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Abstract— The integration of renewables into electrical grids
calls for novel control schemes, which usually are model
based. Classically, for power systems parameter estimation
and optimization-based control are often decoupled, which
may lead to increased cost of system operation during the
estimation procedures. The present work proposes a method for
simultaneously minimizing grid operation cost and estimating
line parameters. To this end, we rely on methods from optimal
design of experiments. This approach leads to a substantial
reduction in cost for optimal estimation and in higher accuracy
in the parameters compared with standard combination of
optimal power flow and maximum-likelihood estimation. We
illustrate the performance of the proposed method on simple
benchmark system.

Keywords: Optimal Experiment Design, Power System Pa-
rameter Estimation, Admittance Estimation, Optimal Power
Flow

I. INTRODUCTION

Economical optimal and safe operation of power systems
with a large share of renewables requires reliable grid mod-
els. While the grid topology is often known, the parameters
are are frequently unknown or erroneous [1], [2]. A classical
approach for the optimal operation of power systems is to
run an estimation procedure obtaining grid parameters first,
and secondly using these parameters in an Optimal Power
Flow (OPF) problem for computing optimal generator set-
points. Although this procedure is usually reliable, it may
lead to high system operation cost until the estimation is
converge to accurate parameters.

Established theory of maximum-likelihood estimation and
Bayesian methods can be found in many textbooks [3],
[4]. For static power system parameter estimation based
on multiple measurement snapshots, recursive least-squares
based techniques have been proposed in [5], [6], [7]. Ap-
proaches for combined parameter and topology estimation
are considered in [8], [9]. These works do typically consider
constant or given power injections.

Recently, parameter estimation based on techniques from
Optimal Experiment Design (OED) have been suggested
[10], [11].1 Therein, the conceptually new idea is to compute
set points for generators such that a maximum amount of
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1Consider [12] for an excellent presentation of the foundations of OED.

information is extracted in each time instant leading to a fast
and accurate estimation. To this end, an optimization problem
is constructed, which minimizes the trace of the covariance
matrix of the parameter estimates. Although this procedure
leads to fast and accurate estimates, it also induces to high
cost of system operation in the estimation procedure since it
is agnostic to the associated economic costs of choosing the
set points optimally with respect to the estimation variance.

A second branch considers an economic variant of OED by
considering the cost of experiments in the design procedure
[13]. This approach is combined with model predictive
control [14] and with power system parameter estimation
[10].

In the present work we propose a similar approach for
power system parameter estimation aiming at lowering the
operation cost in the estimation procedure. We compute
a Pareto front trading off system operation cost via OPF
versus the goal of obtaining highly accurate grid parameters.
Based on this curve, we develop a scheme for adjusting
the weighting parameter in the estimation step to reach a
predefined accuracy in the parameter estimates after a desired
number of sampling instants.

The remainder of this paper is organized as follows:
Section II recalls AC grid modeling basics. In Section III
we describe the main contribution of this paper: a method
trading-off estimation with optimal system operation based
on optimal design of experiments. Section IV shows promis-
ing numerical results in terms of a higher accuracy in
the parameters compared with classical maximum-likelihood
estimation methods and a substantially reduced operation
cost compared to classical OED.

II. THE AC GRID MODEL AND OPTIMAL POWER FLOW

This section recalls basics of AC power system modeling
and the AC OPF problem, which serves as a basis for our
developments.

A. Power Grid Model

We consider a power grid (N ,L), where N = {1 . . . N}
denotes the set of buses and L ⊆ N × N represents
the set of transmission lines. The physical properties of
transmission lines are described by line conductances gk,l
and line susceptances bk,l for all transmission lines (k, l) ∈
L, which we would like to estimate. We set gk,l = bk,l = 0
for all (k, l) /∈ L [15], [16]. We collect these line parameters
in

y =

(
gk,l

bk,l

)
(k,l)∈L

∈ R2|L|,
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where (vk)k∈S denotes the vertical concatenation of vectors
v over the index set S.

Denoting the voltage amplitude at node k by vk and the
voltage magnitude at node k by θk, we define the algebraic
state of the system as

x = (v2, θ2, v3, θ3, . . . , vN , θN )
>
.

The voltage magnitude and the voltage angle at the first node,
the slack node, are assumed to be fixed and given

θ1 = 0 and v1 = const.

The active and reactive power flow over a transmission line
(k, l) ∈ L is given by

Πk,l(x, y) = v2
k

(
gk,l

−bk,l

)

− vkvl

(
gk,l bk,l

−bk,l gk,l

)(
cos(θk − θl)
sin(θk − θl)

)
.

Summing up the transmission line flows of all nodes neigh-
bored to node k yields the residual active and reactive power

Sk(x, y) =
∑
l∈Nk

Πk,l(x, y).

Let pg
k and qg

k denote the active and reactive power
generation at node k. Then we set pgk = 0 and qgk = 0
for all k /∈ G, where G ⊆ N denotes the set of generators of
the system. We denote the active power demand at node k
by pdk and the reactive power demand at node k by qdk . Both
are assumed to be known and constant and we set pdk = 0
and qdk = 0 in case there is no consumer at node k. We
assume that the active and reactive power generation of all
generators except at the first node are the only values we can
control. Hence, we introduce an input vector u and a vector
of power demands d as

u =

(
pg
k

qg
k

)
k∈N\{1}

and d =

(
pd
k

qd
k

)
k∈N\{1}

.

With that, the so-called AC power flow equations [16] are
given by

S(x, y) = u− d, (1)

where
S(x, u) =

(
Sk(x, u)

)
k∈N\{1}.

B. Optimal Power Flow

Optimal Power Flow aims at minimizing the total cost of
power generation in an electrical grid subject to the power
flow equations and physical and technical limits such as
voltage bounds, line limits, and generator limits [16], [17],

min
x,u

C(u)

s.t.
{
S(x, y) = u− d
H(x, u) ≤ 0

.
(2)

Here, S encodes the power flow equations (1). The cost
function is typically quadratic in the active power generation

C(u) =
∑
i∈G

αi(p
g
i )2 + βi(p

g
i ) , (3)

where αi and βi are given and positive cost coefficients.
Other formulations are possible, for example aiming at
minimizing grid losses [16]. Moreover, the limits on voltages
and power generation are modelled as

H(x, u) =



pgk − p̄k
qgk − q̄k
xk − x̄k
p
k
− pgk

q
k
− qgk

xk − xk


k∈N

.

III. OPTIMAL EXPERIMENT DESIGN FOR OPF

Next, we develop a method, which simultaneously esti-
mates grid parameters and computes optimal generator set
points. This leads to a higher accuracy in parameter estimates
and lower operation cost compared to classical methods.

A. Maximum Likelihood Parameter Estimation

Maximum likelihood estimation based on least-squares
techniques is a standard method for estimation of line
parameters in power systems [6], [7]. The estimates typically
rely on (noisy) measurements of transmission line flows,
voltage magnitude and angle measurements at buses. In this
paper, we assume that all the active and reactive power flows
through the transmission lines as well as the states of buses
can be measured. Thus, the measurement function M is

M(x, y) = (x>,Πk,l(x, y)>(k,l)∈L)>.

We assume additive Gaussian measurement noise with zero
mean and a given variance Σ ∈ S|M |++ .

The corresponding Maximum Likelihood Estimation
(MLE) problem for the line parameters y is

min
x∈R2|N|−2,y∈R2|L|

1

2
‖M(x, y)− η‖2Σ−1 +

1

2
‖y − ŷ‖2

Σ−1
0

s.t.
{
S(x, y) = û− d
H(x, u) ≤ 0

.

(4)
Here, ŷ is the given initial parameter estimate with a given
variance Σ0 ∈ S2|L|×2|L|

++ and η are measured values and û
donates the current system input.

B. Optimal Experiment Design

Problem (4) depends the system inputs u. Optimal exper-
iment design exploits this degree of freedom by choosing
the inputs such that a “maximum amount of information”
is extracted. The Fisher information matrix F ∈ S2|L|×2|L|

++

of (4) encodes the information content in the parameter
estimates [18] and is given by

F(x, u, ŷ) = Σ−1
0 +Mp(x, u, ŷ)>Σ−1Mp(x, u, ŷ).



Here, we use the shorthand

Mp(xs(u, ŷ), u, ŷ) = −∂M
∂x

(
∂S

∂x

)−1
∂S

∂p
,

where xs(u, ŷ) is the implicit solution of the equation
S(x, ŷ) = u− d, which we assume to be unique [19], [13].
Thus, the associated OED problem can be written as

min
x,u

Tr(F(x, u, ŷ)−1) + c · ‖pg − pg−‖22

s.t.
{
S(x, ŷ) = u− d
H(x, u) ≤ 0,

.
(5)

where pg− denotes the previous system active power input.

C. Combining OPF and OED

Problem (5) computes optimal inputs u such that the
inverse of F (and thus the variance in the line parameters)
is minimized. However, since (5) is agnostic to the induced
extra cost of this approach, we introduce a combined OPF-
OED problem next, which simultaneously minimizes system
operation cost and variance in the line parameters.

For safety reasons, it is often required that the line
parameters are known up to a certain accuracy (e.g. to avoid
line congestion). Hence, one way to combine estimation with
optimal operation is to pre-specify a certain target variance
Vf
N , which is necessary for safe operation and should be

reached. Such a target variance can typically not be reached
in one step. Hence, one approach is to specify that after N
time steps, the target variance Vf

N should be reached and
that this target variance should be reached as cheaply as
possible. In these time steps, some bounds might be violated.
However, in many cases short-term overloading is possible
due to thermal inertia of components.

The above problem can be formulated as a multi-stage
OED-OPF problem

min
[xk,uk]

N∑
k=1

C(uk)

s.t.

 Tr(VN (x1, u1, y1, . . . , xN , uN , yN )) ≤ Tr(Vf
N )

S(xk, y) = uk − dk
H(xk, uk) ≤ 0,

(6)
where

VN (x1, u1, y1, . . . , xN , uN , yN ) =(
Σ−1

0 +
∑N

k=1Mp(xk, uk, yk)>Σ−1Mp(xk, uk, yk)
)−1

is the predicted variance at time step N . Here, [xk, uk] ∈
R(4|N |−4)×|N | indicate the decision variables of (6) for N
stages and Σ−1

0 denotes the initial Fisher Information of the
parameters.

In general it is hard to say whether the desired target
variance is strictly reachable within N steps since these
predictions are supported by wrong parameters in each step.
Moreover, such a multi-stage problem is also hard from a
computational perspective—especially in case of large-scale

Algorithm 1 Autotuned OED-OPF tradeoff for parameter
estimation
Input: Initial guess of parameter ŷ and variance V0 � 0, an initial
ρ > 0, a termination tolerance ε > 0, an initial generator set-point
û, and a terminal variance Tr(Vf

N ).
Initialization: k = 1.
Repeat:

1) Collection of Measurements: set the active and reactive power
at the generators to u and take a measurement η.

2) Maximum Likelihood Estimation: Get new measurement η
and solve Estimation problem (4)

(xs, ŷ
+) = arg min

x,y

1

2
‖M(x, y)− η‖2Σ−1 +

1

2
‖y − ŷ‖2

Σ−1
0

s.t.
{
S(x, y) = u− d
H(x, u) ≤ 0

3) Set V+ = Tr(F(xs, û, ŷ
+)−1).

4) Update the mean of the expectation gap for the remaining
steps I+ = 1

N−k
( 1

Tr(Vf
N

)
− 1

Tr(V+)
).

5) Update weight ρ: ρ← ρ+K(I+ − I0).
6) Experiment Design: Solve OED+OPF problem (7) and per-

form a new experiment with u∗(ŷ).
7) Termination Criterion: If Tr(V+) < ε for a small ε > 0,

stop.
8) Update: Otherwise, set Σ0 ← V+, u← u∗(ŷ) and ŷ ← ŷ+

and return to step 1) with k ← k + 1.

grids. One way this issue is to relax the variance constraint
to the objective function in a single-stage setting

(x∗, u∗) = arg min
x,u

C(u) +
1

ρ
Tr(V(x, u, ŷ))

s.t.
{
S(x, ŷ) = u− d
H(x, u) ≤ 0

,

(7)

where ρ > 0 is penalty parameter.2

D. Adaptive Strategy for ρ

We use an adaptive strategy for ρ to reach our variance
target. Note that the target information we would like to have
after N iterations is 1

Tr(VN ) . Thus, the average information
that we have to collect in each iteration is

I0 =
1

N

(
1

Tr(Vf
N )
− 1

Tr(V0)

)
,

where Tr(V0) is the trace of initial parameter variance. The
information to be gathered after iteration k to the final
iteration N thus is

I+ =
1

N − k

(
1

Tr(Vf
N )
− 1

Tr(V+)

)
,

where V+ = F(xs, û, ŷ)−1 is the realized variance after the
estimation step (4), where xs denotes the solution of (4).
With that, we introduce the update strategy

ρ← ρ+K(I+)(I+ − I0), (8)

2Note that we solve (7) to local optimality only. In the context of power
systems, global optimality can usually not be guaranteed due to the non-
convexity of the problem.
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Fig. 1: Infuence of the weighting parameter ρ on Tr(V) and on the operation cost.

tracking the average information we have to gather. Here,
K(I+) is an information state dependent feedback gain that
is set to

K(I+) = ϕ′(I+) ,

where ϕ : R→ R is an approximation of the inverse trade-off
function such that

ϕ

(
1

Tr {V(x?(ρ, ŷ), u?(ρ, ŷ), ŷ)}

)
≈ ρ .

Notice that details on how to pre-compute approximations of
this function as well the control gain K(I+) can be found
in Section IV. In the above equation, x? and u? are the
minimizers of (7) depending on ρ and ŷ.

The combined OED-OPF procedure is illustrated in Al-
gorithm 1. In the first step, the algorithm is initialized with
trial values for the inputs u− and the line parameters y−.

The guess for u and y are applied to the system and new
measurements η are arecollected. These measurements are
put in to the maximum-likelihood estimation problem (4)
yielding new estimates for the line parameters y and an
updated covariance matrix Σ0. After running the adaption
of ρ from (8), new inputs are computed by means of the
combined OED-OPF problem (5). After applying these new
inputs, the algorithm starts from the beginning.

IV. NUMERICAL CASE STUDY

Next, we illustrate the performance of Algorithm 1 on a
5-bus system shown in Figure 2.

A. Implementation and Data

The problem data is obtained from the MATPOWER [20],
where we neglect shunt capacities. The implementation of
Algorithm 1 relies on Casadi-v3.4.5 with IPOPT and
MATLAB 2019b. The cost coefficients for the OPF cost C
from (3) are given in Table I.

1 2 3

45

generator
consumer

5.2 p.u.

6 p.u.

1.7 p.u. 3 p.u.

2 p.u.

3 p.u.

4 p.u.

Fig. 2: Modified 5-bus system from Li and Bo (2010) with
4 generators and 3 consumers.

TABLE I: Generator cost coefficients for (3).

Bus Number αi βi

1 0.1 15
3 0.11 30
4 0.12 40
5 0.13 10

We use additive white Gaussian measurement noise with
zero mean and variance 10−4, which is frequently considered
used in context of power system parameter estimation [21].
We choose ρ0 = 10−4 for initialization and a sampling time
of 15min. We initialize the parameters y with the average true
values of the admittance and the initial covariance matrix
is set to Σ0 = 1020 · I ∈ R2|L|×2|L|. Moreover, we set
Tr(Vf

N ) = 100 S2 as the target variance after 25 iterations.
Figure 1a shows the dependency of 1

Tr(V) on ρ for our
numerical example after the first iteration in blue. Moreover,
Figure 1b shows the corresponding Pareto-optimal curve of
problem (7) for different values of ρ, where we used the
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Fig. 3: Estimation performance and operation cost for all considered estimation algorithms.

Pareto filter3 from [22] to remove local optima. We fit an
exponential function

ϕ

(
1

V

)
≈ 0.05891 exp−1411(V)2

for the usage in Algorithm 1 shown in Figure 1a (red).

B. Numerical Comparison

Next, we compare the performance of Algorithm 1 to
pure OPF combined with maximum likelihood estimation
and pure OED in terms of operation cost and variance of the
line parameters.

Figure 3 shows the estimation performance and associated
costs for all algorithms. With a desired target variance of
Tr(Vf

N ) = 100 S2, Algorithm 1 leads to a substantially
reduced cost compared with classical OED, see Figure 3a.
Classical OPF with MLE on the other hand is agnostic to the
estimation variance and optimizes only with respect to the
associated cost. Hence, classical OPF with MLE leads to a
slightly improved cost compared to Algorithm 1 but it comes

3In multi-objective optimization problems, the optimal solution is usually
not a single one but a set of local optimal solutions of non-convex problems.
A Pareto filter is used to filter out partial local optimal solutions to obtain
monotonically decreasing Pareto front.

with the disadvantage of a significantly worse estimation
performance, see Figure 3b. The desired target variance is
reached after 6.26 hours which is only 25 iterations with
Algorithm 1.

Figure 3c depicts the optimal active and reactive power
input of the generators for Algorithm 1. One can see that
the active power is changed only in the first few steps and
stays almost constant after that. The reactive power varies for
more iterations. Pure OED, however, leads to very frequent
set-point adjustments in reactive and active power, since
it is agnostic to the associated economic cost [10]. This
behavior is beneficial from a practical perspective: in contrast
to changing the active power set-points, changing the reactive
power set points it is technically much simpler and cheaper.

Figure 3d shows the mean relative errors

MREg =
1

|L|
∑

(k,l)∈L

|gk,l − ḡk,l|
|ḡk,l|

,

MREb =
1

|L|
∑

(k,l)∈L

|bk,l − b̄k,l|
|b̄k,l|

,

in the estimation to gk,l and bk,l for all three methods.
Table II shows the ground truth y and the OED estimation

result after 25 iterations. One can see that in all cases the



TABLE II: Estimation results for Algorithm 1.

Line Conductance Conductance Susceptance Susceptance
Index true val. [S] estimate [S] true val. [S] estimate [S]

(1, 2) 3.523 3.529 -35.235 -35.322
(1, 4) 3.257 3.167 -32.569 -32.703
(1, 5) 15.470 14.445 -154.703 -153.152
(2, 3) 9.168 9.429 -91.676 -91.746
(3, 4) 3.334 3.896 -33.337 -32.474
(4, 5) 3.334 3.223 -33.337 -33.305

relative error is below 10%.

V. SUMMARY AND OUTLOOK

This paper presented a parameter estimation method for
simultaneously minimizing operation cost based on optimal
power flow and estimating line parameters. An example
shows that Algorithm 1 achieves a higher estimation accu-
racy compared with classical estimation methods and at the
same time it is cheaper than strategies purely based on the
optimal design of experiments.

Future work will consider advanced weighting strategies
aiming at replacing the offline scheme adopted in this ar-
ticle. A numerical comparison between multi-stage OED-
OPF problem and the penalty-function modified single-stage
model will also be discussed.
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