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Abstract

This paper considers the problem of linear time-invariant (LTI) system identification using
input/output data. Recent work has provided non-asymptotic results on partially observed
LTI system identification using a single trajectory but is only suitable for stable systems. We
provide finite-time analysis for learning Markov parameters based on the ordinary least-squares
(OLS) estimator using multiple trajectories, which covers both stable and unstable systems. For
unstable systems, our results suggest that the Markov parameters are harder to estimate in the
presence of process noise. Without process noise, our upper bound on the estimation error is
independent of the spectral radius of system dynamics with high probability. These two features
are different from fully observed LTI systems for which recent work has shown that unstable
systems with a bigger spectral radius are easier to estimate. Extensive numerical experiments
demonstrate the performance of our OLS estimator.

1 Introduction

System identification estimates the models of dynamical systems from observed input-output data [1],
which is an important topic in time-series analysis, control theory, robotics, and reinforcement
learning. There is an extensive literature on theoretical and algorithmic developments of system
identification, with many excellent textbooks [1, 2] and surveys [3, 4, 5] available. Classical results
often offer asymptotic convergence guarantees for learning system models from observed data [1, 5].
There has been an increasing interest in finite sample complexity and non-asymptotic analysis, since
good error bounds are essential for designing high-performance robust control systems as well as for
establishing end-to-end performance guarantees [6, 7, 8].

In this paper, we consider the problem of identifying a discrete-time linear time-invariant (LTI)
system

xt+1 = Axt +But +Bwwt

yt = Cxt +Dut +Dvvt,
(1)

where xt ∈ Rn, yt ∈ Rp, ut ∈ Rm are the system state, output and input at time t, respectively, and
wt ∈ Rq, vt ∈ Rl denote the process and measurement noises. When C = I,D = 0 and Dv = 0, i.e.,
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we have direct state observations, (1) is known as a fully observed LTI system, for which a line of
recent work has derived sharp finite-time error analysis based on ordinary least-squares (OLS) using
a single trajectory [9, 10]. Notably, despite the correlation between states x0, x1, . . . , xT and the
noise w0, w1, . . . , wT−1, the analysis technique [9] is suitable for both stable and unstable systems
(captured by ρ(A) < 1, ρ(A) ≥ 1, respectively — the spectral radius of A), under a regularity
condition. Furthermore, it is shown that more unstable linear systems with a bigger ρ(A) are easier
to estimate using OLS [10]. This is consistent with the result in [6], where only the last data sample
of multiple independent trajectories is used.

When C 6= I, i.e., (1) is a partially observed LTI system, OLS can also be used to recover
Markov parameters which in turn allow constructing the system parameters A,B, C,D using the
celebrated Ho-Kalman algorithm [11]. However, the methods and analysis techniques are typically
more involved than those for fully observed LTI systems. In [12, 13], OLS is used to estimate Markov
parameters and the Hankel matrix using a single trajectory, respectively; but their methods require
strictly stable system ρ(A) < 1 and non-asymptotic bounds depend on the inverse stability gap

1
1−ρ(A) . More recently, the method in [12] has been extended using a pre-filtered variation of the OLS
in [14], working for marginally stable system ρ(A) ≤ 1, and the finite-time estimation error therein
does not degenerate as ρ(A) → 1. Using outputs as regressors also allows for stochastic system
identification with ρ(A) ≤ 1 [15]. In addition to OLS, projected gradient descent can recover the
state-space representation (1) using a polynomial number of samples [16], but this method requires
an assumption stronger than strictly stability of A.

One key factor preventing the techniques in [12, 13, 14] from unstable systems is that the
error state et = CAT−1xt−T+1 becomes unbounded if ρ(A) > 1, where T is the length of Markov
parameters. This issue is tightly related to the single-trajectory setup. Similar to [6], strict stability
can be removed using multiple independent trajectories since et is replaced by the initial state x0
in each trajectory that is zero by restarting the experiment. This setup is briefly observed in [12,
Remark 3], and is used in recent work [17] in which a standard nuclear norm regularization is
discussed. Note that only the last output measurement yT−1 of each trajectory is used in the OLS
estimation of [17], which facilitates the non-asymptotic analysis but might be very data inefficient.
The setup of multiple trajectories was also used in [7] where the authors focused on stable SISO
(single-input and single-output) systems and derived sharp bounds on H∞ error between the true
unknown plant and the estimated FIR (finite impulse response) approximation.

Contributions: We focus on the partially observed LTI system (1) that can be open-loop stable
or unstable. Our contributions are two aspects. First, motivated by [7], we present a simple OLS to
estimate the Markov parameters using multiple trajectories. In contrast to [12, 14, 13], the setup
of multiple trajectories allows for any spectral radius of A. Unlike [17], we utilize all data samples
in each trajectory for the OLS estimator, thus improving the data efficiency. See Table 1 for a
comparison with recent work on LTI system identification. Second, we present a non-asymptotic
analysis on the estimation error by leveraging standard concentration results of random matrices
with special upper-triangular Toeplitz structures in data matrices. The OSL estimator is provably
consistent for both stable and unstable systems, and the convergence rate scales as O(1/

√
N) for

estimating the Markov parameters, where N is the number of trajectories. This rate is consistent
with previous work [17, 12, 13, 14, 7]; see Table 1. Unlike fully observed LTI systems where recent
work has proven that more unstable systems are easier to estimate [10, 6], our theoretical bound
suggests that partially observed LTI systems with bigger spectral radius ρ(A) are harder to estimate
when there exists process noise wt. Interestingly, if the process noise is zero, i.e., wt = 0, our
non-asymptotic bound is independent to ρ(A). Numerical experiments on two marginally stable and
unstable systems demonstrate the performance of our OLS estimator compared to that in [17, 14].
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Table 1: A summary of recent non-asymptotic analysis for LTI system estimation

Paper Meas. Type Stability Rollouts Data Inputs ut
Rate

G A,B,C,D

This work

Partial†

MIMO Any Multiple all Gaussian O
(
N−

1
2
)

O
(
N−

1
2
)Sun et al., 2020 [17] MIMO Any Multiple final Gaussian O

(
N−

1
2
)

Tu et al., 2017 [7]1 SISO ρ(A) < 1 Multiple all Deterministic O
(
N−

1
2
)

Oymak et al., 2019 [12] MIMO ρ(A) < 1 Single all Gaussian O
(
N−

1
2
)

Sarkar et al., 2019 [13] MIMO ρ(A) < 1 Single all Gaussian O
(
N−

1
2
)

Simchowitz et al., 2019[14] MIMO ρ(A) ≤ 1 Single all Gaussian O
(
N−

1
2
)

Dean et al., 2019 [6]
Full‡

MIMO Any Multiple final Gaussian - O
(
N−

1
2
)

Sarkar et al., 2018 [9] MIMO Any2 Single all Gaussian - O
(
N−

1
2
)

Simchowitz et al.,2018 [10] MIMO ρ(A) ≤ 1 Single all Gaussian - O
(
N−

1
2
)

† : For partially observed LTI systems, the convergence rate is typically expressed in terms of estimating the Markov
parameter G, scaling as O

(
N−

1
2
)
; The refined robustness result of Ho-Kalman algorithm in [9] (see also [15, 12])

suggests that the convergence rate for estimating A,B,C,D is O
(
N−

1
2
)
. For robust controller design, we might not

need to estimate A,B,C,D explicitly; see Appendix C for further discussion.
‡ : For fully observed LTI systems, the rate is expressed in terms of state space matrix estimation A,B;
1 : Their method can be used for unstable SISO systems, but their results on H∞ error bounds are specialized for
open-loop stable SISO systems.
2 : The result requires a regularity condition on eigenvalues of A [9, Section 5]; also see [9, Theorem 1] for detailed
scaling of convergence.

Organization: The rest of this paper is organized as follows. We present the problem statement
and least-squares procedure in Section 2. Non-asymptotic analysis is discussed in Section 3, and
numerical results are presented in Section 4. Section 5 concludes the paper. Proofs are postponed to
the appendix, where some auxiliary results on non-zero initial state, recovery of state-space models,
and selecting the length of Markov parameters are also discussed.

Notation: Given a matrix A ∈ Rm×n, the Frobenius norm is denoted by ‖A‖F =
√

Tr(AAT),
and we denote ‖A‖ as its spectral norm, i.e., its largest singular value σmax(A). ρ(A) denotes the
spectral radius of a square matrix A, and AT denotes the transpose of matrix A. For a symmetric
matrix B ∈ Sn, λmin(B) denotes its minimum eigenvalue. Multivariate normal distribution with
mean µ and covariance matrix Σ is denoted by N (µ,Σ).

2 Problem Statement

We consider the MIMO (multiple-input and multiple-output) LTI system (1). It is assumed that the
process and measurement noises are i.i.d. Gaussian, i.e., wt ∼ N (0, σ2wI) and vt ∼ N (0, σ2vI). Given
a horizon T , we aim 1) to learn the first T Markov parameters of the system

G =
[
D CB CAB . . . CAT−2B

]
∈ Rp×mT , (2)

and 2) to provide a finite sample bound on the estimation accuracy. Together with the classical
Ho-Kalman algorithm [11] and recent robustness results in [12, 13], a consistent estimate of G can
return a consistent estimation of system matrices (A,B,C,D) up to a similarity transformation.
Note that the matrices Bw and Dv in (1) are unknown but not estimated.
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2.1 Data collection via multiple rollouts

By running experiments in which the system (1) starts at x0 = 01 and the dynamics evolve with a
given input ut, we record the resulting output measurements yt. We call the input/output trajectory
(yt, ut) from such experiment as a rollout. To identify the Markov parameter (2), we excite the
system with Gaussian noise ut ∼ N (0, σ2uI) for N rollouts, each of length T . The resulting dataset is{(

y
(i)
t , u

(i)
t

)
: 1 ≤ i ≤ N, 0 ≤ t ≤ T − 1

}
,

where t indexes the time in each rollout and i denotes each independent rollout.
This multi-rollout data collection procedure is motivated by [7], where the authors focused on

open-loop stable SISO systems with optimal deterministic input design. This multi-rollout setup
is also adopted in recent work [17], where only the last output measurement y(i)T−1 is recorded in
each rollout. A similar multi-rollout setup is used for estimating fully observed LTI systems in [6].
Another widely-used data collection procedure is based on a single rollout [10, 14, 12, 13, 9], where
we apply an input sequence from 0 to N ×T − 1, without restart, and collect all the outputs. Table 1
lists a summary of recent non-asymptotic analysis of LTI system identification in different setups.

2.2 Least-squares procedure

To ease notation, for each rollout i, we organize the input/output data as

y(i) =
[
y
(i)
0 y

(i)
1 . . . y

(i)
T−1

]
∈ Rp×T ,

u(i) =
[
u
(i)
0 u

(i)
1 . . . u

(i)
T−1

]
∈ Rm×T ,

(3)

and the process/measurement noise as

w(i) =
[
w

(i)
0 w

(i)
1 . . . w

(i)
T−1

]
∈ Rq×T ,

v(i) =
[
v
(i)
0 v

(i)
1 . . . v

(i)
T−1

]
∈ Rl×T .

(4)

To establish an explicit connection with Markov parameters, each measurement yt, t = 0, . . . , T − 1

can be expanded recursively as (where we used the fact x(i)0 = 0)

y
(i)
t = Cx

(i)
t +Du

(i)
t +Dvvt

=

t−1∑
k=0

CAk
(
Bu

(i)
t−k−1 +Bww

(i)
t−k−1

)
+Du

(i)
t +Dvv

(i)
t .

(5)

1We note that x0 can be random with zero mean and bounded covariance, for which our estimation procedure
stays the same and the analysis can be easily carried over; see Appendix B for details. In addition, the length of
Markov parameters and the rollout length can be different; see Appendix E.
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Upon defining two upper-triangular Toeplitz matrices corresponding to u(i) and w(i), respectively,

U (i) =


u
(i)
0 u

(i)
1 u

(i)
2 . . . u

(i)
T−1

0 u
(i)
0 u

(i)
1 . . . u

(i)
T−2

0 0 u
(i)
0 . . . u

(i)
T−3

...
...

...
. . .

...
0 0 0 . . . u

(i)
0

 ∈ RmT×T ,

W (i) =


w

(i)
0 w

(i)
1 w

(i)
2 . . . w

(i)
T−1

0 w
(i)
0 w

(i)
1 . . . w

(i)
T−2

0 0 w
(i)
0 . . . w

(i)
T−3

...
...

...
. . .

...
0 0 0 . . . w

(i)
0

 ∈ RqT×T ,

(6)

and F =
[
0 CBw CABw . . . CAT−2Bw

]
∈ Rp×qT , the measurement data (5) in each rollout i

can be compactly written as
y(i) = GU (i) + FW (i) +Dvv

(i). (7)

Note that the noise terms W (i) and v(i) are zero-mean. We form the OLS problem as

Ĝ = arg min
X∈Rp×mT

N∑
i=1

‖y(i) −XU (i)‖2F. (8)

Defining our label matrix Y and input data matrix U as

Y =
[
y(1) . . . y(N)

]
∈ Rp×NT ,

U =
[
U (1) . . . U (N)

]
∈ RmT×NT ,

the OLS becomes
min

X∈Rp×mT
‖Y −XU‖2F.

Hence, the least square solution is Ĝ = Y U † where U † = UT(UUT)−1 is the right pseudo-inverse of
U . Ideally, we would like the estimation error ‖G− Ĝ‖ to be small. Our main result bounds this
error as a function of sample size N , length T , and noise levels σw, σv, and system parameters.

Remark 1 (Open-loop stability). For any fixed T , the noise terms FW (i), Dvv
(i) in (7) are

zero mean with finite covariance, irrespective of ρ(A) < 1 or ρ(A) ≥ 1. As shown in Sec-
tion 3, the OLS (8) is suitable for estimating both open-loop stable and unstable systems. For
the single-rollout setup in [12, 14, 13], we need to generate N subsequences of length T , each of
which evolves as yt = Gūt + Fw̄t + Dvvt + et, with ūt =

[
uTt uTt−1 . . . uTt−T+1

]T ∈ RmT , w̄t =[
wT
t wT

t−1 . . . wT
t−T+1

]T ∈ RqT , where the extra term et = CAT−1xt−T+1 is due to the state at
time t− T + 1. The requirement of bounding this term makes the methods of [12, 13] only suitable
for strictly stable systems. Unfortunately, as pointed out in [14], the condition ρ(A) < 1 is quite
restrictive, because simple oscillators and integrator from Newton’s law yield systems with ρ(A) = 1.

For example, the matrix A =

[
1 ∆
0 1

]
, corresponding to a discretization of Newton’s second law,

violates the strict stability. More recently, the authors in [14] have extended [12] for marginally stable
systems ρ(A) ≤ 1 using a prefiltered OLS; see Table 1 for their comparison.
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3 Results on Learning Markov Parameters

In this section, we work out the statistical rate for the OLS estimator (8) which uses all data samples
of each trajectory. Since W (i) and U (i) are independent, and v(i) and U (i) are also independent,
our analysis is simpler than that in [12]. Similar to [6], our analysis ideas leverage standard non-
asymptotic analysis of random matrices with exploitation of the special Toeplitz structures of W (i)

and U (i) in (6).

3.1 Theoretical bound on least-squares error

From (7), the systems of outputs are

Y = GU + FW +Dvv,

where W =
[
W (1), . . . , W (N)

]
∈ RqT×NT , v =

[
v(1), . . . , v(N)

]
∈ Rl×NT . Following the OLS (8),

the estimation error is given by

Ĝ−G = Y UT(UUT)−1 −G
= (Y −GU)UT(UUT)−1

= (FW +Dvv)UT(UUT)−1.

(9)

Our main theorem quantifies the estimation error that captures the problem dependencies in term of
noise levels σw, σv, system parameters F , Dv, and the dimension m+ q + l.

Theorem 3.1. Fix any 0 < δ < 1. If the number of rollouts satisfies N ≥ 8mT + 4(m + q + l +
4) log(3T/δ), we have with probability at least 1− δ

‖Ĝ−G‖ ≤ σvC1 + σwC2

σu

√
1

N
, (10)

where
C1 = 8‖Dv‖

√
2T (T + 1)(m+ l) log(27T/δ),

C2 = 16‖F‖

√(
T 3

3
+
T 2

2
+
T

6

)
2(m+ q) log(27T/δ).

Although this theorem is not hard to prove, we have a few interesting implications. First, the
bound (17) states that the estimation error ‖Ĝ−G‖ behaviors as O( 1√

N
), which is consistent with

previous non-asymptotic results (they may scale differently with respect to other system quantities);
see Table 1. Second, our bound individually accounts for the process noise wt and measurement
noise vt, while the results in [17] assume no process noise wt = 0. In addition, we have some further
observations below.

• Stable vs. unstable systems. Theorem 3.1 confirms that the OLS (8) returns a consistent estimation
of G for both stable and unstable systems, while results in [12, 13, 14] only work for stable systems
due to their single-rollout setup, as discussed in Remark 1. Recent results show that when states are
directly observed, unstable systems with bigger ρ(A) are easier the estimate in both multi-rollout [6]
and single-rollout [14] setups. However, this statement might not be true for partially observed LTI
systems. In particular, the constant ‖F‖ will grow exponentially when ρ(A) > 1 in Theorem 3.1,
suggesting that more trajectories are needed for unstable systems to achieve the same accuracy. This
is expected since the process noise wt will be amplified during the system evolution for unstable
systems. Interestingly, when the process noise wt = 0, the bound in Theorem 3.1 is independent to
ρ(A).

6



• Dependency of system dimensions. The bound (17) is not tight with respect to system dimensions.
First, there are pmT parameters in G to learn, and our bound states that we need O(mT ) trajectories
(which is also required in [17]), each of which provides pT measurements. There is a redundancy of
factor T . Second, the constants C1 and C2 in Theorem 3.1 depends polynomially on the length T of
G, suggesting more trajectories are needed to estimate longer Markov Parameters. However, our
numerical results (see Fig. 3) suggest that the normalized estimation error seems unrelated to the
length T after utilizing all data samples in (8). It is interesting to derive tighter bounds in future
work. To estimate A,B,C,D using the Ho-Kalman algorithm [11], the value of T should be big
enough to satisfy a rank condition on the Hankel matrix; see Appendix D for further discussion on
selecting T .

Finally, using the celebrated Ho-Kalman algorithm [11] and recent robustness analysis in[12, 9, 15],
we can obtain consistent state-space representation Â, B̂, Ĉ, D̂ up to a similarity transformation. We
summarize this observation in the following corollary; See Appendix C for details on the Ho-Kalman
algorithm.

Corollary 3.1 (Recovery of System Parameters). Suppose that (A,B,C,D) in (1) is controllable
and observable. Then, for N and T sufficiently large, there exists a unitary matrix S, and a constant
C3 depending on system parameters (A,B,C,D), the dimension (n,m, p, q, l, T ) and σu, σw, σv, and
logarithmic factor of N such that we have with high probability

max{‖Â− SAST‖, ‖B̂ − SB‖, ‖Ĉ − CST‖, ‖D̂ −D‖} ≤ C3

N
1
2

,

where (Â, B̂, Ĉ, D̂) is the output of the Ho-Kalman algorithm on the OLS estimation Ĝ from (8).

3.2 Proof sketch of Theorem 3.1

The basic proof idea is standard and similar to [6, 12, 17]. The spectral norm of the estimation
error (9) can be bounded as

‖Ĝ−G‖ ≤
∥∥∥(UUT)−1

∥∥∥(‖F‖ ∥∥∥WUT
∥∥∥+ ‖Dv‖

∥∥∥vUT
∥∥∥) .

Each term of the right-hand side will be bounded individually. In particular, we can show that with
high probability

∥∥(UUT)−1
∥∥ behaves as O

(
1
N

)
,
∥∥WUT

∥∥ behaves as O(
√
N), and

∥∥vUT
∥∥ behaves

as O(
√
N). Combining these terms leads to (17). Our proof relies on two standard lemmas in

concentration analysis of random matrices. The first lemma bounds the spectral norm of the product
of two Gaussian matrices [6, Lemma 1].

Lemma 3.1. Fix a δ ∈ (0, 1) and N ≥ 2(m + n) log(1/δ). Let fk ∈ Rm, gk ∈ Rn be independent
random vectors fk ∼ N (0, σ2fIn), gk ∼ N (0, σ2gIm), k = 1, . . . N . With probability at least 1− δ,∥∥∥∥∥

N∑
k=1

fkg
T
k

∥∥∥∥∥ ≤ 4σfσg
√
N(m+ n) log(9/δ).

The second lemma gives a non-asymptotic bound on the minimum singular value of a standard
Wishart matrix [6, Lemma 2].
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Lemma 3.2. Let uk ∼ N (0, σ2uIm), k = 1, . . . , N be i.i.d vectors. With probability at least 1− δ, we
have √√√√ 1

σ2u
λmin

(
N∑
k=1

uku
T
k

)
≥
√
N −

√
m−

√
2 log(1/δ).

Using these two lemmas, we show bounds of ‖UUT‖,
∥∥vUT

∥∥, ∥∥WUT
∥∥ in the following propositions,

and their proofs are provided in Appendix A.

Proposition 3.1. Fix a 0 < δ < 1, and N ≥ 8mT + 16 log(T/δ). We have with probability at least
1− δ

λmin(UUT) ≥ 1

4
σ2uN. (11)

Proposition 3.2. Fix a 0 < δ < 1, and N ≥ 2(m+ l) log(T/δ). We have with probability at least
1− δ

‖vUT‖ ≤ 2σvσu
√

2T (T + 1)N(m+ l) log(9T/δ).

Proposition 3.3. Fix a 0 < δ < 1, and N ≥ 4(m+ q) log(T/δ). We have with probability at least
1− δ

‖WUT‖ ≤ 4σwσu

√(
T 3

3
+
T 2

2
+
T

6

)
2N(m+ q) log(9T/δ).

With the results in Propositions 3.1—3.3, Theorem 3.1 can be easily proved: Let N ≥ 8mT +
4(m+ q + l + 4) log(3T/δ). Combining the estimates in Propositions 3.1—3.3 via union bound, we
have with probability at least 1− δ,

‖Ĝ−G‖

≤
∥∥∥(UUT)−1

∥∥∥(‖F‖ ∥∥∥WUT
∥∥∥+ ‖Dv‖

∥∥∥vUT
∥∥∥)

≤ 4

σuN

(
2σv‖Dv‖

√
2T (T + 1)N(m+ l) log(27T/δ)

+ 4σw‖F‖

√(
T 3

3
+
T 2

2
+
T

6

)
2N(m+ q) log(27T/δ)

)

=
σvC1 + σwC2

σu

√
1

N
,

where the parameters C1, C2 are defined in Theorem 3.1.
We conclude this section by reiterating that details on Corollary 3.1 are postponed to Appendix C,

and that discussions of non-zero initial state and the length T of Markov parameter G are provided
in Appendices B and D, respectively.

4 Numerical Experiments

We present a series of numerical experiments to demonstrate the performance of the OLS estimator (8).
We compare our method with the estimation approaches in [17, 14] for marginally stable systems,
and with [17] for unstable systems. Note that other methods in [12, 13] are only suitable for strictly
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(a) (b)

Figure 1: Comparison with different methods: (a) marginally stable system λ1 = λ2 = 1 (12); (b) open-loop
unstable system (13). The green curve with square dots denotes the OLS from [14] (single rollout); The blue
curve with diamond dots denotes the OLS from [17] (multi-rollout); The red curve with circle dots denotes
the OLS (8) in our work.

stable systems. Recall that [17] used the same multi-rollout setup but only records the last data
sample y(i)T−1, and [14] introduced a pre-filtered OLS relying on a single-rollout setup for which we set
the length as NT . All experiments were carried out in MATLAB, and our scripts can be downloaded
from https://github.com/zhengy09/SysId.

4.1 Estimation of marginally stable and unstable systems

We first consider a marginally stable system

A =

[
1 ∆
0 1

]
, B =

[
0
1

]
, C =

[
1 0

]
,

D = 0, Bw = B, Dv = 1,

(12)

with ∆ = 0.2, which corresponds to a discretization of Netwon’s second law. We also consider an
open-loop unstable system, adapted from [6], as follows

A =

1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

 , C =
[
1 0 0

]
,

B = I3, D = 0, Bw = I3, Dv = 1.

(13)

In our data collection, we used inputs with σu = 1, and noises with σw = 0.2 and σv = 0.5. For the
multi-rollout setup, the rollout length is set as T = 10, and we vary the number of rollouts from 50
to 500. For the method in [14], we run a new simulation with a single rollout of length NT . The
behavior of different OLS estimates is illustrated in Fig. 1. As expected, increasing the number of
rollouts reduces the estimation errors for all methods. For all scenarios, utilizing all data samples in
our method returns a significantly better estimation than using the final data sample only in [17].
Note that we chose a typical set of parameters for the pre-filtered OLS [14], and by finely tuning the
parameters, its performance might be better than reported here.
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Figure 2: Estimation error for system (12) with varying length T and process noises. Left to right: σw = 0;
σw = 0.2; σw = 0.4; σw = 0.6

Figure 3: Estimation error for system (13) with varying length T and process noises. Left to right: σw = 0;
σw = 0.2; σw = 0.4; σw = 0.6.

4.2 Experiments with varying length T of Markov Parameters

Here, we present numerical results in which we fix the number of rollouts N = 500 and vary the rollout
length from 10 to 40. The standard deviations of input and measurement noise are σu = 1, σv = 0.5,
and we vary the standard deviation of process noise from 0 to 0.6. The normalized estimation errors
are illustrated in Fig. 2 and Fig. 3. Interestingly, varying the length T of the Markov parameters
seems to have little impact on the normalized errors of the OLS (8) and the prefiltered OLS in [14],
while the performance of [17] worsens quickly when the process noise σw is non-zero. Again, this
confirms the benefits of utilizing all the data samples, and also indicate the theoretical bound in
Theorem 3.1 is not tight. Another interesting point is that the behavior of the prefiltered OLS in [14]
seems independent of the process noise, suggesting that prefiltering can effectively mitigate the noise
level. It would be interesting to investigate how to incorporate prefiltering in the multi-rollout setup.

4.3 Experiments with varying spectral radius ρ(A)

Our final experiment demonstrates the influence of the spectral radius ρ(A) on estimation performance.
We consider a system with two inputs, two outputs, and state dimension being three, i.e., n =
3,m = 2, p = 2. We generate the system data as follows: matrix A with random integers from 1 to 5,
and matrices B,C,D with random integers from −2 to 2. Then, we re-scale the matrix A to adjust
its spectral radius ρ(A). In our simulations, we tested ρ(A) from 1 to 10. The numerical results are
shown in Figure 4. In this experiment, we fixed the length of Markov parameters as T = 9, and the
number of rollouts as N = 1000. We used random inputs with σu = 1, and assumed measurement
noises with σv = 0.5. As clearly observed in Figure 4, when there is no process noise σw = 0 (the left
subfigure), the estimation error is independent to the spectral radius ρ(A). When the process noise
becomes non-zero (the middle and right subfigures), the estimation errors become worse quickly as
ρ(A) goes bigger. These results are consistent with the theoretical prediction in Theorem 3.1.
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Figure 4: Estimation error with varying spectral radius ρ(A) and process noises. Left to right: σw = 0;
σw = 0.01; σw = 0.05.

5 Conclusions

We have introduced a simple OLS estimator for partially observed LTI system identification using
multiple trajectories and analyzed its corresponding finite sample complexity. Our method utilizes all
data samples in the trajectories, thus making very efficient use of the available data, as demonstrated
in our experiments. For future work, it would be interesting to improve our analysis for the OLS
estimator, and to derive certain minimax risk lower bounds for identifying general LTI systems in
multi-rollout setup. It is also interesting to investigate other algorithmic variants (e.g., using outputs
in a prefiltering step [14, 15]) to mitigate system instability, and to adapt analysis techniques for
asymptotic normality [18] and data-dependent finite sample analysis [19] in the multi-rollout setup.
Similar to the Coarse-ID procedure [6], we are also interested in combining the results with robust
synthesis techniques (e.g., [8, 20, 21, 22]) to derive end-to-end guarantees for data-driven control.
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Appendix

A Proofs of Propositions 3.1-3.3

In this appendix, we provide the proofs of Propositions 3.1-3.3. For self-completeness, we first
introduce three technical lemmas.

Lemma A.1 ([23]). Given a positive semidefinite matrix A ∈ Sn+, and another symmetric matrix
B ∈ Sn, we have

λmin(A+B) ≥ λmin(B).

Lemma A.2 ([23]). For any matrix A ∈ Rm×n, we have

‖A‖ ≤ ‖A‖F ≤
√

min{m,n}‖A‖.
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Lemma A.3 ([8, Lemma 2.10]). Let A be a block partitioned matrix with

A =


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
Am1 Am2 . . . Amn

 ,
where each Aij has compatible dimensions. Then, we have

‖A‖ ≤

∥∥∥∥∥∥∥∥∥


‖A11‖ ‖A12‖ . . . ‖A1n‖
‖A21‖ ‖A22‖ . . . ‖A2n‖

...
...

. . .
...

‖Am1‖ ‖Am2‖ . . . ‖Amn‖


∥∥∥∥∥∥∥∥∥ .

This lemma is true for any induced norm; see [8, Lemma 2.10] for a proof.

A.1 Proof of Proposition 3.1

Upon denoting the input data matrix of each rollout i as U (i) =
[
û
(i)
0 . . . û

(i)
T−1

]
∈ RmT×T , where

û
(i)
t =

[(
u
(i)
t

)T
, . . . ,

(
u
(i)
0

)T
, 0, . . . , 0

]T
∈ RmT ,

for t = 0, . . . , T − 1, we can write

UUT =
N∑
i=1

U (i)
(
U (i)

)T
=

N∑
i=1

T−1∑
t=0

û
(i)
t (û

(i)
t )T

=

T−1∑
t=0

N∑
i=1

û
(i)
t (û

(i)
t )T.

For each t, the nonzero part of û(i)t follows a norm distribution with zero mean and covariance
σ2uIm(t+1). According to Lemma 3.2, we have with probability at least 1− δ/T√√√√ 1

σ2u
λmin

(
Et

N∑
i=1

u
(i)
t

(
u
(i)
t

)T
ET
t

)
≥
√
N −

√
m(t+ 1)−

√
2 log(T/δ), t = 0, . . . , T − 1,

where Et is a basis matrix that extracts the nonzero block.
Combining all of the estimates above via union bound, when

√
N >

√
mT +

√
2 log(T/δ), by

Lemma A.1, we have with probability at least 1− δ,

UUT =

T−1∑
t=0

N∑
i=1

û
(i)
t (û

(i)
t )T �

N∑
i=1

û
(i)
T−1(û

(i)
T−1)

T,

12



which implies that √
1

σ2u
λmin (UUT) ≥

√√√√ 1

σ2u
λmin

(
N∑
i=1

u
(i)
T−1

(
u
(i)
T−1

)T)
≥
√
N −

√
mT −

√
2 log(T/δ).

The desired result in (11) follows by choosing the value of N such that

1

2

√
N ≥

√
mT +

√
2 log(T/δ).

This holds when N ≥ 8mT + 16 log(T/δ), considering the inequality (a+ b)2 ≤ 2(a2 + b2).

A.2 Proof of Proposition 3.2

For each rollout i, we can write

v(i)(U (i))T

=
[
v
(i)
0 v

(i)
1 . . . v

(i)
T−1

]

u
(i)
0 u

(i)
1 u

(i)
2 . . . u

(i)
T−1

0 u
(i)
0 u

(i)
1 . . . u

(i)
T−2

0 0 u
(i)
0 . . . u

(i)
T−3

...
...

...
. . .

...
0 0 0 . . . u

(i)
0



T

=

[
T−1∑
k=0

v
(i)
k (u

(i)
k )T,

T−2∑
k=0

v
(i)
k+1(u

(i)
k )T, . . . , v

(i)
T−1(u

(i)
0 )T

]
.

Therefore, we have

vUT =

N∑
i=1

v(i)(U (i))T

=

N∑
i=1

[
T−1∑
k=0

v
(i)
k (u

(i)
k )T,

T−2∑
k=0

v
(i)
k+1(u

(i)
k )T, . . . , v

(i)
T−1(u

(i)
0 )T

]
.

Applying Lemma 3.1 to each individual block, when N(T − j) ≥ 2(m+ l) log(T/δ), we have with
probability at least 1− δ/T ,∥∥∥∥∥

N∑
i=1

T−j−1∑
k=0

v
(i)
k+j(u

(i)
k )T

∥∥∥∥∥ ≤ 4σvσuc
√

(T − j)

with c =
√
N(m+ l) log(9T/δ) for j = 0, . . . T − 1. Finally, union bounding over all these events,

by Lemma A.3, if N ≥ 2(m + l) log(T/δ), we have with probability at least 1 − δ the following

13



inequality holds:∥∥∥∥∥
N∑
i=1

v(i)(U (i))T

∥∥∥∥∥
≤

∥∥∥∥∥
[∥∥∥∥∥

N∑
i=1

T−1∑
k=0

vik(u
i
k)

T

∥∥∥∥∥
∥∥∥∥∥
N∑
i=1

T−2∑
k=0

vik+1(u
i
k)

T

∥∥∥∥∥ . . .

∥∥∥∥∥
N∑
i=1

viT−1(u
i
0)

T

∥∥∥∥∥
]∥∥∥∥∥

≤4σvσu
∥∥[√NT (m+ l) log(9T/δ),

√
N(T − 1)(m+ l) log(9T/δ), . . . ,

√
N(m+ l) log(9T/δ)

]∥∥
= 4σvσu

√
N(m+ l) log(9/δ)

∥∥[√T √
T − 1 . . . 1

]∥∥
= 2σvσu

√
2T (T + 1)N(m+ l) log(9T/δ).

This completes the proof.

A.3 Proof of Proposition 3.3

Here, we prove the bound for

‖WUT‖ =

∥∥∥∥∥
N∑
i=1

W (i)(U (i))T

∥∥∥∥∥ .
We first give bounds on each q ×m block of the data matrix WUT that can be expressed as

(WUT)lj =

N∑
i=1

T−j∑
t=0

w
(i)
t (u

(i)
t+l−j)

T, 1 ≤ j ≤ T, 1 ≤ l ≤ T.

Applying Lemma 3.1 to the submatrix above, if N(T − j + 1) > 4(q +m) log(T/δ), we have with
probability at least 1− δ/T 2∥∥∥(WUT)lj

∥∥∥ ≤ 4σwσu
√

2N(T − j + 1)(m+ q) log(9T/δ),

for 1 ≤ l ≤ T, 1 ≤ j ≤ T . We define a scaling index

M :=

∥∥∥∥∥∥∥∥∥∥∥



√
T
√
T − 1

√
T − 2 . . . 1

∗
√
T − 1

√
T − 2 . . . 1

∗ ∗
√
T − 2 . . . 1

...
...

...
. . .

...
∗ ∗ ∗ . . . 1



∥∥∥∥∥∥∥∥∥∥∥
where ∗ denotes the symmetric part. By Lemma A.2, we have

M ≤

∥∥∥∥∥∥∥∥∥∥∥



√
T
√
T − 1

√
T − 2 . . . 1

∗
√
T − 1

√
T − 2 . . . 1

∗ ∗
√
T − 2 . . . 1

...
...

...
. . .

...
∗ ∗ ∗ . . . 1



∥∥∥∥∥∥∥∥∥∥∥
F

=

√√√√2
T∑
k=1

(
k∑
l=1

l

)
− (1 + 2 + . . .+ T )

=

√√√√ T∑
k=1

(k2 + k)− (1 + 2 + . . .+ T )

=

√
T 3

3
+
T 2

2
+
T

6
.
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Finally, union bounding all the estimates of individual blocks, if N > 4(q+m) log(T/δ), according
to Lemma A.3, we have with probability 1− δ

‖WUT‖ ≤M × 4σwσu
√

2N(m+ q) log(9T/δ)

≤
√
T 3

3
+
T 2

2
+
T

6
4σwσu

√
2N(m+ q) log(9T/δ),

which completes the proof.

B Non-zero initial state in each rollout

In this section, we discuss the influence of non-zero initial state in each rollout on the OLS estimator.
We highlight a minor modification of the theoretical bound in Theorem 3.1 when the initial state
follows an iid Gaussian distribution.

Suppose that the initial state x(i)0 of the i-th rollout satisfies x(i)0 ∼ N (0, σ20In). Each measurement
yt, t = 0, . . . , T − 1 in (5) becomes

y
(i)
t = Cx

(i)
t +Du

(i)
t +Dvvt

=
t−1∑
k=0

CAk
(
Bu

(i)
t−k−1 +Bww

(i)
t−k−1

)
+Du

(i)
t︸ ︷︷ ︸

input & process noise

+CAtx
(i)
0︸ ︷︷ ︸

init. state

+ Dvv
(i)
t︸ ︷︷ ︸

meas. noise

, (14)

which is affected by input and process noises, initial state, measurement noise. Upon defining

H =
[
C CA CA2 · · · CAT−1

]
∈ Rp×nT ,

the measurement data (14) in each rollout i can be compactly written as

y(i) = GU (i) + FW (i) +H
(
IT ⊗ x(i)0

)
+Dvv

(i). (15)

Since the state information is not directly observable when C 6= I, we treat the initial state x0 as
noise, similar to the process/measurement noises wt, vt.

In this case, we can formulate the same OLS estimator (8). Now, we define

X0 =
[
IT ⊗ x(1)0 · · · IT ⊗ x(N)

0

]
∈ RnT×NT .

Then, the estimation error in (9) becomes

Ĝ−G = Y UT(UUT)−1 −G
= (Y −GU)UT(UUT)−1

= (FW +HX0 +Dvv)UT(UUT)−1.

(16)

Similar to Section 3.2, we have

‖Ĝ−G‖ ≤
∥∥∥(UUT)−1

∥∥∥(‖F‖ ∥∥∥WUT
∥∥∥+ ‖H‖‖X0U

T‖+ ‖Dv‖
∥∥∥vUT

∥∥∥) .
We only need to bound the error term introduced by the non-zero initial state, given by the following
proposition.
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Proposition B.1. Fix a 0 < δ < 1, and N ≥ 4(n+m) log(T/δ). We have with probability at least
1− δ

‖X0U
T‖ ≤ 4σ0σu

√
T (T + 1)N(m+ n) log(9T/δ).

Proof. The proof is similar to that of Proposition 3.2/3.3. Consider that

‖X0U
T‖ =

∥∥∥∥∥
N∑
i=1

(
IT ⊗ x(i)0

)
(U (i))T

∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥
N∑
i=1


x
(i)
0 (u

(i)
0 )T 0 0 . . . 0

x
(i)
0 (u

(i)
1 )T x

(i)
0 (u

(i)
0 )T 0 . . . 0

x
(i)
0 (u

(i)
2 )T x

(i)
0 (u

(i)
1 )T x

(i)
0 (u

(i)
0 )T . . . 0

...
...

...
. . .

...
x
(i)
0 (u

(i)
T−1)

T x
(i)
0 (u

(i)
T−2)

T x
(i)
0 (u

(i)
T−3)

T . . . x
(i)
0 (u

(i)
0 )T



∥∥∥∥∥∥∥∥∥∥∥∥
.

Applying Lemma 3.1 to each block of the matrix above, if N > 4(n+m) log(T/δ), we have with
probability at least 1− δ/T 2∥∥∥(X0U

T)lj

∥∥∥ ≤ 4σ0σu
√

2N(m+ n) log(9T/δ), 1 ≤ l ≤ T, 1 ≤ j ≤ l.

Union bounding all the estimates of individual blocks, if N > 4(n + m) log(T/δ), according to
Lemma A.3, we have with probability 1− δ

‖X0U
T‖ ≤

∥∥∥∥∥∥∥∥∥∥∥


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1



∥∥∥∥∥∥∥∥∥∥∥
4σ0σu

√
2N(n+m) log(9T/δ)

≤

∥∥∥∥∥∥∥∥∥∥∥


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1



∥∥∥∥∥∥∥∥∥∥∥
F

4σ0σu
√

2N(n+m) log(9T/δ)

=4σ0σu
√
T (T + 1)N(m+ q) log(9T/δ).

We complete the proof.

By slightly adjusting the proof of Theorem 3.1, we have the following corollary.

Corollary B.1. Suppose the initial state x0 ∼ N (0, σ20In), process/measurement noises wt ∼
N (0, σ2wIq), vt ∼ N (0, σ2vIl), and we choose the input ut ∼ N (0, σ2uIm). Fix any 0 < δ < 1. If the
number of rollouts satisfies N ≥ 8mT + 4(m+ n+ q + l + 4) log(4T/δ), we have with probability at
least 1− δ

‖Ĝ−G‖ ≤ σ0C0 + σvC1 + σwC2

σu

√
1

N
, (17)
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where
C0 = 16‖H‖

√
T (T + 1)(m+ n) log(36T/δ),

C1 = 8‖Dv‖
√

2T (T + 1)(m+ l) log(36T/δ),

C2 = 16‖F‖

√(
T 3

3
+
T 2

2
+
T

6

)
2(m+ q) log(36T/δ).

C Recovery of system parameters and Corollary 3.1

The celebrated Ho-Kalman algorithm [11] generates a controllable and observable state-space
realization (A,B,C,D) from the Markov parameter matrix G in (2). Recall that an LTI system
(A,B,C,D) is called controllable if

rank
([
B AB . . . An−1B

])
= n,

and observable if

rank




C
CA
...

CAn−1


 = n.

Note that state-space realizations from the Markov parameters G are not unique, but they are only
different up to a similarity transformation.

To apply the Ho-Kalman algorithm, we need to construct the Hankel matrix H ∈ RpT1×m(T2+1)

from the Markov parameter G

H =


CB CAB CA2B . . . CAT2B
CAB CA2B CA3B . . . CAT2+1B
CA2B CA3B CA4B . . . CAT2+2B

...
...

...
...

...
CAT1−1B CAT1 CAT1+1 . . . CAT1+T2−1B

 ,

where T = T1 + T2 + 1. We also denote H− to be the pT1 ×mT2 Hankel matrix created by dropping
the last block column of H. It is easy to check that

H =


C
CA
...

CAT1−1

 [B AB . . . AT2B
]
, H− =


C
CA
...

CAT1−1

 [B AB . . . AT2−1B
]
.

Then, under the assumption of the controllability and observability of (A,B,C,D), both the Hankel
matrix H and its modified version H− are of rank n, as long as min(T1, T2) ≥ n.
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The Ho-Kalman algorithm [11] on the noiseless Markov parameter G has
the following steps:

1. Perform the singular value decomposition (SVD): H− = UΣV , where
Σ ∈ Rn×n.
2. Compute the observability matrix O = UΣ

1
2 , and return the first

p× n submatrix of O as C;

3. Compute the controllability matrix C = Σ
1
2V , and return the first

n×m submatrix of C as B;

4. Return A = O†H+C†, where H+ is the pT1 ×mT2 Hankel matrix by
dropping the first block column of H.

Note that D is the first p×m submatrix of G.

We can also apply the Ho-Kalman algorithm on the estimated Markov parameter Ĝ; see [12,
Algorithm 1]. The work [12] shows how the state-space estimations Â, B̂, Ĉ, D̂ degrade when using a
noisy estimation Ĝ. Precisely, we denote Ĥ as the analogous estimated version of H. The following
result is taken from [12, Corollary 5.4].

Proposition C.1 ([12, Corollary 5.4]). Suppose that (A,B,C,D) in (1) is controllable and observable.
Let (Â, B̂, Ĉ, D̂) is the output of the Ho-Kalman algorithm on the OLS estimation Ĝ. Suppose

‖H − Ĥ‖ ≤ σmin (H−)

4
.

Then, there exists an unitary matrix S such that

max{‖B̂ − SB‖, ‖Ĉ − CST‖} ≤ 5

√
n‖H − Ĥ‖, ‖Â− SAST‖ ≤

50

√
n‖H − Ĥ‖‖H‖

σ
3/2
min (H−)

.

As stated in [12, Lemma 5.2], we have

‖H − Ĥ‖ ≤
√

min{T1, T2 + 1}‖G− Ĝ‖. (18)

Since ‖D̂−D‖ ≤ ‖G− Ĝ‖, for N sufficiently large and T large enough to have min{T1, T2} ≥ n, we
can combine (18) and Proposition C.1 with Theorem 3.1 to arrive at the result in Corollary 3.1 with
a scaling of O(N−1/4). A recent refined analysis of Ho-Kalman algorithm in [9] enables a rate of
estimation

max{‖Â− SAST‖, ‖B̂ − SB‖, ‖Ĉ − CST‖} ≤ Ĉ‖G− Ĝ‖,

where Ĉ is a problem-dependent constant (see [9, Section 5.3] for details). Combining this result
with Theorem 3.1, we arrive at the result in Corollary 3.1 with a scaling of O(N−1/2).

D Selecting the length of Markov Parameters T

As shown in Theorem 3.1 and the discussions therein, the constants C1 and C2 depends on polynomials
on the length of Markov parameter T , suggesting a longer Markov parameter G requires more
trajectories to achieve the same accuracy. In our multi-rollout setup, we note that T is also the
length of each experiment. Therefore, we might want to use a small T to reduce the workload of
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running experiments and improve sample efficiency. However, to guarantee the rank condition on the
Hankel matrices H,H− in the Ho-Kalman algorithm, we need to make sure that min{T1, T2} ≥ n,
where T1 + T2 + 1 = T . In principle, the value of T should at least be 2n+ 1, where n is the state
dimension.

On the other hand, we can represent open-loop stable systems in the frequency domain as follows

G(z) = C(zI −A)−1B +D =
∞∑
i=0

G(k)
1

zk
, (19)

where G(k) ∈ Rp×m denotes the kth spectral component. The form (19) is known as infinite impulse
responses of G. In particular, we have

G(k) =

{
D k = 0,

CAk−1B k ≥ 1.

Upon denoting the least-squares solution Ĝ =
[
Ĝ0 Ĝ1 . . . ĜT−1

]
, we form the estimated FIR

dynamics

Ĝ :=
T−1∑
k=0

Ĝk
1

zk
.

If we want to bound the H∞ norm of G− Ĝ, we can choose a value of T to balance the truncation
error and OLS estimation error

‖G− Ĝ‖H∞ =

∥∥∥∥∥
T−1∑
t=0

(
G(k)− Ĝk

) 1

zk
+

∞∑
k=T

G(k)
1

zk

∥∥∥∥∥
H∞

≤

∥∥∥∥∥
T−1∑
t=0

(
G(k)− Ĝk

) 1

zk

∥∥∥∥∥
H∞︸ ︷︷ ︸

OLS estimation error

+

∥∥∥∥∥
∞∑
k=T

G(k)
1

zk

∥∥∥∥∥
H∞︸ ︷︷ ︸

FIR truncation error

.

This strategy above has been widely used in robust controller synthesis after system identification;
see e.g., [7, 8, 24], where an explicit state-space realization is not required.

E The length of Markov parameters and the rollout length can be
different

In OLS estimator (8), the rollout length of each experiment and the length of Markov Parameters
are the same. It is possible to use different lengths in the multi-rollout setup. Suppose we aim to
learn T1 Markov parameters and the rollout length is T2. Naturally, we need to ensure that T2 ≥ T1.

Now for each rollout i, we organize all the data as

y(i) =
[
y
(i)
0 y

(i)
1 . . . y

(i)
T2−1

]
∈ Rp×T2 ,

v(i) =
[
v
(i)
0 v

(i)
1 . . . v

(i)
T2−1

]
∈ Rl×T2 .

(20)
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Each measurement yt, t = 0, . . . , T2 − 1 can be expanded recursively as (where we used the fact
x
(i)
0 = 0)

y
(i)
t = Cx

(i)
t +Du

(i)
t +Dvvt

=
t−1∑
k=0

CAk
(
Bu

(i)
t−k−1 +Bww

(i)
t−k−1

)
+Du

(i)
t +Dvv

(i)
t .

(21)

Upon defining two upper-triangular Toeplitz matrices corresponding to u(i) and w(i), respectively,

Û (i) =



u
(i)
0 u

(i)
1 u

(i)
2 . . . u

(i)
T1−1 . . . u

(i)
T2−1

0 u
(i)
0 u

(i)
1 . . . u

(i)
T1−2 . . . u

(i)
T2−2

0 0 u
(i)
0 . . . u

(i)
T1−3 . . . u

(i)
T2−3

...
...

...
. . .

...
. . .

...
0 0 0 . . . u

(i)
0 . . . u

(i)
T2−T1


∈ RmT1×T2 ,

Ŵ (i) =



w
(i)
0 w

(i)
1 w

(i)
2 . . . w

(i)
T−1 . . . w

(i)
T2−1

0 w
(i)
0 w

(i)
1 . . . w

(i)
T−2 . . . w

(i)
T2−2

0 0 w
(i)
0 . . . w

(i)
T−3 . . . w

(i)
T2−3

...
...

...
. . .

...
. . .

...
0 0 0 . . . w

(i)
0 . . . w

(i)
T2−T1


∈ RqT1×T2 ,

(22)

and
F =

[
0 CBw CABw . . . CAT1−2Bw

]
∈ Rp×qT1 ,

and a residual signal matrix

E(i) = CAT1−1
[
0 . . . 0 x

(i)
1 x

(i)
2 . . . x

(i)
T2−T1+1

]
∈ Rp×T2 ,

the measurement data (21) in each rollout i can be compactly written as

y(i) = GÛ (i) + FŴ (i)︸ ︷︷ ︸
proc. noise

+ Dvv
(i)︸ ︷︷ ︸

meas. noie

+ E(i)︸︷︷︸
init. noie

, (23)

where the output is affected by three types of noises: process noise, measurement noise, and the
noise introduced by the non-zero state xt−T1+1. Note that the noise terms W (i), v(i) and E(i) are
zero-mean. We form the OLS problem as

Ĝ = arg min
X∈Rp×mT1

N∑
i=1

‖y(i) −XÛ (i)‖2F. (24)

Defining our label matrix Y and input data matrix U as

Y =
[
y(1) . . . y(N)

]
∈ Rp×NT2 ,

Û =
[
Û (1) . . . Û (N)

]
∈ RmT1×NT2 ,

the OLS becomes
min

X∈Rp×mT1

‖Y −XÛ‖2F,
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Figure 5: Estimation error for system (13) with fixed T1 = 10. We varied rollout length T2 and process noises.
Left to right: σw = 0; σw = 0.2; σw = 0.4; σw = 0.6. Estimation error 1: the result from OLS estimator (8),
and only take the first T1 Markov parameters; Estimation error 2: the result from OLS estimator (24);
Estimation error 3: the result from OLS estimator (8) and compare it with T2 Markov parameters.

and the least square solution is Ĝ = Y Û †. Following the analysis in Theorem 3.1, it is not difficult
to see that the OLS estimator (24) returns a consistent estimation.

Comparing the OLS estimator (8) and the OLS estimator (24): It is easy to see that they are
equivalent when T1 = T2. When fixing the length of Markov parameter T1 and increasing the rollout
length T2, we have two methods to estimate the T1 Markov parameters:

GT1 =
[
D CB CAB . . . CAT1−1B

]
∈ Rp×mT1

The first method is to use the OLS estimator (8) and only take the first T1 Markov parameters from
its solution; the second method is to use the OLS estimator (24). Note that in the presence of no
process noise wt = 0, we can see that there is always an extra noise term E(i) in (23). This means
the OLS estimator (24) is not as good as the OLS estimator (8) in this case. This is confirmed
by the numerical results shown in Figure 5. When there is process noise, the OLS estimators (8)
and (24) have different balance: the constant F is increasing in (8), while the extra noise term E(i)

in (24) is growing, when increasing the rollout length T2. Both these two OLS estimators suffer from
the system instability if there is process noise. In Figure 5, the results from the OLS estimator (8) is
numerically better than the OLS estimator (24) for this case.
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