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A Physics-Based Finite-State Abstraction for
Traffic Congestion Control

Hossein Rastgoftar and Jean-Baptiste Jeannin

Abstract—This paper offers a finite-state abstraction of traffic
coordination and congestion in a network of interconnected roads
(NOIR). By applying mass conservation, we model traffic coordi-
nation as a Markov process. Model Predictive Control (MPC) is
applied to control traffic congestion through the boundary of the
traffic network. The optimal boundary inflow is assigned as the
solution of a constrained quadratic programming problem. Addi-
tionally, the movement phases commanded by traffic signals are
determined using receding horizon optimization. In simulation,
we show how traffic congestion can be successfully controlled
through optimizing boundary inflow and movement phases at
traffic network junctions.

I. INTRODUCTION

Urban traffic congestion management is an active research
area, and physics-based modeling of traffic coordination has
been extensively studied by researchers over the past three
decades. It is common to spatially discretize a network of
interconnected roads (NOIR) using the Cell Transmission
Model (CTM) which applies mass conservation to model traffic
coordination [1], [2]. To control and analyze traffic congestion,
the Fundamental Diagram is commonly used to assign a flow-
density relation at every traffic cell. While the Fundamental
Diagram can successfully determine the traffic state for small-
scale urban road networks, it may not properly function
for congestion analysis and control in large traffic networks.
Modeling of backward propagation, spill-back congestion, and
shock-wave propagation is quite challenging. The objective of
this paper is to deal with these traffic congestion modeling
and control challenges. In particular, this paper contributes a
novel integrative data-driven physics-inspired approach to ob-
tain a microscopic data-driven traffic coordination model and
resiliently control congestion in large-scale traffic networks.

Researchers have proposed light-based and physics-based
control approaches to address traffic coordination challenges.
Fixed-cycle control is the traditional approach for the oper-
ation of traffic signals at intersections. The traffic network
study tool [3], [4] is a standard fixed-cycle control tool for
optimization of the signal timing. Balaji and Srinivasan [5]
and Chiu [6] offer fuzzy-based signal control approaches
to optimize the green time interval at junctions. Physics-
based traffic coordination approaches commonly use the Fun-
damental Diagram to determine traffic state (flow-density
relation) [7], [8], model dynamic traffic coordination [9],
incorporate spillback congestion [10], [11], infuse backward
propagation [12], [13] effects into traffic simulation, or specify
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the feasibility conditions for traffic congestion control. Jafari
and Savla [14] propose first order traffic dynamics inspired
by mass flow conservation, dynamic traffic assignment [15],
[16], and a cell transmission model [1], [17] to model and
control freeway traffic coordination. Model predictive control
(MPC) is an increasingly popular approach for model-based
traffic coordination optimization [18]–[20]. Baskar et al. [21]
apply MPC to determine the optimal platooning speed for
automated highway systems (AHS). Furthermore, researchers
have applied fuzzy logic [22]–[25], neural networks [26]–[29],
Markov Decision Process (MDP) [30], [31], formal methods
[32], [33] and mixed nonlinear programming (MNLP) [34] for
model-based traffic management. Optimal control [14], [35]
approaches have also been proposed. Rastgoftar et al. [36]
model traffic coordination as a probabilistic process where
traffic coordination is controlled only through boundary inlet
nodes.

This paper studies the problem of traffic coordination
and congestion control in a network of interconnected roads
(NOIR). We model traffic coordination as a mass conserva-
tion problem governed by the continuity partial differential
equation (PDE). Through spatial and temporal discretization of
traffic coordination, this paper advances our previous work [36]
by modeling traffic as a Markov process controlled through
ramp meters (at boundary road elements) and traffic signals
(at NOIR junctions). Given traffic feasibility conditions, MPC
is applied to assign optimal boundary inflow such that traffic
over-saturation is avoided at every NOIR road element. As
the result, the optimal boundary inflow is continuously as-
signed as the solution of a constrained quadratic programming
problem, and incorporated into traffic congestion planning.
Given optimal boundary inflow, movement phase optimization
is formulated as a receding horizon problem where discrete
actions commanded by the traffic signals are assigned by
minimization of coordination costs over a finite time horizon.
Our proposed model ensures that traffic density is non-negative
everywhere in the NOIR, if the traffic inflow is positive at every
inlet boundary roads. Therefore, traffic coordination control
can be commanded by a low computation cost.

This paper is organized as follows. Preliminary notions of
graph theory presented in Section II are followed by traffic
coordination modeling presented in Section III. Finite state
abstraction of traffic coordination is presented in Section IV.
Ramp-based and signal-based traffic congestion control is
presented in Section V. Simulation results are presented in
Section VI followed by concluding remarks in Section VII.
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II. GRAPH THEORY NOTIONS

Consider a NOIR with 𝑚 junctions defined by set W =

{1, · · · ,𝑚}. An example of such a NOIR is shown in Fig. 1 (a).
NOIR roads are identified by set V𝑅 where 𝑖 ∈V𝑅 is the index
number of a road directed from an upstream junction to a
downstream junction. Set V𝑅 can be partitioned into a set of
inlet boundary roads V𝑖𝑛 and a set of non-inlet roads V𝐼 such
that

V𝑅 =V𝑖𝑛

⋃
V𝐼 . (1)

We also define a single “Exit” road defined by singleton V𝐸 .
Note that the “Exit” road does not represent a real road element
(See Fig. 1 (a)); it is defined to model traffic coordination by a
finite-state Markov process. We spatially discretize the NOIR
using graph G (V,E) with node set V =V𝑅

⋃V𝐸 and edge
set E ⊂ V×V. Note that the nodes of graph G are the roads
of our NOIR, and subsequently we use “road” and “node”
interchangeably. Graph G is directed and the edge set E hold
the following properties:

1) Traffic flow is directed from road 𝑖, if (𝑖, 𝑗) ∈ E.
2) Real roads defined by set V𝑅 are all unidirectional.

Therefore, ( 𝑗 , 𝑖) ∉ E, if (𝑖, 𝑗) ∈ E.
Given graph G (V,E), global in-neighbor, global out-

neighbor, inlet boundary nodes, non-inlet nodes, and “Exit”
node are formally defined as follows:

Definition 1. Given edge set E, the global in-neighbors of
road 𝑖 are defined by set

I𝑖 = { 𝑗 ∈ V𝑅 : ( 𝑗 , 𝑖) ∈ E} . (2)

Definition 2. Given edge set E, the global out-neighbors of
road 𝑖 are defined by set

O𝑖 = { 𝑗 ∈ V : (𝑖, 𝑗) ∈ E} . (3)

Definition 3. Inlet boundary roads have no in-neighbors at any
time, and they are formally defined by set

V𝑖𝑛 = {𝑖 ∈ V𝑅 : I𝑖 = ∅∧O𝑖 ≠ ∅}. (4)

Definition 4. Non-inlet roads have at least one in-neighbor and
one out-neighbor at any time, and they are formally defined
by set

V𝐼 =V𝑅 \V𝑖𝑛. (5)

Definition 5. The “Exit” node is formally defined as follows:

V𝐸 = {𝑖 ∈ V : I𝑖 ≠ ∅∧O𝑖 = ∅} (6)

where we assume that V𝐸 is a singleton.

Without loss of generality, inlet boundary nodes are indexed
from 1 through 𝑁𝑖𝑛, non-inlet roads are indexed from 𝑁𝑖𝑛 +1
through 𝑁 , and the “Exit” node is indexed by 𝑁 +1. Therefore
V𝑖𝑛 = {1, · · · , 𝑁𝑖𝑛}, V𝐼 = {𝑁𝑖𝑛 + 1, · · · , 𝑁}, and V𝐸 = {𝑁 + 1}
define the inlet, non-inlet, and “Exit” nodes, respectively. We
use graph G (V,E) to define interconnections between the
NOIR roads, V =V𝑅

⋃V𝐸 and E ⊂ V×V define nodes and
edges of graph G.

The NOIR shown in Fig. 1 contains 53 unidirectional “real”
roads identified by set V𝑅 = {1, · · · ,53} and a virtual “Exit”

node identified by set V𝐸 = {54}, i.e. V =V𝑅

⋃V𝐸 . Note that
roads 9, · · · ,17 ∈ V𝐼 ⊂ V𝑅 are in-neighbors to the “Exit” node
54 ∈ V𝐸 , as represented by the dotted lines. Thus

I54 = {9, · · · ,17}.

Inlet nodes are identified by V𝑖𝑛 = {1, · · · ,8} and V𝐼 =

{9, · · · ,53} defines all non-inlet roads.
Movement Phase Rotation: At each intersection, we define

movement phases representing the different possible configura-
tions of traffic light states at that intersection or, equivalently,
the different possible paths that are allowed at that intersection.
For instance, in the example of Fig. 1, intersection number 10
has three lights – at the ends of roads 33, 35 and 50 – and
three different movement phases:

• the first movement phase 𝜆10,1 corresponds to a green
light at the end of road 50, and red lights at the ends
of roads 33 and 35; equivalently, cars are allowed to
circulate from road 50 to roads 34, 13 or 36, and no
other circulation is allowed;

• the second movement phase 𝜆10,2 corresponds to a green
light at the end of road 35, and red lights at the end of
roads 33 and 50; cars are only allowed to circulate from
road 35 to either road 13 or 36;

• the third movement phase 𝜆10,3 corresponds to a green
light at the end of road 33, and red lights at the end
of roads 35 and 50 to be red; cars are only allowed to
circulate from road 33 to either road 13 or 34.

Those three movement phases define the three possible con-
figurations of the lights at intersection number 10, and over
time the lights of intersection 10 alternatively go over those
movement phases.

Formally, let M𝑖𝑛, 𝑗 ⊂ V𝑅 define incoming roads and
M𝑜𝑢𝑡, 𝑗 ⊂ V𝑅 define outcoming roads at junction 𝑗 ∈ W.
Every junction 𝑗 is associated with 𝜇 𝑗 movement phases
that can be commended by the traffic signals. The set of
edges 𝜆 𝑗 ,𝑘 ⊂M𝑖𝑛, 𝑗 ×M𝑜𝑢𝑡, 𝑗 ⊂ E is the 𝑘-th movement phase
commanded at junction 𝑗 ∈W where 𝑘 = 1, · · · , 𝜇 𝑗 . Movement
phases at junction 𝑗 ∈ W are defined by finite set 𝚲 𝑗 as
follows:

𝚲 𝑗 =

𝜇 𝑗⋃
𝑘=1

{𝜆 𝑗 ,𝑘 } = {𝜆 𝑗 ,1, ...,𝜆 𝑗 ,𝜇 𝑗
} (7)

where 𝑗 ∈W and 𝑘 = 1, · · · , 𝜇 𝑗 . Note that 𝚲 𝑗 is a set of subsets
of edge set E, i.e., is contained in the powerset of E. We can
define

𝚲 = 𝚲1 × · · · ×𝚲𝑚 (8)

as the set of all possible movement phases across the NOIR.
Transitions of movement phases are cyclic at every junction
𝑗 ∈W, and defined by cycle graph C𝑗

(
𝚲 𝑗 ,𝚵 𝑗

)
with node set

𝚲 𝑗 and edge set

𝚵 𝑗 =

{(
𝜆 𝑗 ,1,𝜆 𝑗 ,2

)
, · · · ,

(
𝜆 𝑗 ,𝜇 𝑗−1,𝜆 𝑗 ,𝜇 𝑗

)
,

(
𝜆 𝑗 ,𝜇 𝑗

,𝜆 𝑗 ,1

)}
(9)

Intuitively, first 𝜆 𝑗 ,1 is the active movement phase defining the
current traffic light states and equivalent authorized paths at
junction 𝑗 ∈ W; then the active movement phase is switched
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(a) (b)

Fig. 1: (a) Example NOIR with 53 unidirectional roads. (b) Three possible movement phases at junction 10 ∈W.

to 𝜆 𝑗 ,2, then to 𝜆 𝑗 ,3,..., then to 𝜆 𝑗 ,𝜇 𝑗
, then back to 𝜆 𝑗 ,1 to restart

the cycle.
Fig. 1 (b) shows all possible movement phases at junc-

tion 10 ∈ W of the NOIR shown in Fig. 1 (a), where
W = {1, · · · ,13} defines the junctions. The incoming and
outcoming roads are defined by set M𝑖𝑛,10 = {33,35,50} and
M𝑜𝑢𝑡,10 = {13,34,36}, respectively. There are three move-
ment phases 𝜆10,1 = {(50,34), (50,13), (50,36)} ⊂ E, 𝜆10,2 =

{(35,13), (35,36)} ⊂ E, and 𝜆10,1 = {(33,13), (33,34)} ⊂ E.
Note that U-turns are disallowed at every junction of the
Example NOIR shown in Fig. 1.

Movement Phase Activation Time: It is assumed that
movement phase 𝜆 𝑗 ,𝑘 ∈ 𝚲 𝑗 (𝑘 = 1, · · · , 𝜇 𝑗 ) cannot be active
more that 𝑇𝐿, 𝑗 time steps, where 𝑇𝐿, 𝑗 ∈ N is equivalent
to 𝑇𝐿, 𝑗Δ𝑇 seconds, and Δ𝑇 is a known constant time step
interval. Because movement rotation is cyclic at every junction
𝑗 ∈W, we define the maximum activation time 𝑇𝐿, 𝑗 for every
movement phase at NOIR junction 𝑗 ∈ W. Define 𝑇𝑗 as the
activation time of a movement phase at junction 𝑗 ∈W, where
𝑇𝑗 ≤ 𝑇𝐿, 𝑗 . Note that 𝑇𝑗 is independent of index 𝑘 ∈ {1, · · · , 𝜇 𝑗 }
and is counted from the start time of a movement phase 𝜆 𝑗 ,𝑘

at junction 𝑗 ∈ W. Given 𝑇𝑗 and 𝑇𝐿, 𝑗 , we define activation
index

𝑗 ∈W, 𝜏𝑗 =

⌊
𝑇𝑗

𝑇𝐿, 𝑗

⌋
∈ {0,1}

at every intersection 𝑗 ∈W, where b·c denotes the floor func-
tion. Because 𝑇𝑗 ≤ 𝑇𝐿, 𝑗 , 𝜏𝑗 ∈ {0,1} is a binary variable assign-
ing whether the active movement phase must be overridden or
not. If 𝜏𝑗 = 0, the current movement 𝜆 𝑗 ,𝑘 (𝑘 = 1, · · · , 𝜇 𝑗 , 𝑗 ∈W)
can still remain active. Otherwise, the active movement phase
is overridden and the next movement phase must be selected.

The network movement phase is denoted by 𝜆 =

(𝜆1, · · · ,𝜆𝑚) ∈ 𝚲 where 𝜆 𝑗 ∈ 𝚲 𝑗 and 𝑗 ∈ W. We define the
switching communication graph G𝜆 (V,E𝜆) to specify the
inter-road connection under movement phase 𝜆 ∈ 𝚲, where
E𝜆 ⊂ E defines the edges of graph G. Per movement phase
definition given in (7), E𝜆 = ∪𝑚

𝑘=1𝜆𝑘 . In-neighbors and out-
neighbors of road (or Exit node) 𝑖 ∈ V is defined by the
following sets:

𝑖 ∈ V,𝜆 ∈ 𝚲, I𝑖,𝜆 = { 𝑗 ∈ V𝑅 : ( 𝑗 , 𝑖) ∈ E𝜆} , (10a)

𝑖 ∈ V,𝜆 ∈ 𝚲, O𝑖,𝜆 = { 𝑗 ∈ V : (𝑖, 𝑗) ∈ E𝜆} . (10b)

Given the above definitions, for any 𝜆 ∈𝚲, I𝑖,𝜆 ⊂ I𝑖 and O𝑖,𝜆 ⊂
O𝑖 , thus:

1) for every 𝜆 ∈ 𝚲, in-neighbor set I𝑖,𝜆 = ∅ if 𝑖 ∈ V𝑖𝑛;
2) for every 𝜆 ∈ 𝚲, out-neighbor set O𝑖,𝜆 = ∅ if 𝑖 ∈ V𝐸 .

III.TRAFFIC COORDINATION MODEL

We use the mass conservation law to model traffic at every
NOIR road element 𝑖 ∈ V. Let 𝜌𝑖 , 𝑦𝑖 , and 𝑧𝑖 denote traffic
density, traffic inflow, and traffic outflow at every road element
𝑖 ∈ V. Traffic dynamics governed by mass conservation is:

𝜌𝑖 (𝑘 +1) = 𝜌𝑖 (𝑘) + 𝑦𝑖 (𝑘) − 𝑧𝑖 (𝑘) , (11)

where

𝑧𝑖 (𝑘) =
{
𝑝𝑖 (𝜆) 𝜌𝑖 (𝑘) 𝑖 ∈ V𝑅, ∀𝜆 ∈ 𝚲
𝜌𝑖 (𝑘) + 𝑦𝑖 (𝑘) 𝑖 ∈ V𝐸 , ∀𝜆 ∈ 𝚲

(12a)

𝑦𝑖 (𝑘) =
{
𝑢𝑖 (𝑘) 𝑖 ∈ V𝑖𝑛, ∀𝜆 ∈ 𝚲∑

𝑗∈I𝑖,𝜆 𝑞𝑖, 𝑗 (𝜆) 𝑧 𝑗 (𝑘) + 𝑑𝑖 𝑖 ∈ V \V𝑖𝑛, ∀𝜆 ∈ 𝚲
(12b)



4

and inflow 𝑦𝑖 ≥ 0 at road element 𝑖 ∈ V𝑖𝑛 has the following
properties:

1) If 𝑖 ∈ V𝑖𝑛, 𝑦𝑖 = 𝑢𝑖 can be controlled by a ramp meter.
2) If 𝑖 ∈ V𝐼 , 𝑑𝑖 ≥ 0 is given as a non-zero-mean Gaussian

process.
Note that 𝑑𝑖 is uncontrolled at road element 𝑖 ∈ V𝑅 \V𝑖𝑛.
Variable 𝑝𝑖 (𝜆) ∈ [0,1] is the traffic outflow probability, and
𝑞𝑖, 𝑗 (𝜆) is the outflow fraction of road element 𝑗 directed
towards 𝑖 ∈ O 𝑗 ,𝜆 when 𝜆 ∈ 𝚲 is the active movement phase
over time interval [𝑡𝑘 , 𝑡𝑘+1]. Note that∑︁

𝑗∈O𝑖,𝜆

𝑞 𝑗 ,𝑖 (𝜆) = 1 (13)

for every 𝜆 ∈ 𝚲. We define P (𝜆) =

diag (𝑝1 (𝜆) , · · · , 𝑝𝑁 (𝜆) , 𝑝𝑁+1 (𝜆)), where 𝑝𝑁+1 (𝜆) = 0
∀𝜆 ∈ Λ. This implies that the outflow of the exit node is zero.
Also, matrix Q(𝜆) =

[
𝑞𝑖, 𝑗 (𝜆)

]
∈ R(𝑁+1)×(𝑁+1) is non-negative,

and

𝑞𝑁+1, 𝑗 (𝜆) =
{
1 𝑗 = 𝑁 +1 ∈ V𝐸

0 otherwise
. (14)

Eq. (14) implies that traffic does not flow from the exit node
𝑁 + 1 ∈ V𝐸 to any other element 𝑗 ∈ V𝑅 \V𝐸 . The traffic
network dynamics is given by

x (𝑘 +1) = A (𝜆) x (𝑘) +g (𝑘) (15)

where x (𝑘) =
[
𝜌1 (𝑘) · · · 𝜌𝑁+1 (𝑘)

]𝑇 and
g =

[
g𝑇
𝑅

𝑔𝑁+1
]𝑇

= [𝑔𝑖] ∈ R(𝑁+1)×1 is defined as follows:

𝑔𝑖 (𝑘) =

𝑢𝑖 (𝑘) 𝑖 ∈ V𝑖𝑛

𝑑𝑖 (𝑘) 𝑖 ∈ V𝑅 \V𝑖𝑛

0 𝑖 ∈ V𝐸

. (16)

Also,

A (𝜆) = I−P (𝜆) +Q (𝜆)P (𝜆) =
[
C (𝜆) 0
D (𝜆) 1

]
,

where every column of non-negative matrix A : 𝚲 →
R(𝑁+1)×(𝑁+1) sums to 1 for every movement phase 𝜆 ∈ Λ,
C :𝚲→R𝑁×𝑁 , and D (𝜆) ∈R1×𝑁 . Eigenvalues of matrix C (𝜆)
are all placed inside a disk of radius 𝑟𝜆 < 0 with center at
the origin. Note that the 𝑖-th entry of matrix D : 𝚲 → R1×𝑁

specifies the fraction of traffic flow exiting the NOIR from
node 𝑖 ∈ V𝑅. Traffic dynamics at non-exit nodes is given by

x𝑅 (𝑘 +1) = C (𝜆) x𝑅 (𝑘) +g𝑅 (𝑘) , (17)

where x𝑅 (𝑘) =
[
𝜌1 (𝑘) · · · 𝜌𝑁 (𝑘)

]𝑇 .

IV. PROBLEM SPECIFICATION

Linear Temporal Logic (LTL) is used to specify the
conservation-based traffic coordination dynamics [37] and
present the feasibility conditions. Every LTL formula con-
sists of a set of atomic propositions, logical operators, and
temporal operators. Logical operators include ¬ (“negation”),
∨ (“disjunction”), ∧ (“conjunction”), and ⇒ (“implication”).

LTL formulae also use temporal operators � (“always”), ©
(“next”), ♦ (“eventually”), and U (“until”).

We extend discrete-time LTL with the syntactic sugar
�{0,...,𝑁𝜏 } to specify satisfaction of a certain property in
the next 𝑁𝜏 + 1 time steps. More specifically, �{0,...,𝑁𝜏 }𝜑 at
discrete time 𝑘 if and only if 𝜑 is satisfied at discrete times 𝑘

to time 𝑘 +𝑁𝜏 [36].
The problem of traffic coordination can be formally speci-

fied by a finite-state abstraction defined by tuple

M = (S,A,H ,C) ,

where S is the state set, A is the discrete action set, H :
S×A→S is the state transition relation, and C :S×A→R+
is the immediate cost function.

A. State set S

Set S is mathematically defined by

S = {𝑠 = (x,g,𝜆, 𝜏)
��x ∈ X, g ∈ G, 𝜆 ∈ 𝚲, 𝜏 ∈ {0,1}𝑚}, (18)

where the traffic density vector x =
[
𝜌1 · · · 𝜌𝑁

]𝑇 ∈ R𝑁+1

and input vector g ∈ G ∈ R𝑁𝑖𝑛×1 were introduced in Section III,
and X and G are compact sets. Also, 𝜆 =

(
𝜆1,𝜁1

, · · · ,𝜆
𝑚,𝜁𝑚

)
∈𝚲

is a movement phase, and 𝜏 = (𝜏1, · · · , 𝜏𝑚) ∈ {0,1}𝑚 where 𝜏𝑖 ∈
{0,1} is the activation index at junction 𝑖 ∈W. An execution
of the proposed system is expressed by 𝑠 = 𝑠0𝑠1𝑠2, · · · where
𝑠𝑘 = (x[𝑘],g𝑘 ,𝜆[𝑘], 𝜏[𝑘]) is the state of the system at time 𝑘 .

Feasibility Condition 1: Traffic density, defined as the
number of cars at a road element, is a positive quantity
everywhere in the NOIR. It is also assumed that every road
element has maximum capacity 𝜌max. Therefore, the number
of cars cannot exceed 𝜌max in any road element 𝑖 ∈ V. These
two requirements can be formally specified as follows:∧

𝑖∈V
�{0,...,𝑁𝜏 } (𝜌𝑖 ≥ 0 ∧ 𝜌𝑖 ≤ 𝜌max) . (Φ1)

If feasibility condition Φ1 is satisfied at every road element,
then traffic over-saturation is avoided everywhere in the NOIR,
at every discrete time 𝑘 .

Optional Condition 2: Boundary inflow should satisfy the
following feasibility condition at every discrete time 𝑘:

�{0,...,𝑁𝜏 }

( ∑︁
𝑖∈V𝑖𝑛

𝑢𝑖 = 𝑢0

)
. (Φ2)

Boundary condition (Φ2) constrains the number of vehicles
entering the NOIR to be exactly 𝑢0 at any time 𝑘 . Note that
𝑢0 is an upper bound on vehicles entering the NOIR. However,
in the simulation results presented, traffic demand is significant
such that the NOIR is maximally utilized by as many vehicles
as possible.
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B. Action Set A
Action set A : 𝚲 × T → 𝚲 assigns the next acceptable

movement at every junction 𝑖 ∈ W, given the current NOIR
activation index 𝜏 ∈ T = {0,1}𝑚 and movement phase 𝜆 =

(𝜆1, · · · ,𝜆𝑚), i.e. 𝜏 = (𝜏1, · · · , 𝜏𝑚), 𝜏𝑖 ∈ {0,1}, 𝑖 ∈W. We write
𝜆+
𝑖

for the value of 𝜆𝑖 in the next state, i.e. 𝜆+
𝑖
(𝑘) = 𝜆𝑖 (𝑘 +1),

and similarly for other variables. Actions are constrained and
must satisfy one of the following LTL formula:

(𝜏𝑖 = 0) ⇒
( (
𝜆𝑖 ,𝜆

+
𝑖

)
∈ Ξ𝑖 ∨

(
𝜆+𝑖 = 𝜆𝑖

) )
, (Φ3,𝑖)

(𝜏𝑖 = 1) ⇒
(
𝜆𝑖 ,𝜆

+
𝑖

)
∈ Ξ𝑖 , (Φ4,𝑖)

Combining (Φ3,𝑖) and (Φ4,𝑖), the next movement phase must
satisfy the following LTL formula:∧
𝑖∈W
�{0,...,𝑁𝜏 }

( ( ( (
𝜆𝑖 ,𝜆

+
𝑖

)
∈ Ξ𝑖

)
U (𝜏𝑖 = 1)

)
∨

( (
𝜆𝑖 ,𝜆

+
𝑖

)
∈ Ξ𝑖

) )
.

(Φ5)

Remark 1. Set A(𝜆, 𝜏) ⊂ 𝚲 is defined as follows:

A(𝜆, 𝜏) = {𝜆+ ∈ 𝚲 | ∀𝑖 ∈W, (𝜆𝑖 ,𝜆+𝑖 ) ∈ Ξ𝑖 ∨ (𝜏𝑖 = 0∧𝜆+𝑖 = 𝜆𝑖)}.
(20)

C. State Transition Function

The state transition relation H defines transition from
“current” state 𝑠 = (x,g,𝜆, 𝜏) ∈ S to “next” state 𝑠+ =

(x+,g+,𝜆+, 𝜏+) ∈ S given action 𝑎 (𝜆, 𝜏) ∈ A (𝜆, 𝜏). Current
and next movement phases must satisfy condition (Φ6) below.

Transition of current activation index 𝜏 must satisfy the
following properties:∧

𝑖∈W

( (
𝜏+𝑖 = 0

)
U

(
𝑇𝑖 = 𝑇𝐿,𝑖

) )
. (Φ6)

Note that the 𝑇𝑖 is reset every time movement phase is updated
at junction 𝑖 ∈ W. This requirement is formally specified as
follows:

∀𝑖 ∈W,
(
𝜆+𝑖 ≠ 𝜆𝑖

)
⇒

(
𝑇+
𝑖 = 0

)
(21)

This paper assumes that 𝑔𝑖 = 𝑑𝑖 is a Gaussian process for 𝑖 ∈V𝐼

is an non-inlet road, i.e. 𝑑𝑖 ∼ N
(
𝑑𝑖 ,𝜎𝑖

)
. Per Eq. (16), 𝑔𝑖 =

𝑢𝑖 for 𝑖 ∈ V𝑖𝑛 where 𝑢𝑖 is determined as the solution of a
receding horizon optimization problem presented in Section
V. Therefore( ∧

𝑖∈V𝑖𝑛

𝑔+𝑖 = 𝑢+𝑖

)
∧

( ∧
𝑖∈V𝐼

𝑔+𝑖 = 𝑦𝑖

)
∧

( ∧
𝑖∈V𝐸

𝑔+𝑖 = 0

)
. (22)

Transition of x is governed by (15), thus

x+ = A (𝜆) x+g (23)

where 𝜆 ∈ 𝚲.

D. Cost Function

Given Eq. (15), an 𝑁𝜏-step expected transition is given by

x𝑁𝜏+1 =𝚯ℎ (𝜆) x1 +𝚪𝑁𝜏


g1
...

g𝑁𝜏

 , (24)

where g1, · · · ,g𝑁𝜏
∈ G, x1 ∈ X, 𝜆 ∈ 𝚲,

𝚯𝑁𝜏
(𝜆) = A𝑁𝜏 (𝜆)

and

𝚪𝑁𝜏
=

[
𝚯𝑁𝜏−1 · · · 𝚯1 I

]
∈ R(𝑁+1)×𝑁𝜏 (𝑁+1) .

The cost function C is defined by

C
(
x,g1, · · · ,g𝑁𝜏

,𝜆
)
=

𝑁𝜏∑︁
ℎ=1

x𝑇ℎ+1F𝑇 Fxℎ+1

=
[
x𝑇1 g𝑇1 · · · g𝑇

𝑁𝜏

]
W


x1
g1
...

g𝑁𝜏


(25)

where

F =

[
I𝑁 0𝑁×1

01×𝑁 0

]
,

and

W =

[ ∑𝑁𝜏

ℎ=1𝚯
𝑇
ℎ

F𝑇 F𝚯ℎ

∑𝑁𝜏−1
ℎ=1 𝚯𝑇

𝑁𝜏
F𝑇 F𝚪ℎ∑𝑁𝜏

ℎ=1𝚪
𝑇
ℎ

F𝑇 F𝚯𝑁𝜏

∑𝑁𝜏

ℎ=1𝚪
𝑇
ℎ

F𝑇 F𝚪ℎ

]
.

V. TRAFFIC CONGESTION CONTROL

The objective of the traffic congestion control is to determine
optimal inflow and movement phase such that cost function
C, defined in Eq. (25), is minimized. Optimal traffic inflow
is assigned with MPC while optimal movement phases are
assigned as the solution of a RHO problem.

The optimal boundary inflow g∗1 is assigned by solving the
following optimization problem:

x ∈ X, 𝜆 ∈𝚲,
(
g∗1, · · · ,g

∗
𝑁𝜏

)
= argmin

g1 , · · · ,g𝑁𝜏 ∈G
C

(
x,g1, · · · ,g𝑁𝜏

,𝜆
)
,

(26)
subject to the conditions (Φ1) and (Φ2).

The optimal movement phase 𝜆+∗ is assigned by solving the
following optimization problem:

x ∈ X, g1, · · · ,g𝑁𝜏
∈ G, 𝜆 ∈ 𝚲,

𝜆+∗ = argmin
𝜆+∈A(𝜆,𝜏)

C
(
x,g1, · · · ,g𝑁𝜏

,𝜆
)
, (27)

subject to the following conditions
∧

𝑖∈WΦ𝑖,3,
∧

𝑖∈WΦ𝑖,4, and
Φ5.
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Fig. 2: Optimal boundary inflow rates 𝑢1 through 𝑢8 versus
discrete time 𝑘 .

VI.SIMULATION RESULTS

Traffic coordination is investigated in simulation for the
example NOIR shown in Fig. 1 (a) consisting of 𝑁 = 53
unidirectional roads. Traffic coordination is controlled through
the NOIR inlet boundary nodes defined by V𝑖𝑛 = {1, · · · ,8}
and traffic signals at junction nodes W = {1, · · · ,17}.

This paper assumes that the time interval between two
consecutive discrete times 𝑘 and 𝑘 + 1 is Δ𝑡 = 30𝑠. It is
assumed that the inflow 𝑦𝑖 =

1
2 ± 0.5 is randomly entered

through every road element 𝑖 ∈ V𝐼 . For simulation 𝑢0 = 31 is
chosen. Therefore, a total of 31 vehicles are allowed to enter
the NOIR through the NOIR inlet boundary road elements at
every discrete time 𝑘 . Traffic coordination is controlled through
the ramp meter at the NOIR boundary road elements and traffic
signals at NOIR intersections by solving the optimization
problem developed in Section V.

In Fig. 2, boundary inflow rates 𝑢1 through 𝑢8 are plotted
versus time for 𝑘 = 1, · · · ,100. For the simulation, 𝜌max = 40 is
considered. Fig. 4 plots traffic density 𝜌𝑖 at every road element
𝑖 ∈V versus discrete time 𝑘 . It is seen that 𝜌 (𝑘) < 𝜌max = 40 at
every discrete time 𝑘 . Thus, traffic oversaturation is ensured.
Also, the total traffic density 𝑟net (𝑘) = 11×𝑁 x𝑅 (𝑘) is plotted
versus discrete time 𝑘 in Fig. 5. For simulation, we choose
𝑇𝐿,𝑖 = 3. Therefore, a movement phase cannot be active more
than 3×Δ𝑇 = 90𝑠. A movement phase at junction 𝑖 ∈ W is
represented by a directed tree containing a root node and
terminal nodes per the example movement phase shown in Fig.
1 (b). The root node represents the active road with incoming
traffic flow, and terminal nodes represent the active outgoing
roads. In Fig. 3, active incoming roads are shown at NOIR
junctions 1, · · · ,13 ∈W for 𝑘 = 1, · · · ,24.

Fig. 5 plots the net traffic density of the NOIR versus
discrete time 𝑘 for 𝑘 = 1, · · · ,24. It is seen that net traffic
density reaches the steady-state value in about eight time steps
while traffic consistently enters and leaves the NOIR.

VII. CONCLUSION

This paper offers a physics-inspired approach to model and
control traffic coordination in a network of interconnected
roads (NOIR). Traffic coordination modeled as a Markov
process is obtained by spatial and temporal discretization of the
mass conservation continuity equation. We showed how traffic
congestion can be effectively controlled through ramp meters
and traffic signals located at boundaries and junctions of the
NOIR. In particular, MPC is applied to control the boundary

Fig. 3: Optimal movement phases at NOIR junctions at 𝑘 =

1, · · · ,24.

Fig. 4: Traffic density at every NOIR road for 𝑘 = 1, · · · ,24.

inflow while a RHO planner optimizes movement phases
commanded by traffic signals at NOIR junctions. Simulation
results show that integration of boundary and signal controls
can effectively manage urban traffic congestion.
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