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Interacting Weighted Ensemble Kalman Filter
applied to Underwater Terrain Aided Navigation

Camille Palmier1, Karim Dahia2, Nicolas Merlinge3,
Dann Laneuville4 and Pierre Del Moral5

Abstract— Terrain Aided Navigation (TAN) provides a drift-
free navigation approach for Unmanned Underwater Vehicles.
This paper focuses on an improved version of the Weighted
Ensemble Kalman Filter (WEnKF) to solve the TAN problem.
We analyze some theoretical limitations of the WEnKF and
derive an improved version which ensures that the asymptotic
variance of weights remains bounded. This improvement results
in an enhanced robustness to nonlinearities in practice. Numer-
ical results are presented and the robustness is demonstrated
with respect to conventional WEnKF, yielding twice as less non-
convergence cases.

I. INTRODUCTION

Nonlinear state estimation is a challenging issue when
measurements yield state multimodality, i.e. to a given mea-
surement may correspond several solutions in the state space.
For example, state multimodality occurs in the case of Ter-
rain Aided Navigation (TAN [1], [2]). TAN is a commonly
employed method in autonomous vehicles navigation which
is a broad and extensive field of study. Autonomous/Un-
manned underwater vehicle (AUV/UUV) navigation is of-
ten based on Inertial Navigation Systems (INS) measure-
ments [3]. Although INS are autonomous and reliable, they
provide imperfect measurements (e.g. subject to bias, noise)
that result in a drifting error in the navigation solution. To
correct the navigation drift, INS can be combined with a
TAN method.TAN provides a drift-free navigation tool which
is a powerful alternative to current navigation methods that
include exogenous measurements (e.g. GPS). Resurfacing
for GPS is possible but is often excluded for discretion
purposes and also because it can easily be jammed. This
is especially true for military-grade UUVs. TAN aims to
retrieve the vehicle’s current state (e.g. position, velocity)
by matching a terrain profile obtained from a sensor with a
profile reconstructed from an embedded map of the operation
area. This paper addresses the multi-beam telemeter based
TAN for UUVs. The multi-beam telemeter provides a series
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of depth measurements along the trajectory. If the terrain
contains sufficient information, this kind of sensor is able to
retrieve the position.

Performing INS/TAN fusion makes it necessary to resort
to nonlinear filtering algorithms. In the presence of strong
nonlinearities and multimodality due to terrain map ambi-
guities, the Extended Kalman Filter (EKF [4]) is known
to be unreliable. The linearization of terrain areas where
abrupt changes in seabed elevation occur generates numerical
instabilities that may result in estimation divergence. In order
to avoid linearization, several stochastic filters were proposed
such as the Particle Filter (a.k.a. Monte Carlo methods [5])
and the Weighted Ensemble Kalman Filter [6].

Sequential Monte Carlo methods rely on weighted sam-
pling, based on a proposal density. In general, the proposal
density is difficult to compute for a given problem. If the
proposal density is taken equal to the prior density, the Monte
Carlo errors can be significant due to an insufficient recovery
between the supports of the prior and the likelihood densities.
In this case, the filter may diverge. On the contrary, if the
proposal density is close to the posterior density, then the
filter remains theoretically stable [7]. Thus, an appropriate
choice of the proposal density makes it possible to design
more stable filters.

This paper focuses on the Weighted Ensemble Kalman Fil-
ter (WEnKF), which can be interpreted as a particle filter [6].
WEnKF consists of determining a Gaussian proposal density
using a Kalman Filter on each sample before updating the
sample weights. This method helps the proposal density to
approach the posterior density. However, in some cases, the
obtained proposal density is still not close enough to the
posterior density and thus the filter may diverge. To tackle
this issue, it is possible to empirically enlarge the support
of the proposal density so that it contains the support of the
posterior density. In the case of WEnKF, the proposal density
is Gaussian. The covariance matrix of the proposal density
can be replaced by a sightly larger one (inflation methods,
see [7]).

In this paper, an analytic approach is introduced to
compute an optimized formulation of the proposal density
covariance matrix in terms of weight variance. Indeed, the
method consists of choosing the proposal covariance matrix
so that it guarantees a finite variance of the weights. In
particular, we show that:

• The asymptotic variance of the unnormalized weights
admits a finite upper bound if and only if the proposal
covariance matrix verifies some assumptions;



• A proposal covariance matrix can be computed for the
WEnKF so that it satisfies these assumptions.

This approach leads to a new version of the WEnKF called
Interacting Weighted Ensemble Kalman Filter (IWEnKF).

The paper is organized as follows. Section II recalls the
estimation problem formulation and the WEnKF equations.
In Section III, the IWEnKF algorithm is introduced and
theoretical proofs are provided. Section IV illustrates the per-
formance of the proposed method applied to an underwater
TAN example. Section V concludes the paper.

II. PROBLEM STATEMENT

We consider the following discrete-time state-space model
with hidden states {xk}k≥0 and observations {yk}k≥1, tak-
ing values in Rd and Rdm respectively. The state sequence
{xk}k≥0 is defined as an inhomogeneous Markov chain with
initial probability density p0. {xk}k≥0 is defined by the
following equation:

xk = fk(xk−1) + ηk (1)

where fk is the state function and ηk the process noise.
The measurements sequence {yk}k≥1 is related to the state
sequence by:

yk = hk(xk) + vk (2)

where hk is the observation function and vk the measurement
noise. ηk and vk are independent and identically distributed
(i.i.d.), mutually independent and independent of x0. We will
assume that hk is a nonlinear function.

A. Filtering framework

Bayesian filters aim to estimate the a posteriori density of
the state variables at the time k given the past measurements.
The posterior density will be denoted pk(xk) , p(xk|y1:k)
where yi:k = {yi, yi+1, . . . , yk} is the vector of all the data
y accumulated from time i up to k. The prior density will
be denoted pk|k−1(xk) , p(xk|y1:k−1). State estimation
consists of two steps: prediction and correction.

• The prediction step determines a prior density
pk|k−1(xk) with respect to the transition den-
sity p(xk|xk−1) and the previous posterior density
pk−1(xk−1) via the Chapman-Kolmogorov equation:

pk|k−1(xk) =

∫
p(xk|xk−1) pk−1(xk−1)dxk−1 (3)

• The correction step determines the posterior density of
the state with respect to the prior density (3) and the
likelihood gk(xk) , p(yk|xk). From Bayes’ law, one
obtains:

pk(xk) =
gk(xk) pk|k−1(xk)∫
gk(xk) pk|k−1(xk)dxk

(4)

If the state and the observation functions are linear, the
process and measurements noises are Gaussian, and the
initial density p0 is Gaussian then the Kalman filter provides
an optimal analytic iterative formulation of the filtering dis-
tribution. The Kalman formulation was extended to nonlinear
models, but it is not robust to severe nonlinearities and

non-Gaussian densities. For highly nonlinear models, several
Monte Carlo methods were proposed to approximate the
posterior density.

B. Weighted Ensemble Kalman Filter

The Weighted Ensemble Kalman Filter (WEnKF, [6])
combines the advantages of the Ensemble Kalman Filter and
the Particle Filter. Indeed, WEnKF can be used without linear
or Gaussian assumptions on the model and was demonstrated
to require less particle samples to converge than conventional
Monte Carlo methods. The equations of WEnKF are gener-
ally presented when the measurement dynamic is linear [6].
A more general version is presented here for the nonlinear
case. WEnKF can be interpreted as a particle filter [6] in the
meaning that the approximation of the posterior density can
be written as a weighted sum of Dirac measures:

pk(xk) ≈
N∑
i=1

wi
kδxi

k
(xk) (5)

where N is the number of state samples called particles,
(xi

k)i=1,...,N are the particles, (wi
k)i=1,...,N are the associated

importance weights such that
∑N

i=1 w
i
k = 1 and δ the Dirac

delta function centered at 0 such that δa(x) = δx−a.
WEnKF is composed of three steps:
• Prediction: the particles are drawn from the following

proposal density:

xi
k ∼ qk(xk|xi

k−1, yk) = N (xk; µ̄
i
k, P̂k) (6)

The mean µ̄i
k and covariance matrix P̂k are computed as

follows:

µ̄i
k = fk(x

f,i
k−1) + K̂k(yk − hk(fk(x

f,i
k−1))) (7)

P̂k = P̃k − K̂kPY K̂
>
k (8)

The Ensemble Kalman gain is approximated by:

K̂k = PXY P
−1
Y (9)

where ∀ i = 1, . . . , N :

xf,i
k = fk(x

f,i
k−1) + ηik and x̃k =

N∑
i=1

wi
k−1 xf,i

k (10)

yik = hk(x
f,i
k ) and ỹk =

N∑
i=1

wi
k−1y

i
k (11)

P̃k =

N∑
i=1

wi
k−1(x

f,i
k − x̃k)(x

f,i
k − x̃k)

>
(12)

PY =

N∑
i=1

wi
k−1(y

i
k − ỹk)(y

i
k − ỹk)

>
+Rk (13)

PXY =

N∑
i=1

wi
k−1(x

f,i
k − x̃k)(y

i
k − ỹk)

>
(14)

where Rk is the covariance matrix of the measurement noise
vk.



• Correction: the weights are updated according to the
likelihood gk(xk), the transition density p(xk|xk−1) and the
proposal density qk(xk|xk−1, yk).

wi
k ∝ wi

k−1

gk(x
i
k)p(x

i
k|xi

k−1)

N (xi
k; µ̄

i
k, P̂k)

(15)

and
∑N

i=1 w
i
k = 1.

• Resampling: the particles xi
k with high normalized

weights wi
k are selected and low-weighted particles are

discarded. The selected particles are duplicated according
to their weights in order to keep a constant total number
of particles. The new set of particles is called xi

k and the
weights are set such that wi

k = 1/N .
The resampling is used to decrease the weight variance

and avoids degeneracy (i.e. when a single weight tends to
unity and all the others tend to zero). See [8] or [9] for
a survey on resampling methods. In practice, resampling is
triggered by monitoring a criterion, such as the approximate
efficiency [10], [11]:

Neff ,k =
1∑N

i=1 (w
i
k)

2 (16)

Resample is triggered whenever Neff ,k < Nth where Nth is
a given threshold.

C. Monte Carlo filters performance criterion

The performance of Monte Carlo approaches can be
evaluated by the asymptotic variance of the unnormalized
weights given by [12], ∀ i = 1, . . . , N :

Var(w̃i
k) =

1

N

 ∫ gk(xk)
2pk|k−1(xk)

2

qk(xk)
dxk(∫

gk(xk)pk|k−1(xk)dxk

)2 − 1

 (17)

where the proposal density qk(xk|xk−1, yk) is simplified as
qk(xk). When this variance is small, the Monte Carlo filter
estimate is accurate, which reduces degeneracy phenomena.

III. INTERACTING WEIGHTED ENSEMBLE KALMAN
FILTER

In this section, we introduce the Interacting Weighted
Ensemble Kalman Filter (IWEnKF). We first determine a
condition on the proposal covariance matrix so that it guaran-
tees that the asymptotic variance of the unnormalized weights
is finite (Section III-A). Guaranteeing a finite variance of
the unnormalized weights provides an accurate Monte Carlo
estimate. We then derive an analytic formulation of the
IWEnKF that satisfies this condition (Section III-B).

A. Upper bound of the asymptotic variance of the unnor-
malized weights

Thereafter, the prior pk|k−1(xk) and the proposal qk(xk)
densities are considered Gaussian. The mean of the prior
density is x̃k and the covariance matrix is P̃k, such that:

pk|k−1(xk) ∝ exp

(
−1

2
(xk − x̃k)

>
P̃−1
k (xk − x̃k)

)
(18)

The expression of the proposal density is similar to (18),
where x̃k is replaced by x̂k and P̃k by P̂k.

Under these Gaussian assumptions, we state in Proposi-
tion 1 that the asymptotic variance admits a finite upper
bound under a condition on the proposal covariance matrix
P̂k.

Proposition 1: Assume that the prior pk|k−1(xk) and the
proposal densities qk(xk) are Gaussian with covariance ma-
trices P̃k and P̂k respectively. If P̂k − P̃k is positive definite
then the asymptotic variance of the unnormalized weights is
finite:

P̂k − P̃k > 0 ⇔ Var(w̃i
k) < +∞ (19)

Proof: The asymptotic variance of the unnormalized
weights (17) is bounded if:∫

gk(xk)
2
pk|k−1(xk)

2

qk(xk)
dxk < +∞ (20)

By taking the supremum, it comes:∫
gk(xk)

2
pk|k−1(xk)

2

qk(xk)
dxk ≤ sup

xk∈Rd

gk(xk)

sup
xk∈Rd

(
pk|k−1(xk)

qk(xk)

)∫
gk(xk)pk|k−1(xk)dxk (21)

We assume that the likelihood gk(xk) is bounded.
Thus a sufficient condition for the asymptotic variance of

the unnormalized weights to be bounded is:

sup
xk∈Rd

(
pk|k−1(xk)

qk(xk)

)
< +∞ (22)

Equation (22) is equivalent to log
(

pk|k−1(xk)

qk(xk)

)
< +∞.

By replacing the densities pk|k−1(xk) and qk(xk) by their
expressions (18), it follows:

log

(
pk|k−1(xk)

qk(xk)

)
∝ 1

2
(xk − x̂k)

>
P̂−1
k (xk − x̂k)

− 1

2
(xk − x̃k)

>
P̃−1
k (xk − x̃k) (23)

By simultaneously adding and subtracting x̃k and pooling
the terms, the logarithm (23) can be written as follows:

log

(
pk|k−1(xk)

qk(xk)

)
∝ −1

2
X>

k

(
P̃−1
k − P̂−1

k

)
Xk + V >

k Xk

(24)
where Vk = P̂−1

k (x̃k − x̂k) and Xk = (xk − x̃k).
It comes:

lim
||Xk||→+∞

log

(
pk|k−1(xk)

qk(xk)

)
= −∞ if P̃−1

k − P̂−1
k > 0

(25)
which is equivalent to:

sup
xk∈Rd

(
pk|k−1(xk)

qk(xk)

)
< +∞ if P̂k − P̃k > 0. (26)

In order to satisfy (19), the proposal covariance matrix
P̂k must be appropriately chosen. In the following section,
we introduce a method to determine P̂k in the WEnKF
framework which leads to the IWEnKF formulation.



B. Interacting WEnKF

In practice, the proposal density given by the WEnKF is
the Gaussian given by (6). The proposal covariance matrix
P̂k is not guaranteed to satisfy the conditions of Proposition 1
(P̂k − P̃k > 0). Thus, P̂k can be replaced with a new
covariance matrix P̂ ∗

k so that P̂ ∗
k − P̃k > 0 by slightly

enlarging the proposal covariance matrix P̂k. This approach
allows a greater overlap between the proposal density and
the posterior density as illustrated in Fig 1.

0

0.2

0.4

0.6

µ̄i
k

qk(x) = N (xk; µ̄
i
k, P̂k)

q∗k(x) = N (xk; µ̄
i
k, P̂

∗
k )

pk(xk)

Fig. 1: Scheme of the overlaps between the posterior density (red
curve), the original WEnKF proposal density ((6), blue curve), and
the proposal density with a larger covariance matrix ((27), black
curve).

Proposition 2: A proposal covariance matrix P̂ ∗
k that sat-

isfies the condition of Proposition 1 i.e. P̂ ∗
k − P̃k > 0, is:

P̂ ∗
k =

1

2
(P̂k + P̃k +Hk) (27)

where:
• P̂k is the Kalman updated covariance matrix (8);
• P̃k is the prior covariance matrix (18);
• Hk is obtained from the polar decomposition of P̂k−P̃k.

Proof: Solving P̂k − P̃k > 0 is equivalent to finding a
symmetrical matrix Pk solution of the following constrained
optimization problem:

min
Pk−P̃k>0

||Pk − P̂k||2F (28)

where ||.||F is the Frobenius norm. In order to keep the
information contained in the initial covariance matrix of the
proposal density, we want to find Pk close to P̂k.

By simultaneously adding and subtracting P̃k in (28), it
comes:

min
Pk−P̃k>0

||Pk − P̃k − (P̂k − P̃k)||2F (29)

By taking Vk = Pk − P̃k and Ak = P̂k − P̃k, it follows:

min
Vk>0

||Vk −Ak||2F (30)

The solution according to Higham’s theorem [13] is:

V F
k =

1

2
(Ak +Hk) (31)

where Hk is obtained from the polar decomposition of
P̂k − P̃k, i.e. P̂k − P̃k = UkHk with U>

k Uk = Id where

Id is the identity matrix of dimension d. The solution of the
optimization problem (28) is thus:

P̂ ∗
k = V F

k + P̃k =
1

2
(P̂k + P̃k +Hk) (32)

Proposition 2 introduces a new proposal covariance matrix
for the IWEnKF that satisfies the conditions of Proposition 1.
As a result, IWEnKF guarantees that the asymptotic variance
of the unnormalized weights is finite. The new proposal
covariance matrix is obtained via a polar decomposition
which can be polynomially computed [14]. In practice, this
is likely to bring more robustness to nonlinearities and
multimodality.

The algorithm of IWEnKF is described in Algorithm 1.

Algorithm 1 Interacting WEnKF

Initialization: For i = 1, . . . , N , initialize the particles
xi
0 ∼ p0 from a prior distribution and set wi

0 = 1/N .
for k = 1,2,. . . do
• [Prediction:] For all particles, compute the mean
and the covariance matrix of the proposal density (6).
Compute P̂ ∗

k using (27) and sample xi
k from the new

proposal density N (xk; µ̄
i
k, P̂

∗
k ).

• [Correction:] ∀i, update and normalize the weights:
w̃i

k ∝ wi
k−1

gk(x
i
k)pk|k−1(x

i
k|x

i
k−1)

N (xi
k;µ̄

i
k,P̂

∗
k )

; wi
k = w̃i

k/
∑

i w̃
i
k.

• [Estimation:] compute the filter estimate
x̂k =

∑
i w

i
kx

i
k and the associated covariance matrix

P̂k =
∑

i w
i
k(x

i
k − x̂k)(x

i
k − x̂k)

>.
• [Resampling:]
if Neff ,k < Nth then

Apply some resampling procedure as described at the
end of Section II-B.

end if
end for

IV. SIMULATION EXAMPLE

To illustrate the behavior of the proposed IWEnKF filter,
it will be compared with the standard WEnKF on an under-
water TAN example. Comparisons are done with the metrics
described in Section IV-C.

A. Underwater TAN

Underwater TAN provides a drift-free navigation method
for UUVs while avoiding resurfacing for a GPS update. The
availability of seabed maps as well as the emergence of
precise telemeters make the method suitable for underwater
navigation. TAN [3] aims to retrieve the vehicle current state
(e.g. position, velocity) by matching a terrain profile obtained
from a sensor with a profile reconstructed from an embedded
map of the operation area.

We consider an UUV equipped with a multi-beam teleme-
ter and an embedded map of the area of operation shown in
Fig 2. The reference trajectory is located in an ambiguous
area of the map (see Fig 3). The spatial resolution of the map
is about 100 meters. Measurements and predicted measure-
ments of the filters are obtained by bilinear interpolations.
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Fig. 2: Bathymetric map of the California coast (35°51′ N,
121°27′ W). The colorbar represents the depth levels (m).

B. State-space model

Let us consider a simplified navigation model. The vehicle
state x is comprised of the position p and the veloc-
ity v, where p = [px, py, pz]

> is expressed in meter and
v = [vx, vy, vz]

> is expressed in meter per second. The state
equation is written in the following discrete way:

xk =

[
pk
vk

]
=

(
I3 ∆k I3
03 I3

)
xk−1 + ηk (33)

where I3 and 03 are respectively the identity matrix and the
zeros matrix of dimension 3 by 3, ∆k is the discretization
time-step and ηk a Gaussian process noise i.i.d. of covariance
matrix Q. ηk represents the uncertainty of the model.

The measurement is made up of m beams: y =
[r1, . . . , rm]

>. Each measurement ri records the distance
between the UUV and the seabed. The measurement equation
is constructed via a projection in the Cartesian coordinate
system (see Meduna [2] for details). For i = 1, . . . ,m,

ri =

√
(px − pxi )

2 + (py − pyi )
2 + (pz − mapmb(p

x
i , p

y
i ))

2 + vi
(34)

where mapmb is the seabed depth of the operation area
and vi the measurement noise with R its covariance matrix.
The map is a function of R2 in R, taking as input the
position in axis x and y and giving as output the elevation
of the terrain.The range ri is computed by determining
pi = [pxi , p

y
i , p

z
i ]

> with pzi = mapmb(p
x
i , p

y
i ), the intersection

point of the inertial beam direction vector with the terrain
(see Fig 3.4 in [2]). As the intersection point is unknown
in practice, the multi-beam telemeter measurement equa-
tion (34) is computed through numerical approximations
(here via grid search method). The measurement noise takes
these approximations into account in addition to sensor and
map errors.

C. Comparison criteria

Comparisons are done by using the following criteria,
evaluated for Nmc ∈ N∗ Monte Carlo simulations.

• The Root Mean Square Error (RMSE) of filters:

RMSEx
k =

√∑Nmc
i=1 ||x̂i

k − xk||22
Nmc

(35)

where x̂i
k is the state estimate for the ith Monte

Carlo simulation. We will compare the RMSE with
an approximation of the Posterior Cramér Rao Bound
(PCRB) which is calculated according to the Tichavský
recursive formula [15]. PCRB is approximated over 300
state samples at each time-step.

• The number of non-convergences:
The filter is said to not converge if, at the end of the
trajectory, during the last 5 consecutive measurement
time-steps, the state estimate x̂k leaves the confidence
ellipsoid Γk given by the PCRB, such that

Γk =
{
xk|(xk − x̂k)

TPCRB−1
k (xk − x̂k) ≤ α2

th

}
(36)

where the threshold αth is such that
P(X 2(d) ≤ α2

th) = 0.99 with d the dimension of
the state vector and X 2 the Chi-squared distribution.

D. Simulation and results
Scenario parameters
• Number of Monte Carlo simulations: 50
• Sampling period: ∆k = 5 s
• Number of bathymetric measurements: 420
• Trajectory duration: 35 min
• Number of beams: m = 5
• Resampling threshold: Nth = 0.75 N
• Standard deviation of each beam range: σR = 10 m

The initial uncertainty of the position is set to
P p
0 = diag([1000, 1000, 100]

2
) and that of the

velocity is set to P v
0 = diag([0.5, 0.5, 0.5]

2
). The

notation diag([A]) is the matrix with the elements
of A in the diagonal and 0 elsewhere. The initial
state is x0 = [110000, 140000,−100, 5, 5, 0.05]

>.
The standard deviation of the process noise is
Q = diag([3, 3, 3.10−1, 2.10−2, 2.10−2, 2.10−3]

2
).
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Fig. 3: Bathymetric map of the California coast with the
true trajectory (black line) and the trajectory estimated by
IWEnKF (red line).

The number of particles is N = 3000 for both filters.
The initial errors and the measurements realizations are also
shared. For one Monte Carlo simulation, Fig 3 illustrates the
quick convergence of a IWEnKF trajectory towards the true
trajectory.

Fig 4 shows the RMSEs for both filters using the simula-
tion conditions described above. The RMSE of the horizontal
position is calculated as follows:

RMSEph

k =

√
RMSEpx

k

2
+ RMSEpy

k

2
(37)



The horizontal velocity is computed as above by replacing
pk by vk, px by vx and py by vy .

Note that the RMSE curves can be lower than the PCRB
curve at some point because PCRB is obtained by recursive
approximation [15]. Only convergent Monte Carlo simu-
lations are used to plot the curves on Fig 4. The non-
convergence percentage is provided in Fig 5.
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Fig. 4: Plot of PCRB and RMSEs for the horizontal position
(upper plot) and for the horizontal velocity (lower plot).

The curves follow the tendency of the PCRB. Position and
velocity RMSEs decrease with time and converge to a value
close to the PCRB approximation.

Although the accuracy of the filter estimates is similar after
20 min of trajectory, the IWEnKF converges faster than the
WEnKF. Before the convergence of the filters (from 90 s,
when the IWEnKF curve falls below the WEnKF curve, until
15 min), the average distance between the two curves is
about 50 m for the horizontal position.
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Fig. 5: Histogram of non-convergence percentage for 50
Monte Carlo simulations.

For 50 Monte Carlo simulations, the number of non-
convergences is shown in Fig 5. The number of non-
convergences of IWEnKF is twice as small as the one of
WEnKF. This significant decrease in the number of non-
convergences was expected as the IWEnKF method guaran-
tees a bounded variance of the weights and thus prevents
weight degeneracy.

V. CONCLUSION

This paper focuses on the Interacting Weighted Ensem-
ble Kalman Filter (IWEnKF), an improved version of the
Weighted Ensemble Kalman Filter. The proposed approach
guarantees that the variance of weights remains bounded,
which brings more robustness to nonlinearities in practice.
IWEnKF was tested on an underwater Terrain Aided Nav-
igation example. We demonstrated that IWEnKF is more
robust to nonlinearities and measurement ambiguities than
the classic version of the algorithm, as the number of non-
convergences is significantly reduced. The guarantee of non-
divergence of the variance of the weights will make it
possible to embed this type of algorithm on autonomous
systems such as UUVs.
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