
  

  

Abstract— This paper defines a security injection region 

(SIR) to guarantee reliable operation of water distribution 

systems (WDS) under extreme conditions. The model of WDSs 

is highly nonlinear and nonconvex. Understanding the accurate 

SIRs of WDSs involves the analysis of nonlinear constraints, 

which is computationally expensive. To reduce the 

computational burden, this paper first investigates the 

convexity of the SIR of WDSs under certain conditions. Then, 

an algorithm based on a monotone inner polytope sequence is 

proposed to effectively and accurately determine these SIRs. 

The proposed algorithm estimates a sequence of inner 

polytopes that converge to the whole convex region. Each 

polytope adds a new area to the SIR. The algorithm is validated 

on two different WDSs, and the conclusion is drawn. The 

computational study shows this method is applicable and fast 

for both systems. 

 

Keywords— Convexity, Inner Polytope Sequence, Security 

Injection Region, Water Distribution System. 

 

I. INTRODUCTION 

Water security is generally defined by water consumers' 
accessibility to an adequate quantity of water with acceptable 
quality. One of the fundamental issues in water security is the 
imbalance between supply and demand [1]-[2], which is 
subject to the water pipe limits. The ability of a water 
distribution system (WDS) to supply the consumers with 
water in the minimally acceptable quantity and quality, under 
normal and abnormal conditions, is termed as network 
reliability [4]-[7]. The reliability of WDS can be studied in 
two different groups: mechanical failures from outages due to 
natural and man-made disasters, extreme weather events, and 
aging water infrastructures, and hydraulic failures such as the 
inappropriate operation of pumps due to network tolerance 
for the demand change, and cost estimation [4]-[8].  

To reduce the energy cost of WDS operations, the 
Optimal Pump Scheduling (OPS) problems have been 
investigated for decades [9]-[16]. In [13], the mixed-integer 
nonlinear programming problem of WDS was relaxed and 
converted to a mixed-integer convex program by developing 
a quasi-convex hull relaxation. In [14], the OPS problem was 
solved by a hybrid optimization model that uses linear 
programming approximation and a greedy algorithm. The 
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authors of [15] proposed a mixed-integer second-order cone 
relaxation for WDS to solve the OPS problem and focus on 
energy cost reduction in the WDS.  In [16], an ant colony 
optimization framework was used to solve the OPS problems. 
All of OPS models have assumed water demand at nodes are 
constant value in each time slot and obtained one feasible 
solution. 

The OPS problem focuses on finding the optimal 
operation schedules of pumps assuming that the nodal 
demand profiles are given via prediction. However, in real-
world applications, a water consumer may need more or less 
water than the forecasted value. Indeed, the water demands 
change from time to time and sometimes are quite different 
from the ahead-of-real-time predictions. For example, an 
extreme case such as a forest fire, will change the nodal water 
demand completely and affect the feasibility of an OPS 
solution which is based on forecasted water demands. 
Therefore, evaluating the security of WDSs is an important 
issue for the demand side, especially, in an extreme situation.  

It is believed that water and power systems are tightly 
intertwined [17]-[21]. The pumps and most of the water 
facilities require electricity to work. For instance, water 
networks consume 4% to 16% of the total electricity 
consumption in the United States [17]. On the other hand, 
water usage is necessary for generating electric power and 
cooling power plant. The WDS and the power systems are 
large complex networks, and combining them results in a 
more challenging problem. Several studies investigate the co-
optimization of these systems [18]-[20]. However, they do 
not consider WDS operations to meet nodal water demand 
under emergency conditions. If WDS could not meet the 
power plant cooling water demand, the power system could 
not generate enough power for pumping stations in WDS, 
and a cascading failure will happen for both systems [21]. 
Besides, in real applications, interconnected systems’ 
conflicts prevent their actual real-time models, such as pipe 
network information, from being shared in a co-optimization. 
As a result, evaluations of the Security Injection Region 
(SIR) against extreme conditions with simple descriptions are 
more practical for sharing the information among such 
systems. 

This paper defines an SIR to capture the whole range of 
the secure operation of WDS. A WDS operator can provide 
the SIR as a guideline for all customers to determine the 
whole feasible region for water demand, and customers can 
evaluate the security of WDS to know the acceptable value 
for their water demands. A water demand value located 
outside the SIR can cause a hydraulic pressure failure in the 
WDS operation. Real-time water demand is related to the 
demand side and, WDS cannot control it. Hence real-time 
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water demand should be located in the SIR, by customers, to 
avoid any hydraulic failures.  

However, obtaining an accurate SIR of the WDS is 
computationally challenging since it involves the analysis of 
highly nonlinear constraints. This paper aims at effectively 
determining and finding an SIR. For this purpose, we leverage 
a method of monotone inner polytope sequence, which was 
proposed in our prior work for gas networks [22], to calculate 
the SIRs of water networks. 

To the best of our knowledge, this is the first time a study 
addresses the SIR of WDS where all feasible solutions of 
unpredictable water demands in abnormal situations are 
determined at once. A method as sketched in Fig. 1, is 
proposed to evaluate the SIR and guarantee the security of 
WDS. There are two main parts in our proposed method: the 
WDS part (blue rectangle) and the customer part (red 
rectangle). Initially, an optimization algorithm is applied to 
approximate the convex region for uncertain nodal water 
demands after running the OPS for normal situations. Each 
step of the optimization algorithm produces a new polytope in 
the sequence that is an internal estimation of the region's 
loadability and guarantees any load profile's feasibility within 
the polytope. Then, the WDS operator provides the SIR to the 
demand side, and all customers, especially large costumers 
like power plants, should control their demand within the SIR. 
If any customer cannot control its demand properly, the WDS 
must rerun the OPS with new water demands. The main 
contributions of this paper are categorized as follows: 

• A concept of security injection region is introduced for 
guaranteeing the security and reliability of WDS 
operation.  

• We show that the SIR is convex under some mild 
conditions even though the mathematical model of water 
networks is nonlinear.  

• A sequential optimization approach based on the 
monotone inner polytope sequence is applied to 
effectively calculating the SIR of WDS. 

The rest of this paper is organized as follows. The problem 
formulation is explained in section II. Section III discusses the 
solution method as well as the assumptions for convexity of 
the injection region for steady-state water flow. The algorithm 
of constructing the monotone inner polytope sequence is 
introduced in the same section. Two case studies are executed 
in Section V, while the conclusion is drawn in Section VI. 

II. PROBLEM FORMULATION 

We introduce the mathematical model of WDSs for 
solving the OPS and SIR problems in this section. The 
constraints such as the pipe network model, pump model, and 
mass flow conservation law are explained in detail. 

A. Model of Water Distribution System 

Pipe Network Model: 
The pipe network of a WDS is a directed graph that 

consists of 𝒩 nodes and 𝜀 pipes. The head lost along the pipe 
can be calculated using different formulas, such as Darcy-
Weisbach formula that is the most theoretically accurate [23]. 
We compute head loss with Darcy-Weisbach equation [24]: 
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Figure 1.  the method to obtain the SIR 

 𝑦𝑖 − 𝑦𝑗 + ℎ𝑖 − ℎ𝑗 = 𝑅𝑖𝑗𝑠𝑔𝑛(𝑓𝑖𝑗)𝑓𝑖𝑗
2
 () 

where 𝑦𝑖  and ℎ𝑖 are the water head and elevation of node i, 
and 𝑅𝑖𝑗 and 𝑓𝑖𝑗 are head loss coefficient and water flow of the 

pipe between node i and j, respectively. Let  𝒀 = [𝑦1 , … , 𝑦𝑛]
T 

be the column vector of water head at nodes, A be an |𝜀| × |𝒩| 
incidence matrix such that 𝐴𝑛𝑚 𝜖 {−1,0,1}, 𝑯 = [ℎ1, … , ℎ𝑛]

T 

be the column vector of elevation at nodes, 𝒇 = [𝑓1, … , 𝑓𝑚]T 
be the column vector of water flow in pipes, Sgn(f) be the 
𝑚 × 𝑚 diagonal matrix related to water flow direction, and 
𝑀(𝑅) be the 𝑚 × 𝑚 diagonal matrix of head loss coefficient 
of pipes. The pipe network model can be expressed as: 

 𝐴𝑌 + 𝐴𝐻 = 𝑀(𝑅)(𝑓 ∘ 𝑓) 𝑆𝑔𝑛(𝑓). () 

Pump Model: 

In this paper, we consider that a pump is a special pipe with 
a head gain imposed. We further assume that pumps are of 
constant-speed which can be modeled by a quadratic function 

of the water flow across the pump, i.e.,  
𝑦𝐺

𝑠2 = 𝑎2 (
𝑓

𝑠
)
2

+ 𝑎1
𝑓

𝑠
+

𝑎0 [13], [15], and [25], where 𝑦𝐺  and  s are head increase 
across the pump and normalized pump speed, respectively. In 
this paper, we consider s is equal to 1. 𝑎2, 𝑎1, and 𝑎0 are 
individual pump head flow coefficients. Since 𝑎2𝑓

2 ≪ 𝑎1𝑓 +
𝑎0, the pump model can be reduced to 𝑦𝐺 = 𝑎1𝑓 + 𝑎0 [13]. 
As a result, the model of pumps can be formulated as: 

 𝐴𝑌 + 𝐴𝐻 + 𝐺 = 𝑀(𝑅)(𝑓 ∘ 𝑓)𝑆𝑔𝑛(𝑓) () 

where 𝑮 = [𝑦𝐺1 , … , 𝑦𝐺𝑚]T is the column vector of head gains 
imposed by the pumps. It is assumed that there is no water 
flowing therein if a pump is off. Therefore, the ON/OFF status 
of a pump should be considered in the model. Let 𝑆 ∈ ℝ𝑚×𝑚 
be a diagonal matrix related to the ON/OFF status of pumps. 
The diagonal entries of S are 1 for pipes without pump and 
pipes with the on-pump and, otherwise, zero. Such that, 
equation (3) will be modified into 

 𝑆𝐴𝑌 + 𝑆𝐴𝐻 + 𝑆𝐺 = 𝑀(𝑅)(𝑓 ∘ 𝑓)𝑆𝑔𝑛(𝑓) () 



  

Mass Flow Conservation Law: 

The WDS must preserve the total mass flow rate at every 
node. Several types of pipe would be connected to each node: 
transfer pipe, inject pipe from the water source, and customer-

owned pipe. Let 𝑭𝑮 = [𝑓1, … , 𝑓𝑛]
T be the column vector of 

water flow inject from the water sources, and 𝒅 =
[𝑑1, … , 𝑑𝑛]

T  be the column vector of water flow to the 
customer or water demand. The mass flow conservation law 
can be expressed as: 

 𝐴𝑇𝑓 = 𝐹𝐺 − 𝑑 () 

Upper and Lower Constraints: 

There are several operational and engineering constraints 
for a WDS. The constraints are defined as follow: 

 𝑦𝑚𝑖𝑛
𝐺 ≤ 𝑦𝐺 ≤ 𝑦𝑚𝑎𝑥

𝐺  () 

 𝑦𝑖𝑚𝑖𝑛 ≤ 𝑦𝑖 ≤ 𝑦𝑖𝑚𝑎𝑥 () 

 𝑓𝑖𝑚𝑖𝑛
𝐺 ≤ 𝑓𝑖

𝐺 ≤ 𝑓𝑖𝑚𝑎𝑥 
𝐺  () 

 𝑑𝑖𝑚𝑖𝑛 ≤ 𝑑𝑖 ≤ 𝑑𝑖𝑚𝑎𝑥  () 

 𝑓𝑘𝑚𝑖𝑛 ≤ 𝑓𝑘 ≤ 𝑓𝑘𝑚𝑎𝑥  () 

where 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥, 𝑑𝑖𝑚𝑖𝑛 and 𝑑𝑖𝑚𝑎𝑥, and 𝑓𝑖𝑚𝑖𝑛
𝐺  and 

𝑓𝑖𝑚𝑎𝑥 
𝐺 are the upper and lower limits of water head, water 

demand (load), and water flow injected from a water source 

for node 𝑖, respectively. 𝑦𝑚𝑖𝑛
𝐺  and 𝑦𝑚𝑎𝑥

𝐺  are the upper and lower 
limits of head gain imposed by the pump and 𝑓𝑘𝑚𝑖𝑛 and 𝑓𝑘𝑚𝑎𝑥  
are the upper and lower limits of water flow for pipe k, 
respectively. 

B. Optimal Pump Scheduling 

The OPS problem aims to minimize the cost of energy 
consumed by the pumps while being subject to the constraints 
(4) to (10) [10]-[16]. This problem will determine the 
schedules of pumps, and the value and direction of water flow 
in the pipes for the second level of the purposed method. 

C. Security Injection Region 

The SIR provides information about the reliability and 
security limits of the WDS system to customers. Besides, the 
water consumers, such as power plants, can easily evaluate 
networks’ security and cope with any extreme situation. 
Whenever extreme events happen, all customers should 
control their water demands within the SIR to guarantee 
security and avoid any hydraulic failures. The information 
about water flow directions and pump status is determined by 
the solutions of OPS under the normal operation of WDS. 
Therefore, the S matrix in (4) and water flow direction in the 
pipes are known parameters. So, equation (4) can be modified 
into 

 𝑆∗𝐴𝑌 + 𝑆∗𝐴𝐻 + 𝑆∗𝐺 = 𝑀(𝑅)(𝑓 ∘ 𝑓)𝑆𝑔𝑛(𝑓)∗ () 

where 𝑆∗ and 𝑆𝑔𝑛(𝑓)∗are the optimal value of 𝑆 and 𝑆𝑔𝑛(𝑓) 
after OPS, respectively. 

The SIR problem aims to maximize the feasible region of 
nodal water demands under an abnormal situation while 
respecting the constraint (5) to (11). The objective function of 
SIR will be explained in algorithm 1 in the following section. 

III. SOLUTION METHOD 

A. Convexity of Water Security Injection Region 

The evaluation of SIRs is computationally hard since the 
mathematical model of WDSs is nonlinear and nonconvex. 
This paper investigates the SIR of WDSs with simple 
structures, i.e. radial. The method for effectively evaluating the 
SIR of WDSs with meshed structures will be explored in our 
future research. In this section, we consider two assumptions 
for the convexity of the WDS model established in Section II: 

• First, WDS has a tree structure. Indeed, there is not 
any splitting node before each merging node.  

• Second, all node pressure ranges are similar. 

Besides, the SIR is calculated after solving the OPS, so the 
water flow direction in each pipe is fixed, and pump status is 
known.  

In this section, we prove the convexity of the injection 
region of WDS by considering the above assumption. If any 
point on the line between two feasible water injection points 
was feasible, this set would be convex. Assume 𝐹𝑎 and 𝐹𝑏 are 
vectors of water flow in feasible injection profile a and feasible 
injection profile b, respectively. Besides, 𝑓𝑎, 𝑦𝑎 and ℎ𝑎are 
related to the profile a and 𝑓𝑏, 𝑦𝑏  and ℎ𝑏are related to the 
profile b. Define a 𝜇 𝜖 [0,1] that we have 𝐹𝑐 = (1 − 𝜇)𝐹𝑎 +
𝜇𝐹𝑏. In this situation, there are two lemmas: 

• the 𝑓𝑐 = (1 − 𝜇)𝑓𝑎 + 𝜇𝑓𝑏 is the only pipe flow related 
to the 𝐹𝑐. 

• the pipe flow 𝑓𝑐 indicates at least one node water head 
pressure and level. 

These two lemmas confirm that any point on the line 
between two feasible water injection points has only one pipe 
flow 𝐹𝑐 which is related to one node water head 𝑌𝑐  and level 
𝐻𝑐 . These lemmas are used for proving the convexity of SIR. 

For proving of first lemma, we show that 𝑓𝑐 is a pipe flow 
solution related to 𝐹𝑐 . 

𝐴𝑇𝑓𝑐 = 𝐴𝑇((1 − 𝜇)𝑓𝑎 + 𝜇𝑓𝑏) 

    = (1 − 𝜇)𝐴𝑇𝑓𝑎 + 𝜇𝐴𝑇𝑓𝑏 , 
(12) 

the values of 𝐴𝑇𝑓𝑎  and 𝐴𝑇𝑓𝑏 are equal to 𝐹𝑎 and 𝐹𝑏, 
respectively. 

𝐴𝑇𝑓𝑐 = (1 − 𝜇)𝐹𝑎 + 𝜇𝐹𝑏= 𝐹𝑐 . (13) 

Then, for proving the uniqueness of this solution, assume 𝑓𝑑  is 
another solution related to the 𝐹𝑐. Thus, 𝐴𝑇(𝑓𝑐 − 𝑓𝑑) = 0. The 
first assumption implies that A is a full row rank matrix so that 
𝐴𝑇 is a full column rank matrix. Thus 𝑓𝑑 should be equal to 𝑓𝑐. 
For proving the second lemma, we use the first assumption that 
says the A is a full row rank matrix. Thus, (4) has at least one 
solution. So that, 𝑓 = 𝑓𝑐  admits at least one solution 𝑌𝐶  and 
𝐻𝑐 . 

We can prove that the SIR of a WDS with the above 
assumptions is a convex set according to the two lemmas. For 
example, the first assumption assures an existing solution for 
the optimization problem and helps to construct an SIR. Please 
refer to [22] for details about this proof. 



  

B. Estimating Convex Security Region 

In this section, we leverage the sequential optimization 
algorithm proposed in [22] to construct a monotone inner 
polytope sequence for estimating the convex injection region 
of WDS based on the above assumptions. This two-step 
algorithm is fast since, generally, only three to four polytopes 
are needed to be constructed to estimate the whole region. 
Only the starting polytope is constructed in the first step, while 
the other polytopes are formed in the second step. The final 
convex injection region is the union of these polytopes. The 
proposed algorithm is detailed in Algorithm 1. This algorithm 
is an iterative method for approximating convex injection 
regions. The basic idea is that, at the 𝑖𝑡ℎ inner polytope 𝑃𝑖 , the 
furthest parallel support function for each facet is identified. 
The optimal points on the support functions are new vertices. 
These new vertices are used to expand the earlier polytope to 
obtain polytope 𝑃𝑖+1. At each iteration, this process will be 
repeated to achieve a more accurate feasible space. The 
optimization solver used in Algorithm 1 is the MATLAB 
nonlinear optimization with fmincon. 

A two-dimensional example is given in Fig. 2 to illustrate 
the proposed algorithm. To achieve the first polytope, the 
optimization solver is applied to find the optimal values on 
each axis, separately. In Fig. 2, the black points show the first 
optimum values of the objective function, and the starting 
polytope is constructed with these nodes. The blue area shown 
in Fig. 2 (a) represents the starting polytope. In the second step 
of the algorithm, the optimization problem will be obtained by 
applying the normal direction of facet between black points, 
and a new constraint regarding the node water demand will be 
added. The optimal value of this step is shown with a blue 
point in Fig. 2 (b). The first polytope is constructed by 
connecting the blue point to black points, and the red area is 
added to the feasibility region. Indeed, the red area in Fig. 2 
(b) is the first polytope. 

Algorithm1 Constructing Monotone Inner Polytope Sequence 

1: Start with inputting data such as state variables and demand 

variables (𝑑𝜖𝑁𝑑) 

2: for 𝑖 = 1, 2, … , 𝑁𝑑, generate the starting polytope, where 

𝑁𝑑 is the dimension. 

3: Define objective function 𝑓𝑖 = 𝑒𝑖
𝑇𝑑; where 𝑒𝑖 is a unit 

vector. 

4: Apply the optimization solver to find the optimal value of 𝑓𝑖 
subject to the network constraints ((5) to (11)) 

5: end for 

6: Generate the starting polytope with the optimal values 

7: Let the set of 𝐶0 be 𝐶0 = {𝑃𝑗
0|𝑗 = 1, 2, … , 𝐽} 

8: for 𝑗 = 1, 2… , 𝐽 , j is the number of polytopes  

9: for 𝑘 = 1,… ,𝑁𝑑
𝑗−1 

10: Define the new objective function 𝑓𝑗
𝑘 = 𝑛⃗ 𝑗

𝑘𝑑 ; where 𝑛⃗ 𝑗
𝑘 is 

an outer normal direction vector of hyperplane 𝑃𝑗
𝑘 

11: Apply the optimization solver to find the optimal value of 

𝑓𝑖 subject to the network constraints 

12: end for 

13: Generate the 𝑗𝑡ℎ polytope by connecting the optimal values 

14: Let set of 𝐶𝑗 be 𝐶𝑗 = {𝑃𝑗
𝑘|𝑗 = 1, 2, … , 𝐽} 

15: end for 

  
(a) (b) 

  
(c) (d) 

Figure 2.  A two-dimensional example for the proposed algorithm 

This algorithm will be repeated for constructing the next 
polytopes. Fig. 2 (d) shows the second polytope that is 
constructed by the proposed algorithm. In this Figure, the new 
optimal values are shown by the red points, and the green area 
is added to the convex security region. Repeating the iteration 
to infinity will result in the exact convex injection regions. 
However, compromising between the accuracy and the 
computation shows that the first few steps are generally 
enough for this purpose. Construction of a high dimensional 
sequence and analyzing its convex polytopes could be 
computationally complex [26]. In the real applications, the set 
is usually in a low dimensional space, which is particularly 
easy to handle by the proposed algorithm. 

IV. CASE STUDY 

In this section, the proposed algorithm is implemented on 
two different WDSs which have different pipe lengths and 
diameters. In the first case study, the pump status is ON, while 
the pump status is OFF in the second one, as determined by the 
OPS solution. The main information about the test systems is 
provided and the simulation results are discussed. 

A. Main Information and Assumptions 

The first case study is shown in Fig. 3 which is a real WDS 
in Iran. The water tank meets the water demand in this steady-
state time because the status of the pump is OFF. The structure 
of the second case study, which is a 9-node WDS from the 
EPANET manual with some minor changes in order to meet 
our assumption, is shown in Fig. 4 [23]. The status of the pump 
in the second case study is ON, and it increases the water head 
pressure to overcome gravity. Some of the specifications of 
these systems, such as the length and diameter of pipes, are 
shown in Table I and Table II. The head loss coefficient of a 
pipe is calculated using (12) that is based on the Darcy–
Weisbach equation. 

𝑅 = 𝑓𝑠
𝐿

𝐷

1

2𝑔𝐴2
=

8𝑓𝑠𝐿

𝜋2𝑔𝐷5
 () 

where L and D are the length and diameter of the pipes, 
respectively, 𝑓𝑠 is the coefficient of surface resistance, and g is 
the gravitational acceleration. 
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Figure 4.  Second water distribution network 

TABLE I.  PIPE SPECIFICATION FOR TWO CASE STUDIES 

Pipe specification 
Pipe number 

1 2 3 4 5 6 7 8 

1 
Length (km) 0.5 1 0.5 1 0.5 1 0.8 0.7 

Diameter(cm) 15 15 8 8 8 10 10 8 

2 
Length (km) 0.914 1.524 1.524 1.524 2.438 2.134 1.219 2.438 

Diameter(cm) 35.56 30.48 20.32 20.32 10.16 15.24 17.78 10.16 

TABLE II.  NODE SPECIFICATION FOR TWO CASE STUDIES 

Node specification 
Node number 

1 2 3 4 5 6 7 8 9 

1 
Elevation(m) 30 0 0.7 0.5 0.5 0.3 0 0 0.1 

Demand (L/s) 0 4 - 4.75 - 6 5 3 - 

2 
Elevation(m) 192 213 216 213 213 213 213 228 228 

Demand (L/s) 0 4.5 4.75 3 - 3.25 2 - - 

B. Estimation of Security Injection Region 

The proposed algorithm is executed on the first WDS, by 
considering a 3-dimensional loadability region. In the first step 
of the algorithm, we consider three different objective 
functions regarding the water demands of nodes 3, 5, and 9, 
and all the other water demands are fixed at the given values 
(mentioned in Table II). In this step, the algorithm finds the 
optimal values of these three nodes and constructs the starting 
polytope (Fig. 5 (a)). For example, the maximum acceptable 
value for the water demands of nodes 3, 5, and 9 are 17.25, 
5.68, and 3.39, respectively. In the next step, we define a new 
objective function based on the proposed algorithm and apply 
the optimization solver to find the optimal value. The optimum 
value is [13.86, 0, 3.39] for the water demands of these nodes, 
and the algorithm constructs the first polytope based on it. Fig. 
5(b) shows the first polytope for the first test system. 
Following the same strategy next polytopes will be constructed 
and added to the SIR of WDS. Fig. 5(c) and Fig. 5(d) depict 
the second and third polytope, respectively. The proposed 
strategy is implemented on nodes 5, 8, and 9 for another WDS, 
too. In this WDS, the water demands of nodes 5, 8, and 9 are 
variables, and other nodes have specific values based on Table 
II. The SIR of this WDS is a 3-dimensional region due to three 
water demand variables. Fig. 6. shows the four polytopes that 
are used to construct the SIR. 

  
(a) (b) 

  
(c) (d) 

Figure 5.  3- D SIR at node 3, 5, and 9 for the first WDS. (a) the starting 

polytope (b) the first polytope (c) the second polytope (d) the third polytope 

  
(a) (b) 

  
(c) (d) 

Figure 6.  3-D SIR at node 5, 8, and 9 for the second WDS. (a) the starting 

polytope (b) the first polytope (c) the second polytope (d) the third polytope 

 

Figure 7.  Relative volume of inner polytope for two WDSs 

Fig. 7 depicts the relative volume of these two case studies. 
For example, the starting polytope relative volume for the first 
and second WDS is 0.2448 and 0.1667, respectively. It shows 
that both systems need only four polytopes to obtain the SIR. 

Providing a simple and fast but accurate description of the 
actual SIR is the primary benefit of this algorithm. The 
proposed algorithm constructs the third polytope of the first 
WDS, that is consists of a majority of the SIR with a CPU time 
of 4.521 seconds (all simulations are executed in MATLAB 
R2019b environment with intel (R) Core (TM) i7-9700 CPU 3 
GHz and 16 GB RAM.). 



  

 

Figure 8.  Excuting time of obtaining points and polytopes 

Consider first WDS with three variable loads at node 3, 5, 
and 9 ranging in [0; 17.25], [0; 5.68], and [0; 3.39], 
respectively. Since each range is evenly discretized by 9 
points, there are 729 3-D load combinations in total to verify. 
Screening these load profiles are within the third inner 
polytope (shown in Fig. 5 (d)) takes a relatively short time. The 
required time for reaching the answer by the optimization 
solver for each point and polytope (the starting polytope to the 
third one) is depicted in Fig. 8.  For example, we need three 
points to construct the second polytope. These points are 
obtained in less than 0.5 seconds by applying the proposed 
algorithm. The optimization solver reaches the optimal values 
in a very short time for both of the case studies. 

V. CONCLUSION 

This paper introduced an algorithm based on a monotone 
inner polytope sequence for rapidly and accurately 
determining the security injection region of radial water 
distribution systems. First, the WDS modeling is described 
based on the pipe network model and mass flow conservation 
law. Then, certain assumptions are considered to show the 
convexity of the injection region. When this approach is 
applied to case studies, the almost-whole convex region is 
determined only requiring three or four iterations. 
Furthermore, numerical studies showed that the optimization 
solver needs a very short time for reaching the optimal value 
and constructing the convex region. It proves that the proposed 
algorithm is an applicable and fast approach method for 
solving the problem. 

Extending the proposed method for WDSs with more 
complex structures is one of the future research directions. 
Besides, this method can be applied to other systems like 
cyclic gas networks. 
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