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Abstract— This paper proposes a framework for 3D obstacle
avoidance in the presence of partial observability of envi-
ronment obstacles. The method focuses on the utility of the
Artificial Potential Function (APF) controller in a practical
setting where noisy and incomplete information about the
proximity is inevitable. We propose a Particle Filter (PF)
approach to estimate potential obstacle locations in an input
depth image stream. The probable candidates are then used
to generate an action that maneuvers the robot towards the
negative gradient of potential at each time instant. Rigorous
experimental validation on a quadrotor UAV highlights the
robustness and reliability of the method when robot’s sensitivity
to incorrect perception information can be concerning. The
proposed perception and control stack is run onboard the
UAV, demonstrating the computational feasibility for real-time
applications and agile robots.

I. INTRODUCTION

There has been an increasing interest in the area of active
perception over the last decade or two. A recent DARPA
challenge [1] poses a problem of exploration of unknown,
unstructured, large-scale and cluttered underground environ-
ments. Like many other sub-problems from the challenge,
the path planning problem suffers from uncertain and in-
complete sensor information due to noise and limited field
of view respectively. Moreover, the computation time and
the effectiveness are the essential attributes of a planning
method. Mapping-based techniques perform well to generate
a path according to a global mission strategy. Commonly
used mapping tools like OctoMap [2] and Voxblox [3] have
been popular recently, in generating a map representation of
an environment using 3D pointclouds. However, mapping is
a slow processes. For large environments, planning over such
global information contributes to additional computation
time overhead. Moreover, the coarseness of the map being
used for planning over large scale environments may not be
suitable to detect intricacies in the environment. A fundamen-
tal requirement for a mapping-based planner to be effective,
is a precise position feedback of the robot. In practice, such
estimates are expensive to obtain, especially locally, in terms
of both computation and payload. Therefore, there is a high
chance that an agile robot, such as an MAV, does not map
small and thin obstacles. Such obstacles, like hanging cables
and pipes, are inherent to many complex indoor environments
like caves, mines and warehouses. Hence, there is a need to
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Fig. 1. An illustration of the APF-PF problem. The blue dots represent the
depth image points as projected in 3D. The blue arrows show the candidates
for the obstacle position vector, xobs (densest dotted line represents the most
probable candidate).

use faster and higher resolution raw sensor measurements
to guide a robot. Moreover, a full 3D solution is required
to navigate through uncertain and complicated structures.
The method proposed in this paper, utilizes raw sensor
measurements to generate robot actions without relying on
a map representation of an environment.

Researches have shown in past that living organisms [4]
like insects [5], [6] rely on instantaneous optic flow signals
to provide visual cues for reactive obstacle avoidance. One
component of an optic flow signal is the sense of how
far objects are located in an environment. Depth cameras
provide this information in the form of depth images relative
to their sensors. A depth image stream can have varying
noise levels depending on the type of sensors, the calculation
methods involved and abrupt reflections from the objects
in the environments. This makes it challenging to obtain
useful information to feed into most motion planners that
demonstrate well in the perfect observability settings.

Fragoso et al. [7] proposed a way of keeping only a
local egocentric map of the environment in the form of a
cylinder that updates in real-time through temporal fusion of
limited field-of-view visual information. Some other works
[8], [9] and [10] propose inflation of depth images using
C-Space expansion to facilitate path generation inside a
disparity space. Later work by Dubey et al. [11] highlights
the importance of considering small obstacles like wires, in
autonomous robot navigation, by explicitly detecting them
using convolutional neural networks. Authors in [8] and [12]
demonstrated closed-loop RRT and LQR based techniques,
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respectively, for path planning inside a depth image space.
Reactive controllers, especially the ones based on Artificial
Potential Function (APF) [13], and bio-inspired [14]–[16]
methods have demonstrated speed and light computational
burden.

This paper proposes a solution for the obstacle avoidance
problem that 1) generates robot actions directly from an
imperfect depth image stream hence providing an end-to-
end solution, 2) has a fast update rate to cater for the needs
of agile robots, 3) is computationally feasible for robots
with limited on-board resources such as MAVs, 4) adapted
for robot maneuvers in 3D to make it useful for arbitrarily
structured environments. The perception solution to make
such control feasible is the foremost contribution of the
paper. A particle filter technique is proposed to probabilis-
tically identify and track regions corresponding to potential
obstacles, inside a sequence of depth images. At each time
instant, the repulsive potential applied by each candidate
for such a region, is weighted according to its probability
to compute a total repulsive potential. To close the loop,
a user-defined goal point generates an attractive potential
and finally the robot is commanded to follow the negative
gradient of the resultant potential. Although not uniquely
defined in the literature, the term reactive obstacle avoidance
typically refers to the methods that require only local envi-
ronment information to generate steering commands away
from obstacles and towards the goal, instead of planning
paths inside a global map. Our method slightly deviates from
the traditional context of reactive obstacle avoidance in that
it uses particle filter on a history of depth images in order
to estimate the local environment information. However, the
APF controller in-loop only requires the local information
and no map information is available or saved during flight,
hence, the method proposed in this paper falls under the
umbrella of reactive methods for obstacle avoidance. Fig. 2
shows the simplified process flow, various components of
which are explained in the following sections.

The rest of the paper is organized as follows. Section
II highlights the problem formulation followed by the de-
scription of the filter design, in Section III. Section IV
provides a description of how the control loop is closed with
the perception information. Section V presents the results
and analysis from physical experiments. Finally, Section VI
concludes the discussion.

II. PROBLEM SETUP

Problem 1: Let Xfree be a set of all collision free robot
configurations, Xgoal ⊂ Xfree be the goal region and A be
a set of available robot actions. Given a history of depth
images I[0 t], at any time instant t, choose an action at ∈ A
such that xt+1 ∈ Xfree and xtf ∈ Xgoal, at some finite final
time tf .

We aim to solve a well-defined problem of moving a robot
from an initial to a final point while avoiding collisions.
In the APF approach, the robot behaves as a point charge.
The goal point generates an attractive potential for the robot
which vanishes as the robot gets closer to the goal. The

Fig. 2. Simplified process flow.

proximity obstacles are treated as a collection of point
charges to generate a repulsive potential to the robot. The
robot maneuvers towards the goal, following the negative
gradient of the net potential. If xgoal ∈ R3 is the vector from
the robot’s body frame origin to the goal and xobs ∈ R3 is the
obstacle’s position in the robot’s body frame, the attractive
and repulsive potential functions, Uatt : R3 → [0,∞) and
Urep : R3 → [0,∞), are given by,

Uatt(xgoal) =

{
ρrξ||xgoal||, ||xgoal|| > ρr.
1
2ξ||xgoal||2, ||xgoal|| ≤ ρr.

(1)

Urep(xobs) =

{
1
2η(

1
||xobs|| −

1
ρ0
)2, ||xobs|| < ρ0.

0, otherwise.
(2)

Here, ρ0 defines the sensing horizon over which the repulsive
potential is effective. A quadratic potential well is a typical
choice for the attractive potential function since it leads to a
control law that is linear and all other potentials approximate
to quadratic for small perturbations in xgoal [17]. However,
the conic potential [18] provides a constant control law
except at the goal [19]. This behavior is more suitable around
the obstacles. The conic attractive function is, therefore, often
used close to obstacles and is switched to the parabolic
function in close proximity of the goal. In (1), ρr refers
to the radius around the goal where the conic potential
function switches to the parabolic potential function. In order
to ensure continuity, the conic and quadratic potential gains
are set to ρrξ and ξ respectively.

An accurate knowledge of an obstacle’s location relative to
the robot, xobs, is an important variable for the effectiveness
of the APF method. Unlike an RGB image, a single channel
depth image encodes this information up to an allowable
camera resolution. However, depth cameras may have various
types of imperfections, making it difficult to rely on the
raw output, especially when a system is very sensitive to
an incorrect feedback. The following section explains the
proposed observer design to estimate such information from
a sequence of depth images. Fig. 1 shows a depiction of the
APF-PF problem.

III. PERCEPTION

In a recent effort to simulate a No-Depth-Return (NDP)
type of noise, authors in [20] referred to depth imaging
as an area in robotic perception that suffers from a large
simulation-reality gap due to scene-dependent noise. This



Fig. 3. Discretization of a 2.5D depth image. The depth camera’s optical
frame, FC , and the robot’s body frame, FB , are shown in the right-handed
coordinate system.

sort of noise is exceptionally difficult to model hence the
literature provides little insight into this topic. We base our
model on the noise characteristics that adversely affect the
detection of potential obstacles in a depth image. These con-
siderations include the density of the clusters, their distances
from the camera and their ability to appear, disappear and
move during the consecutive image frames. The goal of this
problem is to detect candidates for an occupied region inside
a depth image. Particle filtering is an appropriate sampling-
based approach to the state estimation that can handle large
state spaces.

The particle filter problem parameters can be defined as
a tuple (S,O, T ,Z), where S and O define the set of all
possible states and observations respectively. In our case, S
is a set of perception states which refers to the occupied
regions inside a depth image. This encodes the information
about xobs without requiring the robot and the obstacles to be
mapped in a global frame to generate the repulsive potentials.
The probability of a state st ∈ S, at any time instant t,
to transition to a state st+1 ∈ S, at the next time instant,
is defined as T (st, st+1). Similarly, Z(st+1,ot+1) is the
probability of an observation ot+1 ∈ O, given a transition to
a state st+1 ∈ S . A particle filter outputs a belief at every
iteration which refers to the probability distribution over all
possible states given an observation history. This encodes the
relevant information from the entire sequence of observations
without needing to explicitly store it.

The following subsections explain various components of
the perception problem.

A. State Space Transition Models

Any point in an image can correspond to an obstacle in a
completely unknown environment and, hence, can potentially
be a state. However, at this resolution, the state space size
can be large. For a 640×480 image, it is 307200 times
the number of possible depths at which an obstacle can be
located. This requires the flexibility to discretize such infor-
mation. We discretize the input image in a 2.5D fashion. This

translates to discretization over pixels in the plane parallel to
the camera and over depth in the plane perpendicular to the
camera. This allows us to make detections directly inside a
depth image space in the camera frame, FC , without project-
ing the whole image to a 3D space for processing. Moreover,
the discretization reduces the state space size up to a user-
defined refinement depending on the available computational
power. This results in a voxel grid where the 2.5D coordinate
of each voxel belongs to the state space. When projected
to 3D, it forms a pyramid in case of a pinhole camera
model, with apex corresponding to the optical center of the
camera. This, hence, does not require explicit knowledge of
the camera model during the perception process. The 2.5D
voxel grid covers the entire sensing horizon (field-of-view).
Fig. 3 shows such a discretization process, along with the
relevant frames of reference. The full state space can be
written as,

S = {(i, j, k) : i ∈ {0, kw, 2kw, ..., (Nw − 1)kw},
j ∈ {0, kh, 2kh, ..., (Nh − 1)kh},

k ∈ {0, kd, 2kd, ..., (Nd − 1)kd}} ∪ {sb},

where kw, kh ∈ Z+ are the pixel discretization steps along
the width and height of an image and kd ∈ R+ refers to the
discretization step along the depth. Similarly, Nw, Nh and
Nd are the number of discretization steps along the respective
axes. In order for the belief to sum to 1 at each time instant,
the state space model also includes a state, sb, referring to
obstacle-free sensing horizon. The probability of this state, in
the belief vector, informs about the likelihood of there being
no obstacle in the field-of-view. In the state space model,
this state refers to the voxel grid boundary. The idea is that
when there is no obstacle inside the sensing horizon, there is
always an obstacle surrounding the voxel grid almost surely,
and with non-zero probability of transitioning to the voxel
grid.

The state transition probability is defined as the product
of two factors:

T (st, st+1) = P (st+1 | st) ∝ Pmove(st+1 | st)Pdist(st+1).
(3)

The term, Pmove(st+1 | st), models the relative motion of
a scene obstacle by constraining the Manhattan distance
|diag(kw, kh, kd)−1(st+1 − st)| to follow the normal distri-
bution 2N (0, σs), with σs depending on the expected speed
of the environment obstacles relative to the robot. This means
that an occupied voxel is more likely to transition to a nearby
voxel than to a farther one. The states that are close to
the voxel grid boundary are highly likely to transition in
and out of the field-of-view. The second term, Pdist(st+1),
biases the transitions towards the vehicle. Specifically, this
bias is defined with a normal distribution centered at zero,
Pdist(st+1) = Pdist(s

z
t+1) ∝ 2N (0, σz), where szt+1 is the

depth associated with the state st+1. The bias helps the
perception module to make a more conservative prediction



of an obstacle’s behavior i.e., coming towards the robot with
high probability. Moreover, the closer proximity obstacles
have a significantly higher contribution to the repulsive
potential than the farther ones. The bias towards approaching
obstacles plays an important role in ensuring a safe maneuver
for a fast moving robot.

B. Observation Model

An observation o ∈ O is given by,

o = {ni ∈ Z+ : i ∈ {0, 1, 2, ..., (NwNhNd − 1)}}.

In the expression above, ni represents the number of points
contained in the voxel i. The observation model refers to the
probability of an observation, ot+1, after transitioning to a
state st+1 i.e., Z(st+1,ot+1) = P (ot+1 | st+1). For any
state inside the voxel grid, st+1 6= sb, this can be written as,

P (ot+1 | st+1) = P (n0, n1, ..., nNwNhNd−1 | st+1) = (4)
P (st+1 | n0, n1, ..., nNwNhNd−1)P (n0, n1, ..., nNwNhNd−1)

P (st+1)
.

Dense cluster of points inside a depth image serves as
an important feature to determine that a region is a valid
projection of a physical environment object. Therefore, in
order to gain confidence on a voxel, the number of points
contained within it is observed. Hence, we can conveniently
exploit independence of variables. Equation 4 can then be
reduced to,

P (ot+1 | st+1) =
P (st+1 | nst+1)P (n0, n1, ..., nNwNhNd−1)

P (st+1)
,

(5)

where nst+1
is the number of points contained in the state

st+1.
Using Bayes’s rule on the term P (st+1 | nst+1

), and
assuming no prior information about ni for any voxel i,

P (ot+1 | st+1) ∝ P (nst+1 | st+1) = 2N (kwkh, σo). (6)

Here kwkh is the maximum number of points that can
be contained in a voxel and depends on the discretization
intervals. The tuning parameter, σo, determines the number
of points required to gain confidence on any state inside
the voxel grid. Low values result in conservative detections
where large number of points are required to be certain about
a state.

For st+1 = sb,

P (ot+1 | st+1) (7)
= P (n0 | st+1)P (n1 | st+1)...P (nNwNhNd−1 | st+1)

∝ P (max
i

ni | st+1) = 2N (0, σn).

The probability that there is no obstacle inside the voxel
grid depends on the number of points in the most populated
voxel. This is designed so that, for the system to believe that
there is an obstacle in the field-of-view, a significantly large

Fig. 4. A depiction of the observation model. The horizontal scale
represents the number of points contained in a voxel. The number of points
towards the left of the scale is more likely to represent outliers. The number
of points towards the right of the scale is more likely to represent that the
voxel is occupied with an obstacle.

cluster of points needs to exist in atleast one of the voxels.
This models the behavior of the outliers in a depth image and
helps filter out sparse noise very efficiently. A larger value
of σn helps reject greater number of outliers per voxel. The
coexistence of the models defined by (6) and (7) is shown
in Fig. 4. By appropriately varying σn and σo, a variety of
different filtering behaviors can be achieved.

C. Particle Filter Algorithm

The particle filter algorithm is executed on the state and
observation models keeping in view the applicability of the
approach to systems that require fast and real-time feedback.
The transition probabilities, T , depend on the image and dis-
cretization parameters which are kept constant throughout the
process. Therefore, the first step is to calculate a transition
probability lookup table for all possible states. At the start of
the run, the belief is initialized with equal number of particles
for every state. Every time an image is received, it is first
discretized and each voxel is assigned the number of points
contained within it. All the particles in the belief vector are
then propagated forward in time by randomly drawing, for
each particle, a next state from the distribution defined by
T . Each propagated particle is then assigned a weight based
on the observation model (6), (7). Finally, the particles are
drawn at random according to the distribution of weights
[21]. The probability distribution over the entire state space
given the history of depth images, can be computed from
the belief vector at any time step. Algorithm 1 summarizes
the estimation process. In the particle filter formulation, the
belief about a state is represented by the number of particles
associated with that state. For the rest of the paper, the
posterior, P (st | o0,o1,o2, ...,ot ∈ O), is represented by
the normalized belief vector bt of length equal to the total
number of states.



Algorithm 1 Particle Filter Estimation
b← U(0, N)
T ← generate transition probability table given image
dimensions and discretization intervals
repeat
b← update belief(depth image, b)

function update belief(depth image, b)
b′ ← ∅
for i← 1 toNwNhNd − 1
ni ← number of points inside voxel i

for i← 1 to |b|
si ← random state in b
draw k with probability proportional to T (si, .)
w(i)← observation weight(nk)
s′i ← sk

for i← 1 to |b|
draw k with probability proportional to w
Add s′k to b′

return b′

IV. APF CONTROL

The mapping between a pixel inside a depth image to its
3D coordinates in the camera’s optical frame, FC , is defined
by the camera’s projection model. For a pinhole camera
model, it is governed by the following set of equations,

sxt = pxt (fx/p
z
t ) + cx (8)

syt = pyt (fy/p
z
t ) + cy

szt = pzt ,

where the intrinsics are defined by the camera’s focal lengths,
fx, fy , and the location of its optical axis, (cx, cy), in pixels.
The coordinates of a voxel st ∈ S at time instant t are
referred to as (sxt , s

y
t , s

z
t ), with the projected 3D point being

pt = (pxt , p
y
t , p

z
t ) ∈ R3. Using (1), (2), (8), and a belief, bt,

the net potential, Unet : R3 × R3 → [0,∞), on the robot is
found as,

Unet(xgoal,xobs) =
∑
s∈S

(Uatt(xgoal) + Urep(R
B
Cpt))bt(s).

(9)

where, RBC is the transformation from the camera frame,
FC , to the robot’s body frame, FB, and bt(s) is the belief
accociated with a state s at time instant t when the potential
is computed.

V. IMPLEMENTATION AND RESULTS

For the ease of integration on an actual robot, we program
the perception and control stack in Robot Operating System
(ROS) C++ environment. The first subsection examines fil-
ter’s performance to detect a thin cable in the presence of
varying levels of added noise. The second subsection shows
results from the flight testing on a real quadrotor UAV robot.
For both of the tests, an Intel Realsense D435 [22] camera is

used to obtain the depth information. The image resolution
is set to 640×480 pixels.

A. Thin Cable Test

Thin and small obstacles pose challenge to flying robots
since they are extremely difficult to be mapped. Hanging
cables and wires serve as one of the worst case scenarios
for this category of obstacles. An extension cord, 8 mm in
diameter, is chosen to put filter’s performance to test while
keeping the robot static. Fig. 5(a) shows the RGB image of
the hanging cord as seen by the forward facing camera on
the stationary robot. Figures 5(b),(c) show two snapshots of
the depth image when projected to the robot’s body frame
coordinates. Each 3D point in the figures corresponds to a
pixel in the depth image. The maximum number of points an
object can occupy in a 640×480 image is 307,200. However,
the camera only manages to see less than 300 points on the
cord, diminishing to far less than that in many frames.

Fig. 5. A thin cable hanging infront of the robot. (a) First person view of
the cable from the robot. (b),(c) Pointcloud from the side view of the cable,
two instances shown. (d) Pointcloud from the side view of the cable with
gaussian noise of 0.2 m added to every 10th pixel. (e) Pointcloud from the
side view of the cable with gaussian noise of 0.2 m added to every other
pixel. (f) Pointcloud from the side view of the cable with gaussian noise of
0.2 m added to every pixel.

In three different tests, we added gaussian noise of stan-
dard deviation 0.2 m to the depth associated with every
pixel, every other pixel and every 10th pixel in every input
image. A fourth test is performed as a control without any
noise. The discretization intervals are chosen to be kw =
50, kh = 50, kd = 0.1. The state transition and observation
models’ covariance parameters are set to σs = 8, σz =
0.4, σo = 300, σn = 1. Additionally, 20,000 particles are
used for particle filter estimation. In the APF-PF framework,
the repulsive potential applied by each depth image voxel is
weighted according to its probability. The probabilities, and
hence the influence of the repulsive potentials generated by
different voxels, are relative. Therefore, observing the most
probable voxel provides a useful insight into the perception
performance while keeping the illustration legible. Fig. 6
shows the depth of the most probable voxel transitioning
over time for all four noise levels. The size of each vertex in
the plot is set proportional to the belief of the corresponding
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Fig. 6. The most probable occupied voxel location over time for a thin static cable test. The thickness of points is proportional to their respective
probabilities.

Fig. 7. An aerial view of the flying quadrotor UAV.

voxel. When the noise is added to every pixel on the cable,
there is no information in the image and hence the detections
do not necessarily correspond to any physical object in the
scene. A bias can be seen towards closer distances due to
Pdist(st+1) term in (3). As the noise gets less dense, the
detections appear to happen where the cord is located, with
increasing confidence as the density of noise decreases. Like
any other observer, there is a performance trade-off if an
object of interest resembles the expected sensor noise, as
is the case with the cord. Therefore, even with no added
noise, the valid detections get less certain during some time
instances. This is also because in some frames, for instance
Fig. 5(b), the structure of the cord disappears to very less

Fig. 8. The high bay flight area.

number of points before reappearing again in the depth
image. The filter does reasonably well in keeping track of
the object during those instances. Nevertheless, if the objects
of interest in the depth images are more observable or if the
noise is more sparse, σo and σn can be varied to get more
accurate detections.

B. Physical UAV Experiments

We performed several flight tests in a high bay area
approximately 17 m long and 8 m wide. Results from all
of the flight tests are shown in this section. The quadrotor
UAV (Fig. 7) is built out of a 540 mm airframe equipped
with a forward facing Intel Realsense D435 depth camera.
The localization estimates on the UAV are provided by
a 3D Ouster LiDAR [23], [24] along with a PX4-based
flight controller [25]. The Ouster LiDAR being used has a
maximum range of approximately 100 m, a resolution of



Fig. 9. A closeup of one A-B, B-C and C-D run. The green shaded regions represent carefully hand-labelled intervals during which a physical object
was inside the camera’s field-of-view.

1024×64 with horizontal and vertical field-of-views of 360
and 45 degrees, respectively. This makes it very well-suited
for localization, but the sparseness of its depth image and the
performance degradation at close ranges motivates us to use
the Intel Realsense for small obstacle avoidance. Since, we
are relying on one camera for these experiments, its utility
is increased by adding the non-holonomic constraints on the
robot in the x− y plane of its body frame, FB. The steering
command is generated so that the UAV faces the negative
gradient of potential, ν = −∇Unet/|∇Unet|, defined in FB.

vψt =
1

π
vψmax(arctan2(ν

y, νx)), (10)

vxt = vxmax cos(arctan2(ν
y, νx)),

vzt = vzmaxν
z,

where vxt , vzt , and vψt are the forward and vertical velocities
and the yaw rate in FB, respectively. The maximum veloc-
ities are regulated by vxmax, vzmax, and vψmax. Additionally,
νx, νy , and νz are the x, y and z components of ν. The
APF method inherently assumes a holonomic vehicle model.
However, by setting vψmax sufficiently larger than vxmax,
the vehicle’s translation closely approximates the holonomic
behavior by making yaw to converge much faster than any
translation component. In order to avoid the forward velocity
to be negative, vxt is lower bounded by zero.

The covariance parameters, σo and σn, for the particle
filter, are set to 170 and 60 respectively, while keeping all
other parameters the same. The control parameters are used
as, ρr = 0.5, ξ = 0.4, η = 1.1, vxmax = 0.6, vzmax = 0.6,
vψmax = 1.0. Fig. 8 shows the setup with randomly placed
obstacles of different reflectivity and of diameters, 270 mm,
90 mm and 22 mm in the course. Each UAV flight path starts
from one of the four regions A, B, C or D and ends in one of
the three regions B, C or D. The attractor point corresponding
to each region is located at its center. The combined duration
of the flight tests is approximately 8 min with more than 150
m of distance traveled by the UAV safely. The UAV performs
3 A to B (A-B), 9 B to C (B-C), 8 C to D (C-D), 1 D to
C (D-C) and 6 D to B (D-B) flights. The paths followed

Fig. 10. Paths followed by the UAV for multiple A-B, B-C, C-D, D-C and
D-B flights. Yellow spheres show the regions A, B, C and D. The blue dots
represent the attractor points. The paths followed by the UAV are shown
in magenta. For each flight, the UAV takes a different route depending on
the initial conditions. The average path over each route is shown by a blue
line.

by the UAV for all the flights, as reported by the LiDAR
odometry, with the locations of the obstacles and attractors
are shown in Fig. 10. For the purpose of further analysis,
Fig. 9 shows the performance of the proposed method over
one randomly chosen A-B-C-D run. If the APF method was
applied directly on the raw sensor measurements, the area
of lowest depth would make the most contribution to the
repulsive potential. In that case, even low levels of noise can
prove highly compromising to system’s safety especially if
such an area corresponds to noise. The plot shows the depth
of the most probable voxel compared against the depth of the
closest point inside the raw depth image, at each time instant.
The magnitude of the repulsive force is overlaid on the plot.
In order to highlight the frequency of raw sensor noise, we
hand-labelled the sections in the plot where the UAV had
a physical object inside its field-of-view. These sections are
shaded green in the figure. At various instances throughout
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Fig. 11. Compute time over several minutes long flight data.

the flight path, the UAV perceived noise that did not belong to
any physical object. The repulsive force magnitude is a direct
measure of the vehicle’s response to those observations.
Lastly, the computation time for the complete software stack,
over several thousand frames, is shown in Fig. 11.

VI. CONCLUSION

The paper proposed a perception technique to effectively
use an APF-based motion planner on a raw depth image
stream. Unlike popular map-based planners, the method is
well suited for real-time maneuvers in agile robots especially
when precisely building a map is not feasible. The technique
is shown to work effectively to perceive and avoid small
and thin obstacles from a sequence of noisy depth inputs.
The noise level, density and frequency varies with lighting
conditions, reflectivity of the surrounding objects, and other
environment artifacts. Moreover, depth from stereo is gov-
erned by different optics and computation methods than that
of a Time-of-Flight (TOF) technology. The method proposed
in this paper provides a flexible probabilistic framework
to filter out various noise types by carefully tuning the
relevant parameters. Finally, the robustness and efficiency
of the perception and control stack is demonstrated through
physical UAV experiments.

A video of all the flight tests is posted at https://
youtu.be/oB-WNkrNwR8.
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