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Abstract— We rely on Nagumo’s invariance theorem to de-
velop a new approach for navigation in unknown environments
of arbitrary dimension. The idea consists in projecting the
nominal velocities (that would drive the robot to the target
in the absence of obstacles) onto Bouligand’s tangent cones
(referred to as the safety velocity cones) when the robot is close
to the boundary of the free space. The proposed projection-
based controller is explicitly constructed to guarantee safety and
convergence to a set of Lebesgue measure zero that contains
the target. For specific free spaces such as Euclidean sphere
worlds, the convergence to the target is guaranteed from almost
all initial conditions in the free space. We provide a version of
the controller (generating a continuous and piecewise smooth
closed-loop vector field) relying on the robot’s current position
and local range measurements (e.g., from LiDAR or stereo
vision) without global prior knowledge about the environment.

I. INTRODUCTION

Obstacle avoidance is a long-lasting problem with a large
body of research work in the robotics and control communi-
ties. Existing approaches to the obstacle avoidance problem
can be classified into two main categories: global (map-
based) methods that require the global knowledge of the
environment and local (reactive) methods that use only local
knowledge of the obstacles in the vicinity of the robot.
Among the global methods, artificial potential fields-based
approaches [1], [2] are computationally efficient and come
usually with rigorous proofs for safety and convergence.
However, the design of such potential fields is non-trivial
for generic environments due to the complications that arise
from the presence of local minima. The navigation functions
of Koditscheck and Rimon [2] are carefully constructed,
for Euclidean sphere worlds [2, p. 414], to get an artificial
potential field with the nice property that all but one of
the critical points are saddles with the remaining critical
point being the desired reference. Since then, the navigation
function-based approach has been extended in many different
directions; e.g., for multi-agent systems [3], [4], [5], and
for focally admissible obstacles [6]. The major drawback
of navigation functions is that they require an unknown
tuning of parameters to eliminate local minima. Other recent
global approaches that do not require any parameter tuning to
eliminate local minima are the navigation transform [7], the
prescribed performance control [8], and the hybrid control
approach [9] which eliminates also the saddle points.

This research work is supported by the National Research Council of
Canada, grant no: NSERC-DG RGPIN-2020-04759. The author is with the
Department of Computer Science and Engineering, University of Quebec
in Outaouais, 101 St-Jean Bosco, Gatineau, QC, J8X 3X7, Canada. Email:
soulaimane.berkane@uqo.ca.

On the other hand, having a reactive solution to safely
navigate in unknown environments is more desirable in
practical autonomous robots applications. One of the sim-
plest reactive motion planning algorithms are the family
of Bug algorithms [10], [11] used to navigate in planar
environments. Locally computable navigation functions have
been proposed in [12] to navigate in unknown sphere worlds
and adjustable navigation functions are proposed to gradually
update the tuning parameter upon the discovery of new
obstacles [13]. On the other hand, purely reactive algorithms
use only current sensor data to generate the safe trajectories
and control law. Potential fields can be generated in real-
time using current sensor readings. However, purely reactive
gradient-following potential field approaches always run the
risk of getting stuck in local minima [14]. Recently, a new
reactive control algorithm has been developed to navigate
in environments cluttered with unknown but sufficiently
separated and strongly convex obstacles [15]. Moreover,
for planar navigation, the algorithm is implementable using
practical sensing models.

A. Contributions of the Paper

In this paper we address the problem of robot navigation in
an arbitrary unknown environment by constructing a vector
field that simultaneously solves the motion planning and
control problems. The free space of the robot is assumed to
be a closed subset of the n−dimensional Euclidean space.
We then exploit Nagumo’s theorem for invariant sets [16]
to guarantee safety of the robot in this environment by
projecting the nominal vector field (nominal velocity of the
robot) onto the (Bouligand’s) tangent cones [17] whenever
the robot is close to the boundary. When the boundary of the
free space is a smooth submanifold of codimension equals
one, the tangent cones are flat (thus convex) and continuously
varying along the boundary. The resulting vector field is
piecewise continuously differentiable and the unique Fillipov
solution is shown to converge to a set of Lebegue measure
zero containing the desired exponentially stable location
(target) as well as potentially other undesired equilibrium
configurations. For free spaces that are modelled as sphere
worlds [2], we show that the resulting vector field has the
same capabilities as navigation functions without requiring
the assumption of global prior knowledge. The undesired
equilibrium configurations are explicitly characterized and
shown to be unstable (hence almost global asymptotic sta-
bility of the target).

For practical implementation, we show that the proposed
algorithm is intrinsically sensor-based in the sense that
the vector field can be generated on the fly in real-time
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using onboard sensors such as LiDARs, stereo cameras,etc;
depending on the application at hand. This is achieved
by characterizing our controller using the distance function
to the boundary of the free space. Moreover, we propose
a smoothed version of the control law that removes the
discontinuity of the vector field while adding a safety maneu-
vering margin without compromising the obtained navigation
capabilities.

B. Organization of the Paper and Notation

This paper is organized as follows. In Section II we recall
the well known Nagumo’s theorem for invariant sets, which
is stated using the concept of tangent cones. Section III
presents the main theoretical findings of this paper, which are
based on a newly proposed projection-based control strategy
for safe navigation. In Section IV we characterize our control
law using the distance to the obstacles function which allows
also to smooth-out the discontinuouty of the controller. In
Section V, we discuss some of the practical considerations
related to the sensor-based implementation of the proposed
navigation controller. Simulation results in a 2D environment
are provided in Section VI to demonstrate the effectiveness
of the proposed navigation algorithm. Finally, we provide
in Section VII some concluding remarks and related future
work.

Notation: R and R<0 denote, respectively, the set of reals
and negative reals. Rn is the n-dimensional Euclidean space
and Sn−1 is the (n− 1)-dimensional unit sphere embedded
in Rn. The topological interior (resp. boundary) of a subset
A ⊂ Rn is denoted by int(A) (resp. ∂A). The complement
of A in Rn is denoted by {A and its closure by A. The
Euclidean norm of x ∈ Rn is defined as ‖x‖ :=

√
x>x

where (·)> stands for the transpose operator. We denote by
B(x, r) := {y ∈ Rn : ‖x − y‖ < r} the open ball of radius
r that is centered at x. Given a non-empty subset A ⊂ Rn,
the distance function from a point x ∈ Rn to A is defined as
dA(x) := infy∈A‖y − x‖ and the projection of x onto A is
given by the set-valued map PA(x) := {y ∈ A : ‖y − x‖ =
dA(x)}.

II. NAGUMO’S THEOREM FOR INVARIANT SETS

Nagumo’s theorem is one of the main important tools
used in the characterization of positively invariant sets for
continuous-time dynamical systems. There are different ways
to state the theorem but the most intuitive and easy way to do
so is to use the notion of tangent cones. There are different
definitions of tangent cones (giving rise to different cones)
such as Clarke [18], Bony [19], and Bouligand [17]. These
cones coincide for a convex set, but they can differ on more
general sets. Here we recall the definition of (Bouligand’s)
tangent cones which will be used to state Nagumo’s theorem.

Definition 1 (Bouligand’s tangent cone [17], [16]). Given a
closed set X ⊆ Rn, the tangent cone to X at x is the subset
of Rn defined by

TX (x) :=

{
z : lim inf

τ→0+

dX (x+ τz)

τ
= 0

}
. (1)

TX (x)

xd

x

κ0(x)

κX (x)

x(0)

Fig. 1. A face-shaped free space X (interior in white, boundary in solid
black). At each position x, the nominal controller κ0(x) (in bold red) is
projected onto the safety velocity cone (in blue) to give rise to the safe
control κX (x) of (8) (in bold green). The resulting piecewise smooth vector
field (in bold pink) is an orchestration of two modes: stabilization and
avoidance.

Roughly speaking, the tangent cone for x ∈ X is the set
that contains all the vectors whose directions point from x
inside or tangent to the set X . It should be noted that the
tangent cone TX (x) is closed and non-trivial only at the
boundary of X . In fact, for all x ∈ int(X ) (points in the
interior of X ), we have TX (x) = Rn, and for all x /∈ X
we have TX (x) = ∅. Now we recall Nagumo’s invariance
theorem.

Theorem 1 (Nagumo 1942 [20], [16]). Consider the system
ẋ(t) = f(x(t)) and assume that for each initial condition
x(0) in an open set O it admits a unique solution defined for
all t ≥ 0. Then the closed set X ⊂ O is forward (positively)
invariant if and only if

f(x) ∈ TX (x), ∀x ∈ X . (2)

Nagumo’s theorem has a very intuitive and simple geomet-
ric interpretation. In fact, condition (2) says that the vector
field f(x) (velocity of x) must point inside (or it is tangent
to) the set X at each position x. As discussed above, since
TX (x) is non-trivial only at the boundary points x ∈ ∂X ,
Nagumo’s condition (2) is checked only at these boundary
points since it is trivially satisfied for all x ∈ int(X ).

III. PROJECTION ONTO TANGENT CONES FOR SAFE
NAVIGATION

In this section, we propose a simple and very efficient safe
navigation approach that is based on Nagumo’s theorem and
tangent cones. The proposed approach is intrinsically local
(does not require prior global knowledge of the environment)
and considers a very generic class of free spaces.



A. Problem Formulation

We consider a point-mass robot moving in a closed (not
necessary bounded) subset X of the n-dimensional Euclidean
space Rn. The set X is often called the obstacle-free set or
the free space. The robot is moving according to the follow-
ing first-order dynamics (fully actuated single integrator):

ẋ = u, (3)

where x ∈ Rn is the position of the robot, initially at
x(0) ∈ X , and u ∈ Rn is the velocity (control input).
The navigation problem consists in finding a suitable control
policy (vector field) κX : X → Rn such that, under the
control law u = κX (x), the robot’s position is asymptotically
stabilized at some given desired location xd ∈ int(X ) while
staying in the set X for all times (forward invariance of X ).
The resulting closed-loop system is written as

ẋ = κX (x). (4)

Moreover, the control policy κX must be locally computed
in the sense that only the local information about the free
space X is used when generating in real-time the resulting
vector field.

B. Invariance Through Safety Velocity Cones

Here we exploit the fact that the notion of safety is tightly
related to the notion of invariance. In view of (4) and by
direct application of Nagumo’s theorem (Theorem 1), if we
want to ensure the safety specification, the control policy
κX (·) must satisfy the condition

κX (x) ∈ TX (x), ∀x ∈ X . (5)

Therefore, for all x ∈ X , it is reasonable to choose a con-
trol law that solves the following constrained optimization
problem

min
u
‖u− κ0(x)‖2 subject to u ∈ TX (x),∀x ∈ X , (6)

where κ0(x) is a nominal control law that ensures the
stabilization task (motion to goal) in the absence of obstacles.
In other words, at each point in X , the control law that
we would like to apply will be equal to the control that
is the closest one to the nominal control law under the
constraint (5). This problem is referred to as the nearest
point problem and the solution to this minimization is given
by the metric projection of κ0(x) onto the set TX (x), i.e.,
PTX (x)(κ0(x)). Since PTX (x)(·) is set-valued, the resulting
closed-loop system can be written as a differential inclusion

ẋ = κX (x) ∈ PTX (x)(κ0(x)), (7)

which has (by construction) solutions that are necessarily
safe (will stay in X ). Since velocities are projected onto
the tangent cone TX (x) to guarantee safety, we term these
tangent cones as safety velocity cones (SVCs) when used
for this navigation problem. A striking feature of this con-
troller is that the SVCs are characterized locally near each
point of the boundary and, hence, the proposed navigation
scheme is intrinsically a local control strategy that does not

require global knowledge of the free space1. Note that, since
TX (x) = Rn for points in the interior of X , one can writes

ẋ = κX (x) ∈

{
{κ0(x)}, x ∈ int(X )

PTX (x)(κ0(x)), x ∈ ∂X ,
(8)

which shows the discontinuous2 nature of the resulting vector
field, see Fig. 1 .

Note also that, in view of the famous Hilbert project
theorem in convex analysis, if the tangent cone TX (x) is
convex at each x, the projection map PTX (x)(·) is single-
valued. In this case the differential inclusion (8) reduces to a
differential equation with discontinuous right-hand side. For
example, the SVCs of the face-shaped set in Fig. 1 are not all
convex since at the corners of the mouth (bottom rectangle)
the SVCs are not convex. Note that convexity of the tangent
cone does not necessary require convexity nor smoothness
of the set X . For instance, if we remove the mouth from
the set in Fig. 1, the resulting free space has SVCs that
are convex everywhere; although the set has a non-smooth
boundary and is obviously non-convex. Moreover, arbitrary
closed sets with smooth boundaries have tangent cones that
are half-spaces (thus convex) and these will be treated in the
next subsection.

Finally, it is worth pointing out that, in the 2D context, the
obtained navigation trajectories are similar to those obtained
using the traditional Bug planning algorithm [10] where
the planner switches between motion-to-goal and boundary-
following maneuvers. Our proposed obstacle avoidance strat-
egy extends this to an Euclidean space with arbitrary dimen-
sion while also uniting the planning and feedback stabiliza-
tion tasks, in the same spirit of potential field methods [2],
[1], and providing theoretical guarantees.

C. Free Spaces with Smooth Boundaries

Here we focus our attention to free spaces with smooth
boundaries. This is motivated by the distance-based charac-
terization wich will be presented in Section IV for positive
reach sets, which intrinsically generate practical free spaces
that have smooth boundaries. We assume, hereafter, that ∂X
is a hypersurface of Rn that is orientable3, without boundary,
and twice continuously differentiable. Therefore, there exists
a continuously differentiable map (called also the Gauss
map) ν : ∂X → Sn−1 that associates to each x ∈ ∂X the
(outward) normal unit vector ν(x) to the hypersurface ∂X
at x. The tangent cone at any x ∈ ∂X is, therefore, given
by the half-space

TX (x) =
{
z ∈ Rn : ν(x)>z ≤ 0

}
, ∀x ∈ ∂X . (9)

Since TX (x) is a half-space it is convex and thus the solution
of the nearest point problem in (6) is unique and can be

1In Section V, we will address the practical implementation of this control
strategy using on-board sensing, which results in a reactive sensor-based
navigation scheme.

2See Section IV for the smooth version of this control law.
3An orientable hypersurface is an (n − 1)−dimensional submanifold

of Rn that admist a global unit normal vector field defined along it [21,
Definition 4.14].



explicitly solved. Let us derive the explicit expression of
this projection map. If x ∈ ∂X and ν(x)>κ0(x) ≤ 0 then
κ0(x) ∈ TX (x) and hence we have κ0(x) is a solution to
(6). Otherwise when x ∈ ∂X and ν(x)>κ0(x) > 0, the
closest point is obtained via the orthogonal projection onto
the hyperplane ν(x)>z = 0, which is given by [22]

Π(ν(x))κ0(x) := (In − ν(x)ν(x)>)κ0(x). (10)

Therefore, the projection of κ0(x) onto TX (x) is given by

κX (x) = PTX (x)(κ0(x))

=


κ0(x), x ∈ int(X ) or

ν(x)>κ0(x) ≤ 0,

Π(ν(x))κ0(x), x ∈ ∂X and

ν(x)>κ0(x) ≥ 0,

(11)

which explicitly defines our control policy for free spaces
with smooth boundary. Roughly speaking, the resulting
(discontinuous) controller applies the nominal control as
long as the robot is not at the boundary of the free space
(stabilization mode). When the robot is at the boundary of
the free space, the nominal controller is projected onto the
tangent cone to ensure safety (avoidance mode). Note that
during the avoidance mode and if the nominal controller
is pointing inside the set X , the projection does not alter
the nominal controller (i.e., when ν(x)>κ0(x) ≤ 0). This
is a very intuitive and simple idea that we have formulated
rigorously using the projection onto tangent cones. Of course
from a practical point of view one needs to consider a safety
margin from the boundary of the free space and this will be
discussed later in Section IV. Now we are ready to state our
first result.

Theorem 2 (Safety). Consider a free space that is described
by a closed set X ⊂ Rn such that ∂X is an orientable
and C2−hypersurface. Consider the kinematic system (3)
under the control law (11) where κ0(·) is continuously
differentiable. Then, the closed-loop system admits a unique
solution (in the sense of Fillipov) for all t ≥ 0 and the set
X is forward invariant.

Proof. First we show that the vector field κX (x) is piecewise
continuous. In fact, κX (x) is continuous on int(X ) since
κ0(x) is continuously differentiable. Moreover, for x ∈ ∂X ,
we have

κX (x) =

{
κ0(x), ν(x)>κ0(x) ≤ 0,

Π(ν(x))κ0(x), ν(x)>κ0(x) ≥ 0,
(12)

which is continuous since ν(x) is continuously differentiable
and, at ν(x)>κ0(x) = 0, it holds that Π(ν(x))κ0(x) =
κ0(x). Therefore, κX (x) is discontinuous only at the bound-
ary points. Moreover, for each x ∈ ∂X , the vector field
κX (x) points naturally into int(X ) since it projects onto
the tangent cone when at the boundary points. It follows
from [23, Proposition 5] that there exists a unique Filippov
solution starting from any initial condition. Finally since
κX (x) ∈ TX (x) for all x ∈ X , it follows from Nagumo’s
theorem that the set X is forward invariant.

Theorem 2 shows that safety is guaranteed regardless of
the nominal controller κ0(x) and under a mild condition on
free-space X (smooth boundary). This is an important result
since safety is often a hard constraint and should be satisfied
regardless of the free space or the control strategy applied.
On the other hand, convergence to the target is an objective
that it tightly related to the topology of the free space and
the chosen κ0(x). Nevertheless, in view of the fact that our
controller equals the nominal controller (u = κ0(x)) for
points in the interior of X where the target point xd lies
in, there exists a ball around xd from which convergence
to xd is ensured. However, the region of attraction of the
equilibrium x = xd can be smaller than X , i.e. there exists
initial conditions in X from which the robot will not reach
xd. To further characterize the equilibria set of the closed-
loop system, we pick for illustration the state feedback

κ0(x) = −k(x− xd), k > 0. (13)

Next we state our second result which is related to the
convergence task (motion to goal).

Theorem 3 (Motion to Goal). Consider a free space that
is described by a closed set X ⊂ Rn such that ∂X is an
orientable and C2−hypersurface. Consider the kinematic
system (3) under the control law (11) with κ0(·) as in
(13). Then, the distance ‖x − xd‖ is non-increasing, the
equilibrium x = xd is exponentially stable, and the unique
Filippov solution converges to the set {xd} ∪ E , where
E := {x ∈ ∂X : x = xd + λν(x), λ ∈ R<0}.

Proof. For simplicity let us denote f(x) := PTX (x)(κ0(x)).
First we construct the differential inclusion that captures the
unique Fillipov’s solution as follows:

x(t) ∈ F[f ](x(t)), (14)

where F[f ] : Rn ⇒ Rn is a set-valued mapping defined by

F[f ](x) :=
⋂
δ>0

⋂
µ(S)=0

co(f(B(x, δ)) \ S), (15)

where co denotes the convex closure hull and µ is the
Lebesgue measure. Since f is piecewise continuous and
discontinuous only at the boundary points, we can write

F[f ](x) =


{κ0(x)},

x ∈ int(X ) or ν(x)>κ0(x) ≤ 0,

{(αIn + (1− α)Π(ν(x)))κ0(x), α ∈ [0, 1]},
x ∈ ∂X and ν(x)>κ0(x) ≥ 0.

(16)

In other words, when x ∈ ∂X and ν(x)>κ0(x) ≥ 0,
F[f ](x) is the set of all possible convex combinations of
Π(ν(x))κ0(x) and κ0(x) while in all other cases it is a
singleton. Consider the following continuously differentiable
positive definite function

V(x) =
1

2
‖x− xd‖2. (17)



The set-valued Lie derivative of V(x) along the vector fields
of F[f ] is given by

LF[f ]V(x) = {(x− xd)>ξ, ξ ∈ F[f ](x)}. (18)

On the other hand, and in view of (16), one has for all ξ ∈
F[f ](x)

(x− xd)>ξ =



−k‖x− xd‖2,
x ∈ int(X ) or ν(x)>κ0(x) ≤ 0,

−kα‖x− xd‖2 − k(1− α)(x− xd)>

Π(ν(x))(x− xd),
x ∈ ∂X and ν(x)>κ0(x) ≥ 0.

(19)

Now, since the matrix αIn+(1−α)Π(ν(x)) is positive semi-
definite (remember that Π(ν(x)) is positive semi-definite),
one has

maxLF[f ]V(x) ≤ 0, ∀x ∈ X . (20)

If follows from [23, Theorem 1] that x = xd is a strongly
stable equilibrium of (14). Moreover, since xd ∈ int(X )
there exists r > 0 such that B(xd, r) ⊂ int(X ) and hence,
on this set, the dynamics reduces to ẋ = −k(x− xd) which
shows exponential stability of x = xd. Finally, the points
where 0 ∈ LF[f ]V(x) correspond to either x = xd or
ν(x)>(x − xd) < 0 and (x − xd)>Π(ν(x))(x − xd) = 0.
The latter implies that Π(ν(x))(x− xd) = 0 or equivalently
x − xd = λν(x) with λ = ν(x)>(x − xd) < 0. By [23,
Theorem 2], the proof is complete.

Theorem 3 shows that all solutions will be safe and also
converge to either xd or to the set of points E on the bound-
ary. These are equilibrium points from which convergence to
the target is not possible. Note that, since ∂X is Lebesgue
measure zero in Rn, the subset E ⊂ ∂X is also of Lebesgue
measure zero. It remains to study (depending on the given
worskpace X ) the invariance properties of these equilibrium
points (stable, unstable) and whether they are isolated or not.
However, studying the invariance properties of the undesired
equilibria heavily depends on the considered free space X
(e.g., topological properties). For example, if the set X is
not path-connected, there might be initial conditions where
the robot can never converge to the target xd regardless of
the control law applied. In this case, the robot will converge
inevitably to another equilibrium point in the set E . Next,
we concentrate our attention to the topologically simple
environments; known as sphere worlds.

D. Euclidean Sphere Worlds

Let us consider a sphere world as defined in [2]. In other
words, we assume that X consists of one large ball O0 :=
B(c0, r0), c0 := 0, which bounds the workspace minus M
smaller disjoint ballsOi := B(ci, ri), i = 1 · · ·M, that define
obstacles in Rn that are strictly contained in the interior of
the workspace, i.e.,

X := O0 \
M⋃
i=1

Oi. (21)

Assumption 1. Obstacles are separated from each other, i.e.,

‖ci − cj‖ > ri + rj , ∀i, j ∈ {1, · · · ,M}, i 6= j, (22)

and from the boundary, i.e.,

‖ci‖+ ri > r0, ∀i ∈ {1, · · · ,M}. (23)

Since the obstacles are disjoint, the boundary of X is
identified by the union of (M + 1) spheres

∂X =

M⋃
i=0

∂Oi =

M⋃
i=0

{x ∈ Rn : ‖x− ci‖2 = r2i }. (24)

For each x ∈ {x ∈ Rn : ‖x− ci‖2 = r2i }, the normal to the
i−th sphere ∂Oi is given by

ν0(x) = +
(x− c0)

‖x− c0‖
, (25)

νi(x) = − (x− ci)
‖x− ci‖

, i = 1, · · · ,M. (26)

Now we can characterize explicitly the set E of undesirable
equilibria and its stability properties.

Theorem 4 (Sphere Worlds). Consider a free space that is
described by the sphere worlds X ⊂ Rn as in (21) under
Assumption 1. Consider the kinematic system (3) under the
control law (11) with κ0(·) as in (13). Then,

1) The unique Filippov solution converges to the set
{xd} ∪Mi=1 {x̄i} with x̄i := (1 − αi)xd + αici and
αi := 1 + ri‖xd − ci‖−1.

2) Each undesired equilibrium point x = x̄i is unstable.
3) The desired equilibrium x = xd is locally exponen-

tially stable and almost globally asymptotically stable.

Proof. First, we show that the set E defined in Theorem 3
contains exactly M isolated points. This set can be written
as follows:

E =

M⋃
i=0

Ei :=

M⋃
i=0

{x ∈ ∂Oi : x = xd + λiνi(x), λi ∈ R<0}.

(27)

For i ∈ {1, · · · ,M}, let x ∈ Ei then x− xd = λiνi(x) and
λi = (x − xd)>νi(x) = −(x − xd)>(x − ci)/ri < 0. Also,
we have ‖x − xd‖2 = λi(x − xd)>νi(x) = λ2i . It follows
that

‖ci − xd‖2 = ‖ci − x‖2 + ‖x− xd‖2 − 2(x− ci)>(x− xd)
= r2i + λ2i + 2λiri = (ri + λi)

2.

Hence, λi = ±‖ci−xd‖− ri. However, λi = ‖ci−xd‖− ri
is ruled out by the fact that xd ∈ int(X ) (‖ci − xd‖ ≥ ri)
and λ must be negative. Thus λi = −‖ci − xd‖ − ri and
plugging this back into x− xd = λiνi(x) = −λi(x− ci)/ri
we get (1 + λi/ri)x = xd + (λi/ri)ci or equivalently x =
(1 − αi)xd + αici. On the other hand, for i = 0, we get
λ0 = ±‖c0 − xd‖ + r0 which is non-negative thanks to
xd ∈ int(X ) (‖xd‖ ≤ r0) and hence E0 = ∅.

To prove the instability of the isolated equilibrium x̄i :=
(1 − αi)xd + αici, it is sufficient to find an open ball {x :



‖x− x̄i‖ < ε} such that, for some x0 arbitrary close to x̄i,
the solution x(t) that starts at x0 must leave this ball. Let
the closed set Pi := {x : νi(x)>(x − xd) ≤ 0} and define
the compact set Si := ∂Oi ∩ Pi. When restricted on Si, x
evolves according to the dynamics

ẋ = −kΠ(νi(x))(x− xd). (28)

Consider the positive define function with respect to x̄i

Wi(x) =
1

2
‖x− x̄i‖2. (29)

The time derivative of Wi(x) for all x ∈ Si satisfies

Ẇi(x) = −k(x− x̄i)Π(νi(x))(x− xd)
= −k(1− αi)(x− xd)>Π(νi(x))(x− xd)
− α(x− ci)>Π(νi(x))(x− xd)

= −k(1− αi)(x− xd)>Π(νi(x))(x− xd) ≥ 0

where we have used the fact that (x − ci)
>Π(νi(x)) = 0

to obtain the third equality and Π(νi(x)) is positive semi-
definite to obtain the last inequality. Furthermore, Ẇi(x) =
0 implies the existence of λi such that x = xd+λiνi(x). But
x ∈ Si implies that λ < 0; which shows that x ∈ Ei = {x̄i}.
On the other hand, since (x̄i−ci)>(x̄i−xd) = α(α−1)‖ci−
xd‖2 > 0, one has x̄i ∈ int(Pi) and hence there exists an
open ball {x : ‖x− x̄i‖ < ε} ⊂ Pi. Pick an initial condition
x0 in ∂Oi ∩ {x : ‖x− x̄i‖ < ε} ⊂ Si that is arbitrary close
to x̄i. The solution x(t) that starts at x0 cannot approach x̄i
while in Si since Wi(x) > 0 and Ẇi(x) > 0 for all x ∈ Si\
{x̄i}. However, since no other equilibria is inside Si except
x̄i, the solution must leave the set ∂Oi ∩{x : ‖x− x̄i‖ < ε}
in finite time. However, it cannot leave the set through ∂Oi
since ‖x − ci‖2 is constant along (28). Consequently, the
solution must leave the ball {x : ‖x − x̄i‖ < ε} in finite
time and the equilibrium x = x̄i is unstable. Finally, since
the set of undesired equilibria ∪Mi=1{x̄i} is unstable and has
Lebesgue measure zero in Rn, it follows that x = xd is
attractive from almost all initial conditions and thus it is
almost globally asymptotically stable.

Geometrically speaking, the unstable equilibrium x̄i is
nothing but the antipodal point (on the boundary of the
obstacle) which is diametrically opposite to xd. Note that, for
sphere worlds, our piecewise continuous vector field guaran-
tees safety and convergence from almost all initial conditions
without requiring unknown parameter tuning compared to the
navigation functions approach [2]. The undesired equilibria
can be removed by considering the hybrid approach in [9].

IV. DISTANCE-BASED CHARACTERIZATION AND
CONTINUOUS VECTOR FIELDS GENERATION

Here, we assume that the obstacle region {X has positive
reach. In other words, there exists h > 0 such that, at each x
with d{X (x) < h, the projection P∂X (x) is unique [24, Thm
6.3, Chap. 6]. For instance, the set in Fig. 1 is not positive
reach since points that are arbitrary closed to the corners of
the square (boundary of the workspace) can have two nearest
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Fig. 2. Left: vector fields generated by the discontinuous controller (11),
when X = {B([2, 2], 0.5) and xd = 0. The convergence to xd is ensured
from all initial conditions except from the stable manifold (half-line in red)
of the unstable equilibrium x̄1 = (1 + 1/4

√
2)[2, 2] (antipodal point). The

intensity of the vector field decreases from orange to blue colors. Right:
vector fields generated by the continuous controller (32). The continuous
implementation allows to maintain a safety margin of size ε = 0.2 (in
green) from the obstacle while the controller exhibits a smooth transition
from the stabilization mode to the avoidance mode once it enters the set
Xε \ Xε′ (in red).

points to the boundary. On the other hand, the set in Fig. 3
is positive reach.

In practice, it is preferable to keep the robot away from
the boundary by ensuring a minimum safety margin. For this
purpose, we pick a safety margin ε > 0 and define

Xε := {x ∈ Rn : d{X (x) ≥ ε} (30)

as our (practical) free space. Note that ∇d{X (x) represents
the inward unit normal at the boundary of Xε. Therefore, our
outward normal vector ν(x) at ∂Xε is nothing but ν(x) =
−∇d{X (x). Since {X has positive reach, it follows from
[24, Thm 3.3, Chap. 6] that, for all x with s ≤ d{X (x) ≤ h,
0 < s < h, ∇d{X (x) is Lipstichtz continuous and satisfies

∇d{X (x) =
x−P∂X (x)

‖x−P∂X (x)‖
=
x−P∂X (x)

d{X (x)
. (31)

Therefore, the discontinuous controller u = κXε
(x) can be

applied and the results of Section (III-C) holds for the set Xε.
However, the discontinuity in the vector field is undesirable
in practice. We propose the following continuous version that
is inspired from the smoothing mechanism in [25]:

κ̂Xε
(x) =


κ0(x) d{X (x) > ε′ or

κ0(x)>∇d{X (x) ≥ 0,

Π̂(x)κ0(x) d{X (x) ≤ ε′ and

κ0(x)>∇d{X (x) ≤ 0,

(32)

where 0 < ε < ε′ ≤ h and

Π̂(x) := In − φ(x)∇d{X (x)∇d{X (x)>, (33)

φ(x) := min

(
1,
ε′ − d{X (x)

ε′ − ε

)
. (34)

The control law above is continuous since for d{X (x) = ε′,
one has φ(x) = 0 and, thus, κ̂Xε(x) = κ0(x).
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Fig. 3. The continuous controller (32) depends explicitly on the distance to
the obstacle set {X (dark gray) and the bearing vector ∇d{X (x); both can
be obtained from on-board sensor measurements such as range scanners. The
resulting smooth navigation trajectories (purple) maintains a safety margin
of size ε (green) from the obstacles. The avoidance maneuver starts at a
distance of ε′ > ε.

V. SENSOR-BASED IMPLEMENTATION

The advantage of the continuous control implementa-
tion in (32) is its characterization using the distance func-
tion d{X (x) and the projection P∂X (x). Fortunately, both
d{X (x) and P∂X (x) can be obtained locally in real-time
using simple on-board sensors such as LiDARs or stereo
cameras. In this section, we provide some insights about the
practical implementation of our proposed navigation strategy
using 2D and 3D sensing models.

A. 2D navigation using a LiDAR range scanner
In a 2D setting, we assume available a LiDAR (light de-

tection and ranging) range scanner with an angular scanning
range of 360o and a fixed radial range of R > 0. At each
position x ∈ X , the sensory measurement of the LiDAR
scanner can be modelled by a polar curve ρ(·;x) : [−π, π)→
[0, R], which defined as

ρ(θ;x) := min

R, min
y∈∂X

atan2(y−x)=θ

‖y − x‖

 . (35)

Therefore, it is possible to obtain the distance to the boundary
when the latter is less or equal to R from

d{X (x) = min
θ
ρ(θ;x). (36)

Hence, we can implement the navigation controller (32) by
selecting further restricting ε′ < R. Moreover, the bearing
vector ∇d{X (x) can be obtained from

∇d{X (x) = −(cos(θ∗), sin(θ∗)), θ∗ = arg min
θ
ρ(θ;x).

(37)

Consequently, the navigation controller (32) has been fully
characterized using a LiDAR scanner measurement model.
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Fig. 4. Left: example of 2D LiDAR polar curve in (35) that allows to extract
the minimum distance and bearing vector for navigation. Right: computation
of depth (3D range) from the image points of a stereo camera.

B. 3D navigation using a depth map from a stereo camera

In a 3D scenario, a stereo camera allows to extract a local
depth map that can be used to implement our navigation
controller. For stereo cameras with parallel optical axes, focal
length f , baseline b, corresponding image points pL :=
(pLx , p

L
y ) and pR := (pRx , p

R
y ) in the left and right cameras

respectively, the depth can be calculated from (see Fig. 4)

z =
f · b

|pLx − pRx |
. (38)

Since the cameras are assumed parallel and calibrated, we
have pLy = pRy . The distance d{X (x) to the boundary can
be hence derived by minimizing the depth z across all
pixels (pLx , p

L
y ) of the camera’s image (the darkest pixel

on the depth map). Let (p̄Lx , p̄
L
y ) be an argument of this

minimization. If we assume that the center of the frame
is taken at the left camera, the 3D Cartesian coordinates
p := (px, py, pz) of the closest boundary point p expressed
in the frame that is generated by the front image plane are

px(y) =
b · p̄Lx(y)

(p̄Lx − p̄Rx )
, pz =

b · f
(p̄Lx − p̄Rx )

. (39)

If we let (RL, pL) be the homogeneous coordinates of the
left camera with respect to robot’s center of gravity at x,
the bearing vector from x to the closest point p on the
boundary is given by ∇d{X (x) = (RLp+pL)/‖RLp+pL‖.
Consequently, the navigation controller (32) has been fully
characterized using a stereo camera sensing model.

VI. NUMERICAL SIMULATIONS

We consider a free space X ⊆ R2 such that:

X := {x = (x1, x2) ∈ R2 : fi(x) ≤ 0, i ∈ {1, 2},
and gq(x) ≤ 0, q ∈ Z}, (40)

where f1(x) = 4 sin(x1)−x2−5, f2(x) = 4 sin(x1)+x2−5,
and gq(x) = 4 − (x1 − (4q + 3)π/2)2 − x22. The free
space X consists of the closed (but unbounded) area between
two sinusoidal-shaped boundaries minus an infinite number
of spherical obstacles centered at ((4q + 3)π/2, 0), q ∈
Z, with radius equals 2. To simulate the function of the
range scanner (at 1o resolution), we consider finding the
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Fig. 5. The obtained (continuously differentiable and piecewise smooth)
navigation trajectories of the proposed sensor-based control law in (32),
starting at a set of initial positions (red), converge to the goal (yellow)
while avoiding the obstacles region R2 \X (dark gray). A simulation video
is provided at https://youtu.be/37ImfGoPyqg.

solutions (λ1θ, λ
2
θ, β

1
θ , β

2
θ , · · · ) of the single-variable non-

linear equations f1(x + λ1θvθ) = 0, f2(x + λ2θvθ) = 0,
and gq(x + βqθvθ) = 0, for each position x and direction
vθ = (cos(θ), sin(θ)), θ = 0o, 1o, · · · , 359o. Note that
the interval of search for the solution is limited to [0, R]
where R is the radial range. If no solution is found in
this range then we take the corresponding scalar as R.
The value of the polar curve at this position and angle is
given by ρ(θ;x) = min{λ1θ, λ2θ, β1

θ , · · · }. The distance to the
boundary and the gradient vector are computed according
to (36) and (37), respectively. For simulation, we pick the
desired reference at xd = (−9, 3), the controller parameters
as k = 0.5, ε = 0.2, ε′ = 0.4, and the sensory radius as
R = 0.5. We consider different initial conditions for our
robot. Fig. 5 shows the obtained (continuously differentiable)
safe navigation trajectories.

VII. CONCLUSION

We proposed a computationally simple sensor-based nav-
igation controller that allows for a robot to safely move
in an n−dimensional unknown environment. The controller
switches between two modes of navigation: stabilization and
avoidance. The stabilization mode uses a nominal control law
and is activated away from the boundary while the avoidance
mode projects the nominal control law onto the SVCs to
ensure a minimally invasive safe controller. For metrically
simple free spaces (sphere worlds), the navigation is guar-
anteed from almost everywhere. Moreover, we proposed a
smoothing mechanism that removes the discontinuity in the
controller by characterizing our free space using the distance
to the obstacles function. This characterization allows also to
implement our proposed navigation strategy using on-board
sensors without any prior knowledge of the environment.
As a future work, we aim to consider more complex robot
dynamics in the design of the control law.
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