

[

p(t),
v(t)

]

. (23)

Let pr(t) be a time-varying reference position which the

agent seeks to reach in finite time. We denote the relative

distance between the agent and reference state as

r(t) = p(t)− pr(t). (24)

Definition 1. For a desired aggregation distance D ∈ R>0,

we define the barycentric motion constraint

g(x(t), t) =

{

β(x(t)) + r(t) · ṙ(t), ||r(t)|| > D

r(t) · r(t)−D2, ||r(t)|| ≤ D
≤ 0,

(25)

where β(·) > 0 imposes decreasing barycentric motion

toward the closed disk.We refer to ||r(t)|| > D and ||r(t)|| ≤
D as Case I and Case II of g(x(t), t), respectively.

Finally, we present a constraint-driven optimal control

problem to determine the energy-optimal trajectory of the

agent under the barycentric motion constraint.

Problem 1. The problem is formulated as follows:

min
u(t)

1

2

∫ tf

t0
||u(t)||2 dt (26)

subject to: (21), (22), (25), (27)

given: p(t0),v(t0). (28)

where [t0, tf ] ⊂ R is the planning horizon for the agent.

To solve Problem 1 we impose the following assumptions.

Assumption 1. The initial state of the agent, x(t0), satisfies

(25).

We impose Assumption 1 to ensure that the agent can

generate a feasible trajectory at time t0. This assumption

may be relaxed by extending (25) to include an additional

case. However, this would add complexity to the problem

without fundamentally changing our analysis.

Assumption 2. There are no disturbances or noise, and the

agent is able to track the trajectory generated by Problem 1.

We impose Assumption 2 to analyze the agent’s behavior

in a deterministic setting. This assumption may be relaxed

by imposing some notion of robustness to Problem 1 or

reformulating it as a stochastic optimal control problem.

Assumption 3. The reference trajectory satisfies d4
pr

dt4
= 0.

Assumption 3 simplifies the analysis in Section IV. This

assumption may be relaxed by carrying the term d4
pr

dt4

through the final steps, which adds complexity without a

significant impact on our results.

IV. SOLUTION APPROACH

As a first step, we prove the continuity of control when

transitioning between the cases of the barycentric motion

constraint (Definition 1). Then, we discuss the constrained

motion primitive for Problem 1 and show how to optimally

piece together the unconstrained and constrained arcs using

only state and control conditions.

A. Properties of the Barycentric Motion Constraint

The constraint g(x(t), t) has two cases (see Definition

1), Case I corresponds to a barycentric spiral, and Case II

corresponds to a closed disk centered on the reference state.

When an agent transitions between an unconstrained arc and

the arc defined by g(x, t) = 0, the control input u(t) is

continuous by Theorem 1. Next, we present three lemmas

that describe the behavior of the agent while traveling along

g(x(t), t) = 0.

Lemma 2. If there exist γ ∈ R>0 that lower bounds β(x(t))
for all t ∈ R, then the agent will satisfy ||r(t)|| ≤ D in finite

time.

Proof. Let the agent satisfy ||r(t)|| > D. By Definition

1, β
(

x(t)
)

+ r(t) · ṙ(t) ≤ 0. This implies that β
(

x(t)
)

+
||r(t)|| ||ṙ(t)|| cos θr(t) ≤ 0 by the definition of the dot

product, where θr(t) is the angle between r(t) and ṙ(t).
Substituting the lower bounds for β

(

x(t)
)

and r(t) and rear-

ranging yields ||ṙ(t)|| cos θr(t) < − γ
D

. Thus, the component

of ṙ(t) in the direction of r(t) has a negative sign and is

upper bounded by a negative constant. This implies that

||r(t)|| will decrease to a distance D in finite time.

Lemma 3. If the agent enters the closed disk of diameter

D, as described by Case II of Definition 1, then the agent

will remain within the disk for all time.

Proof. Consider the case that ||r(t)|| = D in (25). To exit

the disk at a time t1, the agent must satisfy r(t1) · ṙ(t1) > 0.



However, by continuity of x(t), there exists some ǫ > 0 such

that ||r(t1 + ǫ)|| > D and r(t1 + ǫ) · ṙ(t1 + ǫ) > 0. This is

infeasible by Definition 1, thus the agent will remain within

the closed disk for all time.

Lemma 4. If the the agent is travelling along the constrained

arc described by Definition 1, and transitions from Case I to

Case II at a time t1 and distance ||r(t1)|| = D, then the

control input is continuous at the transition.

Proof. When the agent transitions from Case I to Case

II at t1, we have ṙi(t
−
1 ) · ri(t

−
1 ) = −β

(

x(t−1 )
)

< 0.

Continuity of xi(t) and xr(t) implies that ṙi(t
+
1 ) · ri(t

+
1 ) =

−β
(

x(t+)
)

< 0. To stay on the constrained arc requires that

ṙi(t
+
1 ) · ri(t

+
1 ) = 0. Thus, agent i must exit the constrained

arc at t1, and ui(t1) is continuous by Corrolary 1.

By Lemmas 2–4 we have proven that our proposed

barycentric motion constraint 1) will drive the agent within

a disk of diameter D in finite time, 2) the agent will remain

within the disk for all future time, and 3) the discontinuity in

g
(

x(t), t
)

does not introduce a discontinuity into the optimal

control input. Next, we describe the constrained motion

primitive for Case I of the barycentric motion constraint.

B. Constrained Motion Primitive

To solve for the constrained motion of the agent when

||r(t)|| > D, we use Hamiltonian analysis [15]. First, we

construct the vector of tangency conditions,

N(x(t), t) =
[

β(xi) + ri(t) · ṙi(t)
]

, (29)

and we append the derivative of (29) to the Hamiltonian,

H =
1

2
||u||2 +λ

p · v+λ
v · u+ µ

(

β̇ + r · r̈+ ṙ · ṙ
)

. (30)

The Euler-Lagrange equations are

u(t) = −λ
v(t)− µ(t)

(

β̇u

(

x(t)
)

+ r(t)
)

, (31)

−λ̇
v
(t) = λ

p(t) + µ(t)
(

β̇v

(

x(t)
)

+ ṙ(t)
)

, (32)

−λ̇
p
(t) = µ(t)

(

β̇p

(

x(t)
)

+ r̈(t)
)

. (33)

To solve (31) - (33) we follow the method outlined in [13].

Since Problem 1 is a generalization of the problem reported

in [13], we impose that ||ṙ(t)|| is a constant. This is the

reigning optimal solution [17] for this constrained motion

primitive.

Definition 2. Consider the basis of R2 defined by the vectors

p̂
(

x(t)
)

=
r(t)

||r(t)||
=

r(t)

b(t)
, (34)

q̂
(

x(t)
)

=
ṙ(t)

||ṙ(t)||
=

ṙ(t)

a
, (35)

where a = ||ṙ(t)|| and b(t) = ||r(t)||. This is a well defined

basis for R2 as long as a 6= 0, b(t) 6= 0, and β 6= ||r|| ||ṙ||.

For simplicity we will omit the dependence of the unit

vectors p̂
(

x(t)
)

and q̂
(

x(t)
)

on x(t) when no ambiguity

arises. To guarantee that the basis in Definition 2 is always

well defined we select the following functional form for β,

β
(

x(t)
)

= a b(t)κ, (36)

where κ ∈ (0, 1) is the cosine of the angle between r and ṙ

by the definition of the dot product. As b(t) > D, we impose

a > 0 when traveling along the barycentric spiral.

Following the procedure of [13], we may project r̈(t) onto

the unit vectors p̂ and q̂, which yields

r̈(t) ·

[

p̂

q̂

]

=

[

−
a2+β̇

(

x(t)
)

b(t)

ȧ

]

, (37)

We then seek the time derivatives of (34) and (35). First,

˙̂p =
ṙ(t)

b(t)
−

ḃ(t)

b(t)2
r(t)

=
a

b(t)
q̂ −

ḃ(t)

b(t)
p̂, (38)

where

ḃ(t) =
d

dt
||pi(t)− pj(t)||

=
pi(t)− pj(t)

||pi(t)− pj(t)||
·
(

vi(t)− vj(t)
)

=
r(t) · ṙ(t)

b(t)
=

−β
(

x(t), t
)

b(t)
= −aκ, (39)

thus,
˙̂p =

a

b(t)
q̂ +

a

b(t)
κ p̂. (40)

It follows that

˙̂q =
r̈(t)

a
, (41)

and substituting (37) yields

˙̂q = −
1

ab(t)

(

a2 + β̇
(

x(t)
)

)

p̂, (42)

where

β̇
(

x(t)
)

= aḃ(t)κ = −(aκ)2 = β̇, (43)

thus,
˙̂q = −

a

b(t)

(

1− κ2
)

p̂. (44)

Substituting (36) into (37) and by the definition of r̈, we

have
(

ui(t)− ur(t)
)

·

[

p̂

q̂

]

=

[

−a2(1−κ2)
b(t)

0

]

. (45)

Next, we solve each row of (45) by substituting in the Euler-

Lagrange equations and taking time derivatives until we have

a system of ordinary differential equations that are only a

function of a, b(t), µ(t), and their derivatives. We start by

decomposing (45) into a system of two equations,

(

ui(t)− ur(t)
)

· p̂ = −
a2

b(t)
(1 − κ2), (46)

(

ui(t)− ur(t)
)

· q̂ = 0, (47)



where substituting (31) and by rearranging we have

(

λ
v(t) + ur(t) + µ(t)r(t)

)

· p̂ =
a2

b(t)
(1− κ2), (48)

(

λ
v(t) + ur(t) + µ(t)r(t)

)

· q̂ = 0, (49)

which, by (29), simplifies to

(

λ
v(t) + ur(t)

)

· p̂ =
a2

b(t)
(1− κ2)− µ(t) b(t), (50)

(

λ
v(t) + ur(t)

)

· q̂ = µ(t) b(t)κ. (51)

The next step is to take a time derivative of (50) and (51),

then substitute (50) and (51) in for the p̂ and q̂ terms that

appear. Then we substitute (32) into the resulting equations

and simplify, which yields
(

u̇r(t)− λ
p(t)

)

· p̂ = 2aµ(t)κ2 − µ̇(t)b(t), (52)

(

u̇r(t)− λ
p(t)

)

· q̂ =
a3

b(t)2
(1− κ2)2 + µ̇(t)b(t)κ. (53)

Finally, we take a time derivative of (52) and (53) and

substitute (33). Applying Assumption 3 and simplifying

yields

a4

b(t)3

(

1− κ2
)2

+ µ̈(t)b(t) =
a2

b(t)
µ(t)(1 − κ2) + µ(t)aκ,

(54)

aµ̇(t)(1 − κ2) + µ̇(t)aκ = µ̈(t)b(t)κ+ 2
a4

b(t)3
(1− κ2)2.

(55)

Equations (54) and (55) describe the evolution of µ̇(t) and

b(t) for a given constant speed a and barycentric parameter

κ.

To find the optimal control input to the agent we may

integrate (39),

b(t) = b0 − aκ(t− t0), (56)

where b(t1) = b0. Finally, substituting (43) and (56) into

(37) yields

r̈i(t) = −
a2

b0i − aκ(t− t0)
(1− κ2)p̂+ 0q̂, (57)

which, by definition of the dot product, is

r̈(t) · p̂ = ||r̈(t)|| ||p̂|| cos(
π

2
− θpq) = ||r̈(t)|| sin(θpq)

= ||r̈(t)|| sin(arccos(κ)) = ||r̈(t)||
√

1− κ2. (58)

Thus,

||r̈(t)|| =
a2

b0i − aκ(t− t0)

√

1− κ2, (59)

and the orientation of r̈(t) is perpendicular to q̂. In the

next subsection we use (54) and (55) to determine how the

agent will optimally transition from the unconstrained to the

constrained arc.

C. Barycentric Jump Conditions

Let the agent transition from an unconstrained to

barycentric-constrained arc at some time t. The jump condi-

tions for the influence functions are [15],

λp(t
−) = λp(t

+) + aπ[κp̂+ q̂], (60)

λv(t
−) = λv(t

+) + b(t)π[p̂+ κq̂]. (61)

Substituting (31) into (61) and applying continuity of ui(t)
implies

µ(t+)p̂ = π
[

p̂+ q̂κ
]

. (62)

Next, we project (62) onto the unit vectors p̂ and q̂ which

yields two scalar equations,

µ(t+) = π
[

1− κ2], (63)

−κµ(t+) = π
[

− κ+ κ
]

. (64)

By definition κ ∈ (0, 1), which implies that µ(t+) = 0 and

π = 0. Thus we may simplify (60) to

λp(t
−) = λp(t

+). (65)

Finally, the time derivatives of ui(t) are

u̇i(t
−) = λp(t

−), (66)

u̇i(t
+) = λp(t

+) + µ̇(t+) r(t), (67)

thus

u̇(t+)− u̇(t−) = µ̇(t+) r(t). (68)

We may substitute µ(t+) = 0 into (54) and (55), which

yields

µ̇(t+) =
a3

b(t)3
κ

(

1− κ2
)2

1− κ2 + κ
. (69)

Thus,

u̇(t+)− u̇(t−) = r(t)

(

a3

b(t)3
κ

(

1− κ2
)2

1− κ2 + κ

)

. (70)

At the junction between the unconstrained and constrained

cases, we have four unknowns, p(t), ||v(t)||, and the optimal

transition time t. The corresponding four equations are

continuity in u(t), by Theorem 1, and (70).

We may then apply (29) to find v(t) at the transition,

which gives us sufficient boundary conditions to solve for

the unconstrained and constrained trajectories. In the next

section we provide the optimality conditions when activating

the disk constraint given in Case II of Definition 1, which

also applies to collision avoidance.

D. Fixed Distance Constraint

Next we consider when ||r(t)|| ≤ D. The corresponding

tangency conditions are

N(x, t) =

[

r(t) · r(t) −D2

2r(t) · ṙ(t)

]

, (71)

g(2)
(

x(t), t
)

= 2r(t) · r̈(t) + 2ṙ(t) · ṙ(t), (72)



which leads to the same analysis as Section III when

N
(

x(t), t) = 0 and g(2)
(

x(t), t
)

= 0 if we impose b(t) = D

and κ = 0. In this case (55) implies that µ(t) is a constant,

and (54) implies that

µ =
( a

D

)2

. (73)

The derivative of N with respect to the state is

∂N(x(t), t)

∂x(t)
=

[

2 r(t)T 0
2 ṙ(t)T 2 r(t)T

]

, (74)

and the jump conditions at time t are [15],

λp(t
−) = λp(t

+) + 2
[

π1r(t) + π2ṙ(t)
]

, (75)

λv(t
−) = λv(t

+) + 2
[

π2r(t),
]

(76)

The condition ∂H
∂u

|t− = ∂H
∂u

|t+ implies

u(t−) + λv(t
−) = u(t+) + λv(t

+) + µ(t+)r(t), (77)

which, by Theorem 1, implies

λv(t
−) = λv(t

+) + µ(t+)r(t). (78)

Thus, by (76),

π2 =
µ(t+)

2
=

a2

2D2
. (79)

Combining the time derivative of (31) with (32) and substi-

tuting it along with (79) into (75) implies u̇(t−) = u̇(t+) +
2Dπ1r(t), which, projected onto q̂ yields

u̇(t−) · q̂ = u̇(t+) · q̂. (80)

Thus, we have three unknowns: the angle of r(t), the

relative speed a = ||ṙ(t)||, and the optimal transition time

t. The three corresponding equations are continuity in u(t)
by Theorem 1 and the continuity of u̇(t) · q̂ by (80). This

is sufficient to determine r(t) and ṙ(t) using the tangency

conditions (71), which determines the trajectory of the agent

along the fixed distance constraint.

Finally, we note that the in a swarm system, for two agents

i, j ∈ N, we may write a safe distance constraint for agent i

relative to agent j,

gij
(

x(t), t
)

= ||pi(t)− pj(t)||
2 ≥

(

2R
)2
, (81)

for some agent radius R. This results in tangency condi-

tions identical to (71) when the constraint is active, i.e.,

N
(

x(t), t
)

= 0. Thus, the preceding analysis holds for

the transition to the collision avoidance constraint if j’s

trajectory satisfies Assumption 3.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a proof of continuity of

the control input for a class of energy-minimizing systems

when transitioning between constrained and unconstrained

trajectories. We extended this result to include the case where

the constraint becomes discontinuous at a point, and finally,

we proposed an original barycentric motion for constraint-

driven optimal control. We derived the optimal control input

when traveling along the constrained arc and derived the

optimality conditions for transitioning to the constrained

arc as a function of the and control variables. Finally, we

extended our analysis to include collision avoidance between

agents.

Ongoing research addresses the potential of deriving an

efficient shooting method to numerically solve the proposed

jump conditions in real-time. Future work should consider

extending Theorem 1 for the cases where (1) multiple

constraints become active simultaneously, (2) the agent tran-

sitions between different constrained arcs, (3) only the right

partial derivatives of N(x(t), t) exist, and (4) a constraint

becomes active only at a single instant in time. Another

potential direction for future research is to include additional

agent interactions to achieve a desired emergent behavior

from the system [11].
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